xref: /linux/arch/powerpc/include/asm/book3s/64/pgtable.h (revision 9f2c9170934eace462499ba0bfe042cc72900173)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4 
5 #include <asm-generic/pgtable-nop4d.h>
6 
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #include <linux/sizes.h>
11 #endif
12 
13 /*
14  * Common bits between hash and Radix page table
15  */
16 
17 #define _PAGE_EXEC		0x00001 /* execute permission */
18 #define _PAGE_WRITE		0x00002 /* write access allowed */
19 #define _PAGE_READ		0x00004	/* read access allowed */
20 #define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
21 #define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
22 #define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
23 #define _PAGE_SAO		0x00010 /* Strong access order */
24 #define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
25 #define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
26 #define _PAGE_DIRTY		0x00080 /* C: page changed */
27 #define _PAGE_ACCESSED		0x00100 /* R: page referenced */
28 /*
29  * Software bits
30  */
31 #define _RPAGE_SW0		0x2000000000000000UL
32 #define _RPAGE_SW1		0x00800
33 #define _RPAGE_SW2		0x00400
34 #define _RPAGE_SW3		0x00200
35 #define _RPAGE_RSV1		0x00040UL
36 
37 #define _RPAGE_PKEY_BIT4	0x1000000000000000UL
38 #define _RPAGE_PKEY_BIT3	0x0800000000000000UL
39 #define _RPAGE_PKEY_BIT2	0x0400000000000000UL
40 #define _RPAGE_PKEY_BIT1	0x0200000000000000UL
41 #define _RPAGE_PKEY_BIT0	0x0100000000000000UL
42 
43 #define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
44 #define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */
45 /*
46  * We need to mark a pmd pte invalid while splitting. We can do that by clearing
47  * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
48  * differentiate between two use a SW field when invalidating.
49  *
50  * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
51  *
52  * This is used only when _PAGE_PRESENT is cleared.
53  */
54 #define _PAGE_INVALID		_RPAGE_SW0
55 
56 /*
57  * Top and bottom bits of RPN which can be used by hash
58  * translation mode, because we expect them to be zero
59  * otherwise.
60  */
61 #define _RPAGE_RPN0		0x01000
62 #define _RPAGE_RPN1		0x02000
63 #define _RPAGE_RPN43		0x0080000000000000UL
64 #define _RPAGE_RPN42		0x0040000000000000UL
65 #define _RPAGE_RPN41		0x0020000000000000UL
66 
67 /* Max physical address bit as per radix table */
68 #define _RPAGE_PA_MAX		56
69 
70 /*
71  * Max physical address bit we will use for now.
72  *
73  * This is mostly a hardware limitation and for now Power9 has
74  * a 51 bit limit.
75  *
76  * This is different from the number of physical bit required to address
77  * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
78  * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
79  * number of sections we can support (SECTIONS_SHIFT).
80  *
81  * This is different from Radix page table limitation above and
82  * should always be less than that. The limit is done such that
83  * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
84  * for hash linux page table specific bits.
85  *
86  * In order to be compatible with future hardware generations we keep
87  * some offsets and limit this for now to 53
88  */
89 #define _PAGE_PA_MAX		53
90 
91 #define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
92 #define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
93 #define _PAGE_DEVMAP		_RPAGE_SW1 /* software: ZONE_DEVICE page */
94 
95 /*
96  * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
97  * Instead of fixing all of them, add an alternate define which
98  * maps CI pte mapping.
99  */
100 #define _PAGE_NO_CACHE		_PAGE_TOLERANT
101 /*
102  * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
103  * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
104  * and every thing below PAGE_SHIFT;
105  */
106 #define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
107 /*
108  * set of bits not changed in pmd_modify. Even though we have hash specific bits
109  * in here, on radix we expect them to be zero.
110  */
111 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
112 			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
113 			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
114 /*
115  * user access blocked by key
116  */
117 #define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
118 #define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
119 #define _PAGE_KERNEL_ROX	 (_PAGE_PRIVILEGED | _PAGE_READ | _PAGE_EXEC)
120 #define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC)
121 /*
122  * _PAGE_CHG_MASK masks of bits that are to be preserved across
123  * pgprot changes
124  */
125 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
126 			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
127 			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
128 
129 /*
130  * We define 2 sets of base prot bits, one for basic pages (ie,
131  * cacheable kernel and user pages) and one for non cacheable
132  * pages. We always set _PAGE_COHERENT when SMP is enabled or
133  * the processor might need it for DMA coherency.
134  */
135 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
136 #define _PAGE_BASE	(_PAGE_BASE_NC)
137 
138 /* Permission masks used to generate the __P and __S table,
139  *
140  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
141  *
142  * Write permissions imply read permissions for now (we could make write-only
143  * pages on BookE but we don't bother for now). Execute permission control is
144  * possible on platforms that define _PAGE_EXEC
145  */
146 #define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
147 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
148 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
149 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
150 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
151 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
152 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
153 /* Radix only, Hash uses PAGE_READONLY_X + execute-only pkey instead */
154 #define PAGE_EXECONLY	__pgprot(_PAGE_BASE | _PAGE_EXEC)
155 
156 /* Permission masks used for kernel mappings */
157 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
158 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_TOLERANT)
159 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NON_IDEMPOTENT)
160 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
161 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
162 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
163 
164 #ifndef __ASSEMBLY__
165 /*
166  * page table defines
167  */
168 extern unsigned long __pte_index_size;
169 extern unsigned long __pmd_index_size;
170 extern unsigned long __pud_index_size;
171 extern unsigned long __pgd_index_size;
172 extern unsigned long __pud_cache_index;
173 #define PTE_INDEX_SIZE  __pte_index_size
174 #define PMD_INDEX_SIZE  __pmd_index_size
175 #define PUD_INDEX_SIZE  __pud_index_size
176 #define PGD_INDEX_SIZE  __pgd_index_size
177 /* pmd table use page table fragments */
178 #define PMD_CACHE_INDEX  0
179 #define PUD_CACHE_INDEX __pud_cache_index
180 /*
181  * Because of use of pte fragments and THP, size of page table
182  * are not always derived out of index size above.
183  */
184 extern unsigned long __pte_table_size;
185 extern unsigned long __pmd_table_size;
186 extern unsigned long __pud_table_size;
187 extern unsigned long __pgd_table_size;
188 #define PTE_TABLE_SIZE	__pte_table_size
189 #define PMD_TABLE_SIZE	__pmd_table_size
190 #define PUD_TABLE_SIZE	__pud_table_size
191 #define PGD_TABLE_SIZE	__pgd_table_size
192 
193 extern unsigned long __pmd_val_bits;
194 extern unsigned long __pud_val_bits;
195 extern unsigned long __pgd_val_bits;
196 #define PMD_VAL_BITS	__pmd_val_bits
197 #define PUD_VAL_BITS	__pud_val_bits
198 #define PGD_VAL_BITS	__pgd_val_bits
199 
200 extern unsigned long __pte_frag_nr;
201 #define PTE_FRAG_NR __pte_frag_nr
202 extern unsigned long __pte_frag_size_shift;
203 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
204 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
205 
206 extern unsigned long __pmd_frag_nr;
207 #define PMD_FRAG_NR __pmd_frag_nr
208 extern unsigned long __pmd_frag_size_shift;
209 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
210 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
211 
212 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
213 #define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
214 #define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
215 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
216 
217 #define MAX_PTRS_PER_PTE ((H_PTRS_PER_PTE > R_PTRS_PER_PTE) ? H_PTRS_PER_PTE : R_PTRS_PER_PTE)
218 #define MAX_PTRS_PER_PMD ((H_PTRS_PER_PMD > R_PTRS_PER_PMD) ? H_PTRS_PER_PMD : R_PTRS_PER_PMD)
219 #define MAX_PTRS_PER_PUD ((H_PTRS_PER_PUD > R_PTRS_PER_PUD) ? H_PTRS_PER_PUD : R_PTRS_PER_PUD)
220 #define MAX_PTRS_PER_PGD	(1 << (H_PGD_INDEX_SIZE > RADIX_PGD_INDEX_SIZE ? \
221 				       H_PGD_INDEX_SIZE : RADIX_PGD_INDEX_SIZE))
222 
223 /* PMD_SHIFT determines what a second-level page table entry can map */
224 #define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
225 #define PMD_SIZE	(1UL << PMD_SHIFT)
226 #define PMD_MASK	(~(PMD_SIZE-1))
227 
228 /* PUD_SHIFT determines what a third-level page table entry can map */
229 #define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
230 #define PUD_SIZE	(1UL << PUD_SHIFT)
231 #define PUD_MASK	(~(PUD_SIZE-1))
232 
233 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
234 #define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
235 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
236 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
237 
238 /* Bits to mask out from a PMD to get to the PTE page */
239 #define PMD_MASKED_BITS		0xc0000000000000ffUL
240 /* Bits to mask out from a PUD to get to the PMD page */
241 #define PUD_MASKED_BITS		0xc0000000000000ffUL
242 /* Bits to mask out from a PGD to get to the PUD page */
243 #define P4D_MASKED_BITS		0xc0000000000000ffUL
244 
245 /*
246  * Used as an indicator for rcu callback functions
247  */
248 enum pgtable_index {
249 	PTE_INDEX = 0,
250 	PMD_INDEX,
251 	PUD_INDEX,
252 	PGD_INDEX,
253 	/*
254 	 * Below are used with 4k page size and hugetlb
255 	 */
256 	HTLB_16M_INDEX,
257 	HTLB_16G_INDEX,
258 };
259 
260 extern unsigned long __vmalloc_start;
261 extern unsigned long __vmalloc_end;
262 #define VMALLOC_START	__vmalloc_start
263 #define VMALLOC_END	__vmalloc_end
264 
265 static inline unsigned int ioremap_max_order(void)
266 {
267 	if (radix_enabled())
268 		return PUD_SHIFT;
269 	return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
270 }
271 #define IOREMAP_MAX_ORDER ioremap_max_order()
272 
273 extern unsigned long __kernel_virt_start;
274 extern unsigned long __kernel_io_start;
275 extern unsigned long __kernel_io_end;
276 #define KERN_VIRT_START __kernel_virt_start
277 #define KERN_IO_START  __kernel_io_start
278 #define KERN_IO_END __kernel_io_end
279 
280 extern struct page *vmemmap;
281 extern unsigned long pci_io_base;
282 #endif /* __ASSEMBLY__ */
283 
284 #include <asm/book3s/64/hash.h>
285 #include <asm/book3s/64/radix.h>
286 
287 #if H_MAX_PHYSMEM_BITS > R_MAX_PHYSMEM_BITS
288 #define  MAX_PHYSMEM_BITS	H_MAX_PHYSMEM_BITS
289 #else
290 #define  MAX_PHYSMEM_BITS	R_MAX_PHYSMEM_BITS
291 #endif
292 
293 
294 #ifdef CONFIG_PPC_64K_PAGES
295 #include <asm/book3s/64/pgtable-64k.h>
296 #else
297 #include <asm/book3s/64/pgtable-4k.h>
298 #endif
299 
300 #include <asm/barrier.h>
301 /*
302  * IO space itself carved into the PIO region (ISA and PHB IO space) and
303  * the ioremap space
304  *
305  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
306  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
307  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
308  */
309 #define FULL_IO_SIZE	0x80000000ul
310 #define  ISA_IO_BASE	(KERN_IO_START)
311 #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
312 #define  PHB_IO_BASE	(ISA_IO_END)
313 #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
314 #define IOREMAP_BASE	(PHB_IO_END)
315 #define IOREMAP_START	(ioremap_bot)
316 #define IOREMAP_END	(KERN_IO_END - FIXADDR_SIZE)
317 #define FIXADDR_SIZE	SZ_32M
318 
319 #ifndef __ASSEMBLY__
320 
321 /*
322  * This is the default implementation of various PTE accessors, it's
323  * used in all cases except Book3S with 64K pages where we have a
324  * concept of sub-pages
325  */
326 #ifndef __real_pte
327 
328 #define __real_pte(e, p, o)		((real_pte_t){(e)})
329 #define __rpte_to_pte(r)	((r).pte)
330 #define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
331 
332 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
333 	do {							         \
334 		index = 0;					         \
335 		shift = mmu_psize_defs[psize].shift;		         \
336 
337 #define pte_iterate_hashed_end() } while(0)
338 
339 /*
340  * We expect this to be called only for user addresses or kernel virtual
341  * addresses other than the linear mapping.
342  */
343 #define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
344 
345 #endif /* __real_pte */
346 
347 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
348 				       pte_t *ptep, unsigned long clr,
349 				       unsigned long set, int huge)
350 {
351 	if (radix_enabled())
352 		return radix__pte_update(mm, addr, ptep, clr, set, huge);
353 	return hash__pte_update(mm, addr, ptep, clr, set, huge);
354 }
355 /*
356  * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
357  * We currently remove entries from the hashtable regardless of whether
358  * the entry was young or dirty.
359  *
360  * We should be more intelligent about this but for the moment we override
361  * these functions and force a tlb flush unconditionally
362  * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
363  * function for both hash and radix.
364  */
365 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
366 					      unsigned long addr, pte_t *ptep)
367 {
368 	unsigned long old;
369 
370 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
371 		return 0;
372 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
373 	return (old & _PAGE_ACCESSED) != 0;
374 }
375 
376 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
377 #define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
378 ({								\
379 	__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
380 })
381 
382 /*
383  * On Book3S CPUs, clearing the accessed bit without a TLB flush
384  * doesn't cause data corruption. [ It could cause incorrect
385  * page aging and the (mistaken) reclaim of hot pages, but the
386  * chance of that should be relatively low. ]
387  *
388  * So as a performance optimization don't flush the TLB when
389  * clearing the accessed bit, it will eventually be flushed by
390  * a context switch or a VM operation anyway. [ In the rare
391  * event of it not getting flushed for a long time the delay
392  * shouldn't really matter because there's no real memory
393  * pressure for swapout to react to. ]
394  *
395  * Note: this optimisation also exists in pte_needs_flush() and
396  * huge_pmd_needs_flush().
397  */
398 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
399 #define ptep_clear_flush_young ptep_test_and_clear_young
400 
401 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
402 #define pmdp_clear_flush_young pmdp_test_and_clear_young
403 
404 static inline int pte_write(pte_t pte)
405 {
406 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
407 }
408 
409 static inline int pte_read(pte_t pte)
410 {
411 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
412 }
413 
414 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
415 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
416 				      pte_t *ptep)
417 {
418 	if (pte_write(*ptep))
419 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
420 }
421 
422 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
423 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
424 					   unsigned long addr, pte_t *ptep)
425 {
426 	if (pte_write(*ptep))
427 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
428 }
429 
430 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
431 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
432 				       unsigned long addr, pte_t *ptep)
433 {
434 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
435 	return __pte(old);
436 }
437 
438 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
439 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
440 					    unsigned long addr,
441 					    pte_t *ptep, int full)
442 {
443 	if (full && radix_enabled()) {
444 		/*
445 		 * We know that this is a full mm pte clear and
446 		 * hence can be sure there is no parallel set_pte.
447 		 */
448 		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
449 	}
450 	return ptep_get_and_clear(mm, addr, ptep);
451 }
452 
453 
454 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
455 			     pte_t * ptep)
456 {
457 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
458 }
459 
460 static inline int pte_dirty(pte_t pte)
461 {
462 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
463 }
464 
465 static inline int pte_young(pte_t pte)
466 {
467 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
468 }
469 
470 static inline int pte_special(pte_t pte)
471 {
472 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
473 }
474 
475 static inline bool pte_exec(pte_t pte)
476 {
477 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
478 }
479 
480 
481 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
482 static inline bool pte_soft_dirty(pte_t pte)
483 {
484 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
485 }
486 
487 static inline pte_t pte_mksoft_dirty(pte_t pte)
488 {
489 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
490 }
491 
492 static inline pte_t pte_clear_soft_dirty(pte_t pte)
493 {
494 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
495 }
496 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
497 
498 #ifdef CONFIG_NUMA_BALANCING
499 static inline int pte_protnone(pte_t pte)
500 {
501 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
502 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
503 }
504 #endif /* CONFIG_NUMA_BALANCING */
505 
506 static inline bool pte_hw_valid(pte_t pte)
507 {
508 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) ==
509 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
510 }
511 
512 static inline int pte_present(pte_t pte)
513 {
514 	/*
515 	 * A pte is considerent present if _PAGE_PRESENT is set.
516 	 * We also need to consider the pte present which is marked
517 	 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
518 	 * if we find _PAGE_PRESENT cleared.
519 	 */
520 
521 	if (pte_hw_valid(pte))
522 		return true;
523 	return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) ==
524 		cpu_to_be64(_PAGE_INVALID | _PAGE_PTE);
525 }
526 
527 #ifdef CONFIG_PPC_MEM_KEYS
528 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
529 #else
530 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
531 {
532 	return true;
533 }
534 #endif /* CONFIG_PPC_MEM_KEYS */
535 
536 static inline bool pte_user(pte_t pte)
537 {
538 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
539 }
540 
541 #define pte_access_permitted pte_access_permitted
542 static inline bool pte_access_permitted(pte_t pte, bool write)
543 {
544 	/*
545 	 * _PAGE_READ is needed for any access and will be
546 	 * cleared for PROT_NONE
547 	 */
548 	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
549 		return false;
550 
551 	if (write && !pte_write(pte))
552 		return false;
553 
554 	return arch_pte_access_permitted(pte_val(pte), write, 0);
555 }
556 
557 /*
558  * Conversion functions: convert a page and protection to a page entry,
559  * and a page entry and page directory to the page they refer to.
560  *
561  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
562  * long for now.
563  */
564 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
565 {
566 	VM_BUG_ON(pfn >> (64 - PAGE_SHIFT));
567 	VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK);
568 
569 	return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot) | _PAGE_PTE);
570 }
571 
572 static inline unsigned long pte_pfn(pte_t pte)
573 {
574 	return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
575 }
576 
577 /* Generic modifiers for PTE bits */
578 static inline pte_t pte_wrprotect(pte_t pte)
579 {
580 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
581 }
582 
583 static inline pte_t pte_exprotect(pte_t pte)
584 {
585 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
586 }
587 
588 static inline pte_t pte_mkclean(pte_t pte)
589 {
590 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
591 }
592 
593 static inline pte_t pte_mkold(pte_t pte)
594 {
595 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
596 }
597 
598 static inline pte_t pte_mkexec(pte_t pte)
599 {
600 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
601 }
602 
603 static inline pte_t pte_mkwrite(pte_t pte)
604 {
605 	/*
606 	 * write implies read, hence set both
607 	 */
608 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
609 }
610 
611 static inline pte_t pte_mkdirty(pte_t pte)
612 {
613 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
614 }
615 
616 static inline pte_t pte_mkyoung(pte_t pte)
617 {
618 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
619 }
620 
621 static inline pte_t pte_mkspecial(pte_t pte)
622 {
623 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
624 }
625 
626 static inline pte_t pte_mkhuge(pte_t pte)
627 {
628 	return pte;
629 }
630 
631 static inline pte_t pte_mkdevmap(pte_t pte)
632 {
633 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
634 }
635 
636 static inline pte_t pte_mkprivileged(pte_t pte)
637 {
638 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
639 }
640 
641 static inline pte_t pte_mkuser(pte_t pte)
642 {
643 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
644 }
645 
646 /*
647  * This is potentially called with a pmd as the argument, in which case it's not
648  * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
649  * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
650  * use in page directory entries (ie. non-ptes).
651  */
652 static inline int pte_devmap(pte_t pte)
653 {
654 	u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
655 
656 	return (pte_raw(pte) & mask) == mask;
657 }
658 
659 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
660 {
661 	/* FIXME!! check whether this need to be a conditional */
662 	return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
663 			 cpu_to_be64(pgprot_val(newprot)));
664 }
665 
666 /* Encode and de-code a swap entry */
667 #define MAX_SWAPFILES_CHECK() do { \
668 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
669 	/*							\
670 	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
671 	 * We filter HPTEFLAGS on set_pte.			\
672 	 */							\
673 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & SWP_TYPE_MASK); \
674 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
675 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_EXCLUSIVE);	\
676 	} while (0)
677 
678 #define SWP_TYPE_BITS 5
679 #define SWP_TYPE_MASK		((1UL << SWP_TYPE_BITS) - 1)
680 #define __swp_type(x)		((x).val & SWP_TYPE_MASK)
681 #define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
682 #define __swp_entry(type, offset)	((swp_entry_t) { \
683 				(type) | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
684 /*
685  * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
686  * swap type and offset we get from swap and convert that to pte to find a
687  * matching pte in linux page table.
688  * Clear bits not found in swap entries here.
689  */
690 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
691 #define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
692 #define __pmd_to_swp_entry(pmd)	(__pte_to_swp_entry(pmd_pte(pmd)))
693 #define __swp_entry_to_pmd(x)	(pte_pmd(__swp_entry_to_pte(x)))
694 
695 #ifdef CONFIG_MEM_SOFT_DIRTY
696 #define _PAGE_SWP_SOFT_DIRTY	_PAGE_SOFT_DIRTY
697 #else
698 #define _PAGE_SWP_SOFT_DIRTY	0UL
699 #endif /* CONFIG_MEM_SOFT_DIRTY */
700 
701 #define _PAGE_SWP_EXCLUSIVE	_PAGE_NON_IDEMPOTENT
702 
703 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
704 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
705 {
706 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
707 }
708 
709 static inline bool pte_swp_soft_dirty(pte_t pte)
710 {
711 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
712 }
713 
714 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
715 {
716 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
717 }
718 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
719 
720 #define __HAVE_ARCH_PTE_SWP_EXCLUSIVE
721 static inline pte_t pte_swp_mkexclusive(pte_t pte)
722 {
723 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_EXCLUSIVE));
724 }
725 
726 static inline int pte_swp_exclusive(pte_t pte)
727 {
728 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_EXCLUSIVE));
729 }
730 
731 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
732 {
733 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_EXCLUSIVE));
734 }
735 
736 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
737 {
738 	/*
739 	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
740 	 */
741 	if (access & ~ptev)
742 		return false;
743 	/*
744 	 * This check for access to privilege space
745 	 */
746 	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
747 		return false;
748 
749 	return true;
750 }
751 /*
752  * Generic functions with hash/radix callbacks
753  */
754 
755 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
756 					   pte_t *ptep, pte_t entry,
757 					   unsigned long address,
758 					   int psize)
759 {
760 	if (radix_enabled())
761 		return radix__ptep_set_access_flags(vma, ptep, entry,
762 						    address, psize);
763 	return hash__ptep_set_access_flags(ptep, entry);
764 }
765 
766 #define __HAVE_ARCH_PTE_SAME
767 static inline int pte_same(pte_t pte_a, pte_t pte_b)
768 {
769 	if (radix_enabled())
770 		return radix__pte_same(pte_a, pte_b);
771 	return hash__pte_same(pte_a, pte_b);
772 }
773 
774 static inline int pte_none(pte_t pte)
775 {
776 	if (radix_enabled())
777 		return radix__pte_none(pte);
778 	return hash__pte_none(pte);
779 }
780 
781 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
782 				pte_t *ptep, pte_t pte, int percpu)
783 {
784 
785 	VM_WARN_ON(!(pte_raw(pte) & cpu_to_be64(_PAGE_PTE)));
786 	/*
787 	 * Keep the _PAGE_PTE added till we are sure we handle _PAGE_PTE
788 	 * in all the callers.
789 	 */
790 	pte = __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
791 
792 	if (radix_enabled())
793 		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
794 	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
795 }
796 
797 #define _PAGE_CACHE_CTL	(_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
798 
799 #define pgprot_noncached pgprot_noncached
800 static inline pgprot_t pgprot_noncached(pgprot_t prot)
801 {
802 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
803 			_PAGE_NON_IDEMPOTENT);
804 }
805 
806 #define pgprot_noncached_wc pgprot_noncached_wc
807 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
808 {
809 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
810 			_PAGE_TOLERANT);
811 }
812 
813 #define pgprot_cached pgprot_cached
814 static inline pgprot_t pgprot_cached(pgprot_t prot)
815 {
816 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
817 }
818 
819 #define pgprot_writecombine pgprot_writecombine
820 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
821 {
822 	return pgprot_noncached_wc(prot);
823 }
824 /*
825  * check a pte mapping have cache inhibited property
826  */
827 static inline bool pte_ci(pte_t pte)
828 {
829 	__be64 pte_v = pte_raw(pte);
830 
831 	if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
832 	    ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
833 		return true;
834 	return false;
835 }
836 
837 static inline void pmd_clear(pmd_t *pmdp)
838 {
839 	if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
840 		/*
841 		 * Don't use this if we can possibly have a hash page table
842 		 * entry mapping this.
843 		 */
844 		WARN_ON((pmd_val(*pmdp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
845 	}
846 	*pmdp = __pmd(0);
847 }
848 
849 static inline int pmd_none(pmd_t pmd)
850 {
851 	return !pmd_raw(pmd);
852 }
853 
854 static inline int pmd_present(pmd_t pmd)
855 {
856 	/*
857 	 * A pmd is considerent present if _PAGE_PRESENT is set.
858 	 * We also need to consider the pmd present which is marked
859 	 * invalid during a split. Hence we look for _PAGE_INVALID
860 	 * if we find _PAGE_PRESENT cleared.
861 	 */
862 	if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
863 		return true;
864 
865 	return false;
866 }
867 
868 static inline int pmd_is_serializing(pmd_t pmd)
869 {
870 	/*
871 	 * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
872 	 * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
873 	 *
874 	 * This condition may also occur when flushing a pmd while flushing
875 	 * it (see ptep_modify_prot_start), so callers must ensure this
876 	 * case is fine as well.
877 	 */
878 	if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
879 						cpu_to_be64(_PAGE_INVALID))
880 		return true;
881 
882 	return false;
883 }
884 
885 static inline int pmd_bad(pmd_t pmd)
886 {
887 	if (radix_enabled())
888 		return radix__pmd_bad(pmd);
889 	return hash__pmd_bad(pmd);
890 }
891 
892 static inline void pud_clear(pud_t *pudp)
893 {
894 	if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
895 		/*
896 		 * Don't use this if we can possibly have a hash page table
897 		 * entry mapping this.
898 		 */
899 		WARN_ON((pud_val(*pudp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
900 	}
901 	*pudp = __pud(0);
902 }
903 
904 static inline int pud_none(pud_t pud)
905 {
906 	return !pud_raw(pud);
907 }
908 
909 static inline int pud_present(pud_t pud)
910 {
911 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
912 }
913 
914 extern struct page *pud_page(pud_t pud);
915 extern struct page *pmd_page(pmd_t pmd);
916 static inline pte_t pud_pte(pud_t pud)
917 {
918 	return __pte_raw(pud_raw(pud));
919 }
920 
921 static inline pud_t pte_pud(pte_t pte)
922 {
923 	return __pud_raw(pte_raw(pte));
924 }
925 #define pud_write(pud)		pte_write(pud_pte(pud))
926 
927 static inline int pud_bad(pud_t pud)
928 {
929 	if (radix_enabled())
930 		return radix__pud_bad(pud);
931 	return hash__pud_bad(pud);
932 }
933 
934 #define pud_access_permitted pud_access_permitted
935 static inline bool pud_access_permitted(pud_t pud, bool write)
936 {
937 	return pte_access_permitted(pud_pte(pud), write);
938 }
939 
940 #define __p4d_raw(x)	((p4d_t) { __pgd_raw(x) })
941 static inline __be64 p4d_raw(p4d_t x)
942 {
943 	return pgd_raw(x.pgd);
944 }
945 
946 #define p4d_write(p4d)		pte_write(p4d_pte(p4d))
947 
948 static inline void p4d_clear(p4d_t *p4dp)
949 {
950 	*p4dp = __p4d(0);
951 }
952 
953 static inline int p4d_none(p4d_t p4d)
954 {
955 	return !p4d_raw(p4d);
956 }
957 
958 static inline int p4d_present(p4d_t p4d)
959 {
960 	return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT));
961 }
962 
963 static inline pte_t p4d_pte(p4d_t p4d)
964 {
965 	return __pte_raw(p4d_raw(p4d));
966 }
967 
968 static inline p4d_t pte_p4d(pte_t pte)
969 {
970 	return __p4d_raw(pte_raw(pte));
971 }
972 
973 static inline int p4d_bad(p4d_t p4d)
974 {
975 	if (radix_enabled())
976 		return radix__p4d_bad(p4d);
977 	return hash__p4d_bad(p4d);
978 }
979 
980 #define p4d_access_permitted p4d_access_permitted
981 static inline bool p4d_access_permitted(p4d_t p4d, bool write)
982 {
983 	return pte_access_permitted(p4d_pte(p4d), write);
984 }
985 
986 extern struct page *p4d_page(p4d_t p4d);
987 
988 /* Pointers in the page table tree are physical addresses */
989 #define __pgtable_ptr_val(ptr)	__pa(ptr)
990 
991 static inline pud_t *p4d_pgtable(p4d_t p4d)
992 {
993 	return (pud_t *)__va(p4d_val(p4d) & ~P4D_MASKED_BITS);
994 }
995 
996 static inline pmd_t *pud_pgtable(pud_t pud)
997 {
998 	return (pmd_t *)__va(pud_val(pud) & ~PUD_MASKED_BITS);
999 }
1000 
1001 #define pte_ERROR(e) \
1002 	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1003 #define pmd_ERROR(e) \
1004 	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1005 #define pud_ERROR(e) \
1006 	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1007 #define pgd_ERROR(e) \
1008 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1009 
1010 static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1011 {
1012 	if (radix_enabled()) {
1013 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1014 		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1015 		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1016 #endif
1017 		return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1018 	}
1019 	return hash__map_kernel_page(ea, pa, prot);
1020 }
1021 
1022 void unmap_kernel_page(unsigned long va);
1023 
1024 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1025 						   unsigned long page_size,
1026 						   unsigned long phys)
1027 {
1028 	if (radix_enabled())
1029 		return radix__vmemmap_create_mapping(start, page_size, phys);
1030 	return hash__vmemmap_create_mapping(start, page_size, phys);
1031 }
1032 
1033 #ifdef CONFIG_MEMORY_HOTPLUG
1034 static inline void vmemmap_remove_mapping(unsigned long start,
1035 					  unsigned long page_size)
1036 {
1037 	if (radix_enabled())
1038 		return radix__vmemmap_remove_mapping(start, page_size);
1039 	return hash__vmemmap_remove_mapping(start, page_size);
1040 }
1041 #endif
1042 
1043 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE)
1044 static inline void __kernel_map_pages(struct page *page, int numpages, int enable)
1045 {
1046 	if (radix_enabled())
1047 		radix__kernel_map_pages(page, numpages, enable);
1048 	else
1049 		hash__kernel_map_pages(page, numpages, enable);
1050 }
1051 #endif
1052 
1053 static inline pte_t pmd_pte(pmd_t pmd)
1054 {
1055 	return __pte_raw(pmd_raw(pmd));
1056 }
1057 
1058 static inline pmd_t pte_pmd(pte_t pte)
1059 {
1060 	return __pmd_raw(pte_raw(pte));
1061 }
1062 
1063 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1064 {
1065 	return (pte_t *)pmd;
1066 }
1067 #define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
1068 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
1069 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
1070 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
1071 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1072 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1073 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
1074 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1075 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1076 
1077 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1078 #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1079 #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1080 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1081 
1082 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1083 #define pmd_swp_mksoft_dirty(pmd)	pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1084 #define pmd_swp_soft_dirty(pmd)		pte_swp_soft_dirty(pmd_pte(pmd))
1085 #define pmd_swp_clear_soft_dirty(pmd)	pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1086 #endif
1087 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1088 
1089 #ifdef CONFIG_NUMA_BALANCING
1090 static inline int pmd_protnone(pmd_t pmd)
1091 {
1092 	return pte_protnone(pmd_pte(pmd));
1093 }
1094 #endif /* CONFIG_NUMA_BALANCING */
1095 
1096 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
1097 
1098 #define pmd_access_permitted pmd_access_permitted
1099 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1100 {
1101 	/*
1102 	 * pmdp_invalidate sets this combination (which is not caught by
1103 	 * !pte_present() check in pte_access_permitted), to prevent
1104 	 * lock-free lookups, as part of the serialize_against_pte_lookup()
1105 	 * synchronisation.
1106 	 *
1107 	 * This also catches the case where the PTE's hardware PRESENT bit is
1108 	 * cleared while TLB is flushed, which is suboptimal but should not
1109 	 * be frequent.
1110 	 */
1111 	if (pmd_is_serializing(pmd))
1112 		return false;
1113 
1114 	return pte_access_permitted(pmd_pte(pmd), write);
1115 }
1116 
1117 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1118 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1119 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1120 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1121 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1122 		       pmd_t *pmdp, pmd_t pmd);
1123 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1124 					unsigned long addr, pmd_t *pmd)
1125 {
1126 }
1127 
1128 extern int hash__has_transparent_hugepage(void);
1129 static inline int has_transparent_hugepage(void)
1130 {
1131 	if (radix_enabled())
1132 		return radix__has_transparent_hugepage();
1133 	return hash__has_transparent_hugepage();
1134 }
1135 #define has_transparent_hugepage has_transparent_hugepage
1136 
1137 static inline unsigned long
1138 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1139 		    unsigned long clr, unsigned long set)
1140 {
1141 	if (radix_enabled())
1142 		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1143 	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1144 }
1145 
1146 /*
1147  * returns true for pmd migration entries, THP, devmap, hugetlb
1148  * But compile time dependent on THP config
1149  */
1150 static inline int pmd_large(pmd_t pmd)
1151 {
1152 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1153 }
1154 
1155 /*
1156  * For radix we should always find H_PAGE_HASHPTE zero. Hence
1157  * the below will work for radix too
1158  */
1159 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1160 					      unsigned long addr, pmd_t *pmdp)
1161 {
1162 	unsigned long old;
1163 
1164 	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1165 		return 0;
1166 	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1167 	return ((old & _PAGE_ACCESSED) != 0);
1168 }
1169 
1170 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1171 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1172 				      pmd_t *pmdp)
1173 {
1174 	if (pmd_write(*pmdp))
1175 		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1176 }
1177 
1178 /*
1179  * Only returns true for a THP. False for pmd migration entry.
1180  * We also need to return true when we come across a pte that
1181  * in between a thp split. While splitting THP, we mark the pmd
1182  * invalid (pmdp_invalidate()) before we set it with pte page
1183  * address. A pmd_trans_huge() check against a pmd entry during that time
1184  * should return true.
1185  * We should not call this on a hugetlb entry. We should check for HugeTLB
1186  * entry using vma->vm_flags
1187  * The page table walk rule is explained in Documentation/mm/transhuge.rst
1188  */
1189 static inline int pmd_trans_huge(pmd_t pmd)
1190 {
1191 	if (!pmd_present(pmd))
1192 		return false;
1193 
1194 	if (radix_enabled())
1195 		return radix__pmd_trans_huge(pmd);
1196 	return hash__pmd_trans_huge(pmd);
1197 }
1198 
1199 #define __HAVE_ARCH_PMD_SAME
1200 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1201 {
1202 	if (radix_enabled())
1203 		return radix__pmd_same(pmd_a, pmd_b);
1204 	return hash__pmd_same(pmd_a, pmd_b);
1205 }
1206 
1207 static inline pmd_t __pmd_mkhuge(pmd_t pmd)
1208 {
1209 	if (radix_enabled())
1210 		return radix__pmd_mkhuge(pmd);
1211 	return hash__pmd_mkhuge(pmd);
1212 }
1213 
1214 /*
1215  * pfn_pmd return a pmd_t that can be used as pmd pte entry.
1216  */
1217 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1218 {
1219 #ifdef CONFIG_DEBUG_VM
1220 	if (radix_enabled())
1221 		WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)) == 0);
1222 	else
1223 		WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE)) !=
1224 			cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE));
1225 #endif
1226 	return pmd;
1227 }
1228 
1229 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1230 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1231 				 unsigned long address, pmd_t *pmdp,
1232 				 pmd_t entry, int dirty);
1233 
1234 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1235 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1236 				     unsigned long address, pmd_t *pmdp);
1237 
1238 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1239 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1240 					    unsigned long addr, pmd_t *pmdp)
1241 {
1242 	if (radix_enabled())
1243 		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1244 	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1245 }
1246 
1247 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1248 					unsigned long address, pmd_t *pmdp)
1249 {
1250 	if (radix_enabled())
1251 		return radix__pmdp_collapse_flush(vma, address, pmdp);
1252 	return hash__pmdp_collapse_flush(vma, address, pmdp);
1253 }
1254 #define pmdp_collapse_flush pmdp_collapse_flush
1255 
1256 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1257 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1258 				   unsigned long addr,
1259 				   pmd_t *pmdp, int full);
1260 
1261 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1262 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1263 					      pmd_t *pmdp, pgtable_t pgtable)
1264 {
1265 	if (radix_enabled())
1266 		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1267 	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1268 }
1269 
1270 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1271 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1272 						    pmd_t *pmdp)
1273 {
1274 	if (radix_enabled())
1275 		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1276 	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1277 }
1278 
1279 #define __HAVE_ARCH_PMDP_INVALIDATE
1280 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1281 			     pmd_t *pmdp);
1282 
1283 #define pmd_move_must_withdraw pmd_move_must_withdraw
1284 struct spinlock;
1285 extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1286 				  struct spinlock *old_pmd_ptl,
1287 				  struct vm_area_struct *vma);
1288 /*
1289  * Hash translation mode use the deposited table to store hash pte
1290  * slot information.
1291  */
1292 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1293 static inline bool arch_needs_pgtable_deposit(void)
1294 {
1295 	if (radix_enabled())
1296 		return false;
1297 	return true;
1298 }
1299 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1300 
1301 
1302 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1303 {
1304 	if (radix_enabled())
1305 		return radix__pmd_mkdevmap(pmd);
1306 	return hash__pmd_mkdevmap(pmd);
1307 }
1308 
1309 static inline int pmd_devmap(pmd_t pmd)
1310 {
1311 	return pte_devmap(pmd_pte(pmd));
1312 }
1313 
1314 static inline int pud_devmap(pud_t pud)
1315 {
1316 	return 0;
1317 }
1318 
1319 static inline int pgd_devmap(pgd_t pgd)
1320 {
1321 	return 0;
1322 }
1323 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1324 
1325 static inline int pud_pfn(pud_t pud)
1326 {
1327 	/*
1328 	 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1329 	 * check so this should never be used. If it grows another user we
1330 	 * want to know about it.
1331 	 */
1332 	BUILD_BUG();
1333 	return 0;
1334 }
1335 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1336 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1337 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1338 			     pte_t *, pte_t, pte_t);
1339 
1340 /*
1341  * Returns true for a R -> RW upgrade of pte
1342  */
1343 static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1344 {
1345 	if (!(old_val & _PAGE_READ))
1346 		return false;
1347 
1348 	if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1349 		return true;
1350 
1351 	return false;
1352 }
1353 
1354 /*
1355  * Like pmd_huge() and pmd_large(), but works regardless of config options
1356  */
1357 #define pmd_is_leaf pmd_is_leaf
1358 #define pmd_leaf pmd_is_leaf
1359 static inline bool pmd_is_leaf(pmd_t pmd)
1360 {
1361 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1362 }
1363 
1364 #define pud_is_leaf pud_is_leaf
1365 #define pud_leaf pud_is_leaf
1366 static inline bool pud_is_leaf(pud_t pud)
1367 {
1368 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
1369 }
1370 
1371 #endif /* __ASSEMBLY__ */
1372 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1373