xref: /linux/arch/powerpc/include/asm/book3s/64/pgtable.h (revision 6aacab308a5dfd222b2d23662bbae60c11007cfb)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4 
5 #include <asm-generic/pgtable-nop4d.h>
6 
7 #ifndef __ASSEMBLER__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #include <linux/sizes.h>
11 #endif
12 
13 /*
14  * Common bits between hash and Radix page table
15  */
16 
17 #define _PAGE_EXEC		0x00001 /* execute permission */
18 #define _PAGE_WRITE		0x00002 /* write access allowed */
19 #define _PAGE_READ		0x00004	/* read access allowed */
20 #define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
21 #define _PAGE_SAO		0x00010 /* Strong access order */
22 #define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
23 #define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
24 #define _PAGE_DIRTY		0x00080 /* C: page changed */
25 #define _PAGE_ACCESSED		0x00100 /* R: page referenced */
26 /*
27  * Software bits
28  */
29 #define _RPAGE_SW0		0x2000000000000000UL
30 #define _RPAGE_SW1		0x00800
31 #define _RPAGE_SW2		0x00400
32 #define _RPAGE_SW3		0x00200
33 #define _RPAGE_RSV1		0x00040UL
34 
35 #define _RPAGE_PKEY_BIT4	0x1000000000000000UL
36 #define _RPAGE_PKEY_BIT3	0x0800000000000000UL
37 #define _RPAGE_PKEY_BIT2	0x0400000000000000UL
38 #define _RPAGE_PKEY_BIT1	0x0200000000000000UL
39 #define _RPAGE_PKEY_BIT0	0x0100000000000000UL
40 
41 #define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
42 #define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */
43 /*
44  * We need to mark a pmd pte invalid while splitting. We can do that by clearing
45  * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
46  * differentiate between two use a SW field when invalidating.
47  *
48  * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
49  *
50  * This is used only when _PAGE_PRESENT is cleared.
51  */
52 #define _PAGE_INVALID		_RPAGE_SW0
53 
54 /*
55  * Top and bottom bits of RPN which can be used by hash
56  * translation mode, because we expect them to be zero
57  * otherwise.
58  */
59 #define _RPAGE_RPN0		0x01000
60 #define _RPAGE_RPN1		0x02000
61 #define _RPAGE_RPN43		0x0080000000000000UL
62 #define _RPAGE_RPN42		0x0040000000000000UL
63 #define _RPAGE_RPN41		0x0020000000000000UL
64 
65 /* Max physical address bit as per radix table */
66 #define _RPAGE_PA_MAX		56
67 
68 /*
69  * Max physical address bit we will use for now.
70  *
71  * This is mostly a hardware limitation and for now Power9 has
72  * a 51 bit limit.
73  *
74  * This is different from the number of physical bit required to address
75  * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
76  * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
77  * number of sections we can support (SECTIONS_SHIFT).
78  *
79  * This is different from Radix page table limitation above and
80  * should always be less than that. The limit is done such that
81  * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
82  * for hash linux page table specific bits.
83  *
84  * In order to be compatible with future hardware generations we keep
85  * some offsets and limit this for now to 53
86  */
87 #define _PAGE_PA_MAX		53
88 
89 #define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
90 #define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
91 
92 /*
93  * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
94  * Instead of fixing all of them, add an alternate define which
95  * maps CI pte mapping.
96  */
97 #define _PAGE_NO_CACHE		_PAGE_TOLERANT
98 /*
99  * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
100  * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
101  * and every thing below PAGE_SHIFT;
102  */
103 #define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
104 #define PTE_RPN_SHIFT	PAGE_SHIFT
105 /*
106  * set of bits not changed in pmd_modify. Even though we have hash specific bits
107  * in here, on radix we expect them to be zero.
108  */
109 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
110 			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
111 			 _PAGE_SOFT_DIRTY)
112 /*
113  * user access blocked by key
114  */
115 #define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
116 #define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
117 #define _PAGE_KERNEL_ROX	 (_PAGE_PRIVILEGED | _PAGE_READ | _PAGE_EXEC)
118 #define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC)
119 /*
120  * _PAGE_CHG_MASK masks of bits that are to be preserved across
121  * pgprot changes
122  */
123 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
124 			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
125 			 _PAGE_SOFT_DIRTY)
126 
127 /*
128  * We define 2 sets of base prot bits, one for basic pages (ie,
129  * cacheable kernel and user pages) and one for non cacheable
130  * pages. We always set _PAGE_COHERENT when SMP is enabled or
131  * the processor might need it for DMA coherency.
132  */
133 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
134 #define _PAGE_BASE	(_PAGE_BASE_NC)
135 
136 #include <asm/pgtable-masks.h>
137 
138 /* Permission masks used for kernel mappings */
139 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
140 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_TOLERANT)
141 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NON_IDEMPOTENT)
142 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
143 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
144 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
145 
146 #ifndef __ASSEMBLER__
147 #include <linux/page_table_check.h>
148 
149 /*
150  * page table defines
151  */
152 extern unsigned long __pte_index_size;
153 extern unsigned long __pmd_index_size;
154 extern unsigned long __pud_index_size;
155 extern unsigned long __pgd_index_size;
156 extern unsigned long __pud_cache_index;
157 #define PTE_INDEX_SIZE  __pte_index_size
158 #define PMD_INDEX_SIZE  __pmd_index_size
159 #define PUD_INDEX_SIZE  __pud_index_size
160 #define PGD_INDEX_SIZE  __pgd_index_size
161 /* pmd table use page table fragments */
162 #define PMD_CACHE_INDEX  0
163 #define PUD_CACHE_INDEX __pud_cache_index
164 /*
165  * Because of use of pte fragments and THP, size of page table
166  * are not always derived out of index size above.
167  */
168 extern unsigned long __pte_table_size;
169 extern unsigned long __pmd_table_size;
170 extern unsigned long __pud_table_size;
171 extern unsigned long __pgd_table_size;
172 #define PTE_TABLE_SIZE	__pte_table_size
173 #define PMD_TABLE_SIZE	__pmd_table_size
174 #define PUD_TABLE_SIZE	__pud_table_size
175 #define PGD_TABLE_SIZE	__pgd_table_size
176 
177 extern unsigned long __pmd_val_bits;
178 extern unsigned long __pud_val_bits;
179 extern unsigned long __pgd_val_bits;
180 #define PMD_VAL_BITS	__pmd_val_bits
181 #define PUD_VAL_BITS	__pud_val_bits
182 #define PGD_VAL_BITS	__pgd_val_bits
183 
184 extern unsigned long __pte_frag_nr;
185 #define PTE_FRAG_NR __pte_frag_nr
186 extern unsigned long __pte_frag_size_shift;
187 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
188 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
189 
190 extern unsigned long __pmd_frag_nr;
191 #define PMD_FRAG_NR __pmd_frag_nr
192 extern unsigned long __pmd_frag_size_shift;
193 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
194 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
195 
196 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
197 #define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
198 #define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
199 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
200 
201 #define MAX_PTRS_PER_PTE ((H_PTRS_PER_PTE > R_PTRS_PER_PTE) ? H_PTRS_PER_PTE : R_PTRS_PER_PTE)
202 #define MAX_PTRS_PER_PMD ((H_PTRS_PER_PMD > R_PTRS_PER_PMD) ? H_PTRS_PER_PMD : R_PTRS_PER_PMD)
203 #define MAX_PTRS_PER_PUD ((H_PTRS_PER_PUD > R_PTRS_PER_PUD) ? H_PTRS_PER_PUD : R_PTRS_PER_PUD)
204 #define MAX_PTRS_PER_PGD	(1 << (H_PGD_INDEX_SIZE > RADIX_PGD_INDEX_SIZE ? \
205 				       H_PGD_INDEX_SIZE : RADIX_PGD_INDEX_SIZE))
206 
207 /* PMD_SHIFT determines what a second-level page table entry can map */
208 #define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
209 #define PMD_SIZE	(1UL << PMD_SHIFT)
210 #define PMD_MASK	(~(PMD_SIZE-1))
211 
212 /* PUD_SHIFT determines what a third-level page table entry can map */
213 #define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
214 #define PUD_SIZE	(1UL << PUD_SHIFT)
215 #define PUD_MASK	(~(PUD_SIZE-1))
216 
217 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
218 #define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
219 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
220 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
221 
222 /* Bits to mask out from a PMD to get to the PTE page */
223 #define PMD_MASKED_BITS		0xc0000000000000ffUL
224 /* Bits to mask out from a PUD to get to the PMD page */
225 #define PUD_MASKED_BITS		0xc0000000000000ffUL
226 /* Bits to mask out from a PGD to get to the PUD page */
227 #define P4D_MASKED_BITS		0xc0000000000000ffUL
228 
229 /*
230  * Used as an indicator for rcu callback functions
231  */
232 enum pgtable_index {
233 	PTE_INDEX = 0,
234 	PMD_INDEX,
235 	PUD_INDEX,
236 	PGD_INDEX,
237 	/*
238 	 * Below are used with 4k page size and hugetlb
239 	 */
240 	HTLB_16M_INDEX,
241 	HTLB_16G_INDEX,
242 };
243 
244 extern unsigned long __vmalloc_start;
245 extern unsigned long __vmalloc_end;
246 #define VMALLOC_START	__vmalloc_start
247 #define VMALLOC_END	__vmalloc_end
248 
249 static inline unsigned int ioremap_max_order(void)
250 {
251 	if (radix_enabled())
252 		return PUD_SHIFT;
253 	return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
254 }
255 #define IOREMAP_MAX_ORDER ioremap_max_order()
256 
257 extern unsigned long __kernel_virt_start;
258 extern unsigned long __kernel_io_start;
259 extern unsigned long __kernel_io_end;
260 #define KERN_VIRT_START __kernel_virt_start
261 #define KERN_IO_START  __kernel_io_start
262 #define KERN_IO_END __kernel_io_end
263 
264 extern struct page *vmemmap;
265 extern unsigned long pci_io_base;
266 
267 #define pmd_leaf pmd_leaf
268 static inline bool pmd_leaf(pmd_t pmd)
269 {
270 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
271 }
272 
273 #define pud_leaf pud_leaf
274 static inline bool pud_leaf(pud_t pud)
275 {
276 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
277 }
278 
279 #define pmd_leaf_size pmd_leaf_size
280 static inline unsigned long pmd_leaf_size(pmd_t pmd)
281 {
282 	if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !radix_enabled())
283 		return SZ_16M;
284 	else
285 		return PMD_SIZE;
286 }
287 
288 #define pud_leaf_size pud_leaf_size
289 static inline unsigned long pud_leaf_size(pud_t pud)
290 {
291 	if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !radix_enabled())
292 		return SZ_16G;
293 	else
294 		return PUD_SIZE;
295 }
296 #endif /* __ASSEMBLER__ */
297 
298 #include <asm/book3s/64/hash.h>
299 #include <asm/book3s/64/radix.h>
300 
301 #if H_MAX_PHYSMEM_BITS > R_MAX_PHYSMEM_BITS
302 #define  MAX_PHYSMEM_BITS	H_MAX_PHYSMEM_BITS
303 #else
304 #define  MAX_PHYSMEM_BITS	R_MAX_PHYSMEM_BITS
305 #endif
306 
307 /* hash 4k can't share hugetlb and also doesn't support THP */
308 #ifdef CONFIG_PPC_64K_PAGES
309 #include <asm/book3s/64/pgtable-64k.h>
310 #endif
311 
312 #include <asm/barrier.h>
313 /*
314  * IO space itself carved into the PIO region (ISA and PHB IO space) and
315  * the ioremap space
316  *
317  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
318  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
319  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
320  */
321 #define FULL_IO_SIZE	0x80000000ul
322 #define  ISA_IO_BASE	(KERN_IO_START)
323 #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
324 #define  PHB_IO_BASE	(ISA_IO_END)
325 #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
326 #define IOREMAP_BASE	(PHB_IO_END)
327 #define IOREMAP_START	(ioremap_bot)
328 #define IOREMAP_END	(KERN_IO_END - FIXADDR_SIZE)
329 #define FIXADDR_SIZE	SZ_32M
330 #define FIXADDR_TOP	(IOREMAP_END + FIXADDR_SIZE)
331 
332 #ifndef __ASSEMBLER__
333 
334 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
335 				       pte_t *ptep, unsigned long clr,
336 				       unsigned long set, int huge)
337 {
338 	if (radix_enabled())
339 		return radix__pte_update(mm, addr, ptep, clr, set, huge);
340 	return hash__pte_update(mm, addr, ptep, clr, set, huge);
341 }
342 /*
343  * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
344  * We currently remove entries from the hashtable regardless of whether
345  * the entry was young or dirty.
346  *
347  * We should be more intelligent about this but for the moment we override
348  * these functions and force a tlb flush unconditionally
349  * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
350  * function for both hash and radix.
351  */
352 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
353 					      unsigned long addr, pte_t *ptep)
354 {
355 	unsigned long old;
356 
357 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
358 		return 0;
359 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
360 	return (old & _PAGE_ACCESSED) != 0;
361 }
362 
363 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
364 #define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
365 ({								\
366 	__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
367 })
368 
369 /*
370  * On Book3S CPUs, clearing the accessed bit without a TLB flush
371  * doesn't cause data corruption. [ It could cause incorrect
372  * page aging and the (mistaken) reclaim of hot pages, but the
373  * chance of that should be relatively low. ]
374  *
375  * So as a performance optimization don't flush the TLB when
376  * clearing the accessed bit, it will eventually be flushed by
377  * a context switch or a VM operation anyway. [ In the rare
378  * event of it not getting flushed for a long time the delay
379  * shouldn't really matter because there's no real memory
380  * pressure for swapout to react to. ]
381  *
382  * Note: this optimisation also exists in pte_needs_flush() and
383  * huge_pmd_needs_flush().
384  */
385 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
386 #define ptep_clear_flush_young ptep_test_and_clear_young
387 
388 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
389 #define pmdp_clear_flush_young pmdp_test_and_clear_young
390 
391 static inline int pte_write(pte_t pte)
392 {
393 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
394 }
395 
396 static inline int pte_read(pte_t pte)
397 {
398 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
399 }
400 
401 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
402 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
403 				      pte_t *ptep)
404 {
405 	if (pte_write(*ptep))
406 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
407 }
408 
409 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
410 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
411 					   unsigned long addr, pte_t *ptep)
412 {
413 	if (pte_write(*ptep))
414 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
415 }
416 
417 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
418 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
419 				       unsigned long addr, pte_t *ptep)
420 {
421 	pte_t old_pte = __pte(pte_update(mm, addr, ptep, ~0UL, 0, 0));
422 
423 	page_table_check_pte_clear(mm, addr, old_pte);
424 
425 	return old_pte;
426 }
427 
428 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
429 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
430 					    unsigned long addr,
431 					    pte_t *ptep, int full)
432 {
433 	if (full && radix_enabled()) {
434 		pte_t old_pte;
435 
436 		/*
437 		 * We know that this is a full mm pte clear and
438 		 * hence can be sure there is no parallel set_pte.
439 		 */
440 		old_pte = radix__ptep_get_and_clear_full(mm, addr, ptep, full);
441 		page_table_check_pte_clear(mm, addr, old_pte);
442 
443 		return old_pte;
444 	}
445 	return ptep_get_and_clear(mm, addr, ptep);
446 }
447 
448 
449 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
450 			     pte_t * ptep)
451 {
452 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
453 }
454 
455 static inline int pte_dirty(pte_t pte)
456 {
457 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
458 }
459 
460 static inline int pte_young(pte_t pte)
461 {
462 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
463 }
464 
465 static inline int pte_special(pte_t pte)
466 {
467 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
468 }
469 
470 static inline bool pte_exec(pte_t pte)
471 {
472 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
473 }
474 
475 
476 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
477 static inline bool pte_soft_dirty(pte_t pte)
478 {
479 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
480 }
481 
482 static inline pte_t pte_mksoft_dirty(pte_t pte)
483 {
484 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
485 }
486 
487 static inline pte_t pte_clear_soft_dirty(pte_t pte)
488 {
489 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
490 }
491 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
492 
493 #ifdef CONFIG_NUMA_BALANCING
494 static inline int pte_protnone(pte_t pte)
495 {
496 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
497 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
498 }
499 #endif /* CONFIG_NUMA_BALANCING */
500 
501 static inline bool pte_hw_valid(pte_t pte)
502 {
503 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) ==
504 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
505 }
506 
507 static inline int pte_present(pte_t pte)
508 {
509 	/*
510 	 * A pte is considerent present if _PAGE_PRESENT is set.
511 	 * We also need to consider the pte present which is marked
512 	 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
513 	 * if we find _PAGE_PRESENT cleared.
514 	 */
515 
516 	if (pte_hw_valid(pte))
517 		return true;
518 	return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) ==
519 		cpu_to_be64(_PAGE_INVALID | _PAGE_PTE);
520 }
521 
522 #ifdef CONFIG_PPC_MEM_KEYS
523 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
524 #else
525 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
526 {
527 	return true;
528 }
529 #endif /* CONFIG_PPC_MEM_KEYS */
530 
531 static inline bool pte_user(pte_t pte)
532 {
533 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
534 }
535 
536 #define pte_access_permitted pte_access_permitted
537 static inline bool pte_access_permitted(pte_t pte, bool write)
538 {
539 	/*
540 	 * _PAGE_READ is needed for any access and will be cleared for
541 	 * PROT_NONE. Execute-only mapping via PROT_EXEC also returns false.
542 	 */
543 	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
544 		return false;
545 
546 	if (write && !pte_write(pte))
547 		return false;
548 
549 	return arch_pte_access_permitted(pte_val(pte), write, 0);
550 }
551 
552 static inline bool pte_user_accessible_page(pte_t pte, unsigned long addr)
553 {
554 	return pte_present(pte) && pte_user(pte);
555 }
556 
557 /*
558  * Conversion functions: convert a page and protection to a page entry,
559  * and a page entry and page directory to the page they refer to.
560  *
561  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
562  * long for now.
563  */
564 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
565 {
566 	VM_BUG_ON(pfn >> (64 - PAGE_SHIFT));
567 	VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK);
568 
569 	return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot) | _PAGE_PTE);
570 }
571 
572 /* Generic modifiers for PTE bits */
573 static inline pte_t pte_wrprotect(pte_t pte)
574 {
575 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
576 }
577 
578 static inline pte_t pte_exprotect(pte_t pte)
579 {
580 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
581 }
582 
583 static inline pte_t pte_mkclean(pte_t pte)
584 {
585 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
586 }
587 
588 static inline pte_t pte_mkold(pte_t pte)
589 {
590 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
591 }
592 
593 static inline pte_t pte_mkexec(pte_t pte)
594 {
595 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
596 }
597 
598 static inline pte_t pte_mkwrite_novma(pte_t pte)
599 {
600 	/*
601 	 * write implies read, hence set both
602 	 */
603 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
604 }
605 
606 static inline pte_t pte_mkdirty(pte_t pte)
607 {
608 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
609 }
610 
611 static inline pte_t pte_mkyoung(pte_t pte)
612 {
613 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
614 }
615 
616 static inline pte_t pte_mkspecial(pte_t pte)
617 {
618 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
619 }
620 
621 static inline pte_t pte_mkhuge(pte_t pte)
622 {
623 	return pte;
624 }
625 
626 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
627 {
628 	/* FIXME!! check whether this need to be a conditional */
629 	return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
630 			 cpu_to_be64(pgprot_val(newprot)));
631 }
632 
633 /* Encode and de-code a swap entry */
634 #define MAX_SWAPFILES_CHECK() do { \
635 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
636 	/*							\
637 	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
638 	 * We filter HPTEFLAGS on set_pte.			\
639 	 */							\
640 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & SWP_TYPE_MASK); \
641 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
642 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_EXCLUSIVE);	\
643 	} while (0)
644 
645 #define SWP_TYPE_BITS 5
646 #define SWP_TYPE_MASK		((1UL << SWP_TYPE_BITS) - 1)
647 #define __swp_type(x)		((x).val & SWP_TYPE_MASK)
648 #define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
649 #define __swp_entry(type, offset)	((swp_entry_t) { \
650 				(type) | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
651 /*
652  * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
653  * swap type and offset we get from swap and convert that to pte to find a
654  * matching pte in linux page table.
655  * Clear bits not found in swap entries here.
656  */
657 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
658 #define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
659 #define __pmd_to_swp_entry(pmd)	(__pte_to_swp_entry(pmd_pte(pmd)))
660 #define __swp_entry_to_pmd(x)	(pte_pmd(__swp_entry_to_pte(x)))
661 
662 #ifdef CONFIG_MEM_SOFT_DIRTY
663 #define _PAGE_SWP_SOFT_DIRTY	_PAGE_SOFT_DIRTY
664 #else
665 #define _PAGE_SWP_SOFT_DIRTY	0UL
666 #endif /* CONFIG_MEM_SOFT_DIRTY */
667 
668 #define _PAGE_SWP_EXCLUSIVE	_PAGE_NON_IDEMPOTENT
669 
670 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
671 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
672 {
673 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
674 }
675 
676 static inline bool pte_swp_soft_dirty(pte_t pte)
677 {
678 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
679 }
680 
681 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
682 {
683 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
684 }
685 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
686 
687 static inline pte_t pte_swp_mkexclusive(pte_t pte)
688 {
689 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_EXCLUSIVE));
690 }
691 
692 static inline bool pte_swp_exclusive(pte_t pte)
693 {
694 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_EXCLUSIVE));
695 }
696 
697 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
698 {
699 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_EXCLUSIVE));
700 }
701 
702 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
703 {
704 	/*
705 	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
706 	 */
707 	if (access & ~ptev)
708 		return false;
709 	/*
710 	 * This check for access to privilege space
711 	 */
712 	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
713 		return false;
714 
715 	return true;
716 }
717 /*
718  * Generic functions with hash/radix callbacks
719  */
720 
721 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
722 					   pte_t *ptep, pte_t entry,
723 					   unsigned long address,
724 					   int psize)
725 {
726 	if (radix_enabled())
727 		return radix__ptep_set_access_flags(vma, ptep, entry,
728 						    address, psize);
729 	return hash__ptep_set_access_flags(ptep, entry);
730 }
731 
732 #define __HAVE_ARCH_PTE_SAME
733 static inline int pte_same(pte_t pte_a, pte_t pte_b)
734 {
735 	if (radix_enabled())
736 		return radix__pte_same(pte_a, pte_b);
737 	return hash__pte_same(pte_a, pte_b);
738 }
739 
740 static inline int pte_none(pte_t pte)
741 {
742 	if (radix_enabled())
743 		return radix__pte_none(pte);
744 	return hash__pte_none(pte);
745 }
746 
747 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
748 				pte_t *ptep, pte_t pte, int percpu)
749 {
750 
751 	VM_WARN_ON(!(pte_raw(pte) & cpu_to_be64(_PAGE_PTE)));
752 	/*
753 	 * Keep the _PAGE_PTE added till we are sure we handle _PAGE_PTE
754 	 * in all the callers.
755 	 */
756 	pte = __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
757 
758 	if (radix_enabled())
759 		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
760 	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
761 }
762 
763 #define _PAGE_CACHE_CTL	(_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
764 
765 #define pgprot_noncached pgprot_noncached
766 static inline pgprot_t pgprot_noncached(pgprot_t prot)
767 {
768 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
769 			_PAGE_NON_IDEMPOTENT);
770 }
771 
772 #define pgprot_noncached_wc pgprot_noncached_wc
773 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
774 {
775 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
776 			_PAGE_TOLERANT);
777 }
778 
779 #define pgprot_cached pgprot_cached
780 static inline pgprot_t pgprot_cached(pgprot_t prot)
781 {
782 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
783 }
784 
785 #define pgprot_writecombine pgprot_writecombine
786 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
787 {
788 	return pgprot_noncached_wc(prot);
789 }
790 /*
791  * check a pte mapping have cache inhibited property
792  */
793 static inline bool pte_ci(pte_t pte)
794 {
795 	__be64 pte_v = pte_raw(pte);
796 
797 	if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
798 	    ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
799 		return true;
800 	return false;
801 }
802 
803 static inline void pmd_clear(pmd_t *pmdp)
804 {
805 	if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
806 		/*
807 		 * Don't use this if we can possibly have a hash page table
808 		 * entry mapping this.
809 		 */
810 		WARN_ON((pmd_val(*pmdp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
811 	}
812 	*pmdp = __pmd(0);
813 }
814 
815 static inline int pmd_none(pmd_t pmd)
816 {
817 	return !pmd_raw(pmd);
818 }
819 
820 static inline int pmd_present(pmd_t pmd)
821 {
822 	/*
823 	 * A pmd is considerent present if _PAGE_PRESENT is set.
824 	 * We also need to consider the pmd present which is marked
825 	 * invalid during a split. Hence we look for _PAGE_INVALID
826 	 * if we find _PAGE_PRESENT cleared.
827 	 */
828 	if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
829 		return true;
830 
831 	return false;
832 }
833 
834 static inline int pmd_is_serializing(pmd_t pmd)
835 {
836 	/*
837 	 * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
838 	 * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
839 	 *
840 	 * This condition may also occur when flushing a pmd while flushing
841 	 * it (see ptep_modify_prot_start), so callers must ensure this
842 	 * case is fine as well.
843 	 */
844 	if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
845 						cpu_to_be64(_PAGE_INVALID))
846 		return true;
847 
848 	return false;
849 }
850 
851 static inline int pmd_bad(pmd_t pmd)
852 {
853 	if (radix_enabled())
854 		return radix__pmd_bad(pmd);
855 	return hash__pmd_bad(pmd);
856 }
857 
858 static inline void pud_clear(pud_t *pudp)
859 {
860 	if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
861 		/*
862 		 * Don't use this if we can possibly have a hash page table
863 		 * entry mapping this.
864 		 */
865 		WARN_ON((pud_val(*pudp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
866 	}
867 	*pudp = __pud(0);
868 }
869 
870 static inline int pud_none(pud_t pud)
871 {
872 	return !pud_raw(pud);
873 }
874 
875 static inline int pud_present(pud_t pud)
876 {
877 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
878 }
879 
880 extern struct page *pud_page(pud_t pud);
881 extern struct page *pmd_page(pmd_t pmd);
882 static inline pte_t pud_pte(pud_t pud)
883 {
884 	return __pte_raw(pud_raw(pud));
885 }
886 
887 static inline pud_t pte_pud(pte_t pte)
888 {
889 	return __pud_raw(pte_raw(pte));
890 }
891 
892 static inline pte_t *pudp_ptep(pud_t *pud)
893 {
894 	return (pte_t *)pud;
895 }
896 
897 #define pud_pfn(pud)		pte_pfn(pud_pte(pud))
898 #define pud_dirty(pud)		pte_dirty(pud_pte(pud))
899 #define pud_young(pud)		pte_young(pud_pte(pud))
900 #define pud_mkold(pud)		pte_pud(pte_mkold(pud_pte(pud)))
901 #define pud_wrprotect(pud)	pte_pud(pte_wrprotect(pud_pte(pud)))
902 #define pud_mkdirty(pud)	pte_pud(pte_mkdirty(pud_pte(pud)))
903 #define pud_mkclean(pud)	pte_pud(pte_mkclean(pud_pte(pud)))
904 #define pud_mkyoung(pud)	pte_pud(pte_mkyoung(pud_pte(pud)))
905 #define pud_mkwrite(pud)	pte_pud(pte_mkwrite_novma(pud_pte(pud)))
906 #define pud_write(pud)		pte_write(pud_pte(pud))
907 
908 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
909 #define pud_soft_dirty(pmd)    pte_soft_dirty(pud_pte(pud))
910 #define pud_mksoft_dirty(pmd)  pte_pud(pte_mksoft_dirty(pud_pte(pud)))
911 #define pud_clear_soft_dirty(pmd) pte_pud(pte_clear_soft_dirty(pud_pte(pud)))
912 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
913 
914 static inline int pud_bad(pud_t pud)
915 {
916 	if (radix_enabled())
917 		return radix__pud_bad(pud);
918 	return hash__pud_bad(pud);
919 }
920 
921 #define pud_access_permitted pud_access_permitted
922 static inline bool pud_access_permitted(pud_t pud, bool write)
923 {
924 	return pte_access_permitted(pud_pte(pud), write);
925 }
926 
927 #define pud_user_accessible_page pud_user_accessible_page
928 static inline bool pud_user_accessible_page(pud_t pud, unsigned long addr)
929 {
930 	return pud_leaf(pud) && pte_user_accessible_page(pud_pte(pud), addr);
931 }
932 
933 #define __p4d_raw(x)	((p4d_t) { __pgd_raw(x) })
934 static inline __be64 p4d_raw(p4d_t x)
935 {
936 	return pgd_raw(x.pgd);
937 }
938 
939 #define p4d_write(p4d)		pte_write(p4d_pte(p4d))
940 
941 static inline void p4d_clear(p4d_t *p4dp)
942 {
943 	*p4dp = __p4d(0);
944 }
945 
946 static inline int p4d_none(p4d_t p4d)
947 {
948 	return !p4d_raw(p4d);
949 }
950 
951 static inline int p4d_present(p4d_t p4d)
952 {
953 	return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT));
954 }
955 
956 static inline pte_t p4d_pte(p4d_t p4d)
957 {
958 	return __pte_raw(p4d_raw(p4d));
959 }
960 
961 static inline p4d_t pte_p4d(pte_t pte)
962 {
963 	return __p4d_raw(pte_raw(pte));
964 }
965 
966 static inline int p4d_bad(p4d_t p4d)
967 {
968 	if (radix_enabled())
969 		return radix__p4d_bad(p4d);
970 	return hash__p4d_bad(p4d);
971 }
972 
973 #define p4d_access_permitted p4d_access_permitted
974 static inline bool p4d_access_permitted(p4d_t p4d, bool write)
975 {
976 	return pte_access_permitted(p4d_pte(p4d), write);
977 }
978 
979 extern struct page *p4d_page(p4d_t p4d);
980 
981 /* Pointers in the page table tree are physical addresses */
982 #define __pgtable_ptr_val(ptr)	__pa(ptr)
983 
984 static inline pud_t *p4d_pgtable(p4d_t p4d)
985 {
986 	return (pud_t *)__va(p4d_val(p4d) & ~P4D_MASKED_BITS);
987 }
988 
989 static inline pmd_t *pud_pgtable(pud_t pud)
990 {
991 	return (pmd_t *)__va(pud_val(pud) & ~PUD_MASKED_BITS);
992 }
993 
994 #define pmd_ERROR(e) \
995 	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
996 #define pud_ERROR(e) \
997 	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
998 #define pgd_ERROR(e) \
999 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1000 
1001 static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1002 {
1003 	if (radix_enabled()) {
1004 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1005 		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1006 		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1007 #endif
1008 		return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1009 	}
1010 	return hash__map_kernel_page(ea, pa, prot);
1011 }
1012 
1013 void unmap_kernel_page(unsigned long va);
1014 
1015 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1016 						   unsigned long page_size,
1017 						   unsigned long phys)
1018 {
1019 	if (radix_enabled())
1020 		return radix__vmemmap_create_mapping(start, page_size, phys);
1021 	return hash__vmemmap_create_mapping(start, page_size, phys);
1022 }
1023 
1024 #ifdef CONFIG_MEMORY_HOTPLUG
1025 static inline void vmemmap_remove_mapping(unsigned long start,
1026 					  unsigned long page_size)
1027 {
1028 	if (radix_enabled())
1029 		return radix__vmemmap_remove_mapping(start, page_size);
1030 	return hash__vmemmap_remove_mapping(start, page_size);
1031 }
1032 #endif
1033 
1034 static inline pte_t pmd_pte(pmd_t pmd)
1035 {
1036 	return __pte_raw(pmd_raw(pmd));
1037 }
1038 
1039 static inline pmd_t pte_pmd(pte_t pte)
1040 {
1041 	return __pmd_raw(pte_raw(pte));
1042 }
1043 
1044 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1045 {
1046 	return (pte_t *)pmd;
1047 }
1048 #define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
1049 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
1050 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
1051 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
1052 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1053 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1054 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
1055 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1056 #define pmd_mkwrite_novma(pmd)	pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
1057 
1058 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1059 #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1060 #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1061 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1062 
1063 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1064 #define pmd_swp_mksoft_dirty(pmd)	pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1065 #define pmd_swp_soft_dirty(pmd)		pte_swp_soft_dirty(pmd_pte(pmd))
1066 #define pmd_swp_clear_soft_dirty(pmd)	pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1067 #endif
1068 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1069 
1070 #ifdef CONFIG_NUMA_BALANCING
1071 static inline int pmd_protnone(pmd_t pmd)
1072 {
1073 	return pte_protnone(pmd_pte(pmd));
1074 }
1075 #endif /* CONFIG_NUMA_BALANCING */
1076 
1077 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
1078 
1079 #define pmd_access_permitted pmd_access_permitted
1080 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1081 {
1082 	/*
1083 	 * pmdp_invalidate sets this combination (which is not caught by
1084 	 * !pte_present() check in pte_access_permitted), to prevent
1085 	 * lock-free lookups, as part of the serialize_against_pte_lookup()
1086 	 * synchronisation.
1087 	 *
1088 	 * This also catches the case where the PTE's hardware PRESENT bit is
1089 	 * cleared while TLB is flushed, which is suboptimal but should not
1090 	 * be frequent.
1091 	 */
1092 	if (pmd_is_serializing(pmd))
1093 		return false;
1094 
1095 	return pte_access_permitted(pmd_pte(pmd), write);
1096 }
1097 
1098 #define pmd_user_accessible_page pmd_user_accessible_page
1099 static inline bool pmd_user_accessible_page(pmd_t pmd, unsigned long addr)
1100 {
1101 	return pmd_leaf(pmd) && pte_user_accessible_page(pmd_pte(pmd), addr);
1102 }
1103 
1104 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1105 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1106 extern pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot);
1107 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1108 extern pud_t pud_modify(pud_t pud, pgprot_t newprot);
1109 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1110 		       pmd_t *pmdp, pmd_t pmd);
1111 extern void set_pud_at(struct mm_struct *mm, unsigned long addr,
1112 		       pud_t *pudp, pud_t pud);
1113 
1114 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1115 					unsigned long addr, pmd_t *pmd)
1116 {
1117 }
1118 
1119 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1120 					unsigned long addr, pud_t *pud)
1121 {
1122 }
1123 
1124 extern int hash__has_transparent_hugepage(void);
1125 static inline int has_transparent_hugepage(void)
1126 {
1127 	if (radix_enabled())
1128 		return radix__has_transparent_hugepage();
1129 	return hash__has_transparent_hugepage();
1130 }
1131 #define has_transparent_hugepage has_transparent_hugepage
1132 
1133 static inline int has_transparent_pud_hugepage(void)
1134 {
1135 	if (radix_enabled())
1136 		return radix__has_transparent_pud_hugepage();
1137 	return 0;
1138 }
1139 #define has_transparent_pud_hugepage has_transparent_pud_hugepage
1140 
1141 static inline unsigned long
1142 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1143 		    unsigned long clr, unsigned long set)
1144 {
1145 	if (radix_enabled())
1146 		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1147 	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1148 }
1149 
1150 static inline unsigned long
1151 pud_hugepage_update(struct mm_struct *mm, unsigned long addr, pud_t *pudp,
1152 		    unsigned long clr, unsigned long set)
1153 {
1154 	if (radix_enabled())
1155 		return radix__pud_hugepage_update(mm, addr, pudp, clr, set);
1156 	BUG();
1157 	return pud_val(*pudp);
1158 }
1159 
1160 /*
1161  * For radix we should always find H_PAGE_HASHPTE zero. Hence
1162  * the below will work for radix too
1163  */
1164 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1165 					      unsigned long addr, pmd_t *pmdp)
1166 {
1167 	unsigned long old;
1168 
1169 	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1170 		return 0;
1171 	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1172 	return ((old & _PAGE_ACCESSED) != 0);
1173 }
1174 
1175 static inline int __pudp_test_and_clear_young(struct mm_struct *mm,
1176 					      unsigned long addr, pud_t *pudp)
1177 {
1178 	unsigned long old;
1179 
1180 	if ((pud_raw(*pudp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1181 		return 0;
1182 	old = pud_hugepage_update(mm, addr, pudp, _PAGE_ACCESSED, 0);
1183 	return ((old & _PAGE_ACCESSED) != 0);
1184 }
1185 
1186 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1187 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1188 				      pmd_t *pmdp)
1189 {
1190 	if (pmd_write(*pmdp))
1191 		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1192 }
1193 
1194 #define __HAVE_ARCH_PUDP_SET_WRPROTECT
1195 static inline void pudp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1196 				      pud_t *pudp)
1197 {
1198 	if (pud_write(*pudp))
1199 		pud_hugepage_update(mm, addr, pudp, _PAGE_WRITE, 0);
1200 }
1201 
1202 /*
1203  * Only returns true for a THP. False for pmd migration entry.
1204  * We also need to return true when we come across a pte that
1205  * in between a thp split. While splitting THP, we mark the pmd
1206  * invalid (pmdp_invalidate()) before we set it with pte page
1207  * address. A pmd_trans_huge() check against a pmd entry during that time
1208  * should return true.
1209  * We should not call this on a hugetlb entry. We should check for HugeTLB
1210  * entry using vma->vm_flags
1211  * The page table walk rule is explained in Documentation/mm/transhuge.rst
1212  */
1213 static inline int pmd_trans_huge(pmd_t pmd)
1214 {
1215 	if (!pmd_present(pmd))
1216 		return false;
1217 
1218 	if (radix_enabled())
1219 		return radix__pmd_trans_huge(pmd);
1220 	return hash__pmd_trans_huge(pmd);
1221 }
1222 
1223 static inline int pud_trans_huge(pud_t pud)
1224 {
1225 	if (!pud_present(pud))
1226 		return false;
1227 
1228 	if (radix_enabled())
1229 		return radix__pud_trans_huge(pud);
1230 	return 0;
1231 }
1232 
1233 
1234 #define __HAVE_ARCH_PMD_SAME
1235 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1236 {
1237 	if (radix_enabled())
1238 		return radix__pmd_same(pmd_a, pmd_b);
1239 	return hash__pmd_same(pmd_a, pmd_b);
1240 }
1241 
1242 #define pud_same pud_same
1243 static inline int pud_same(pud_t pud_a, pud_t pud_b)
1244 {
1245 	if (radix_enabled())
1246 		return radix__pud_same(pud_a, pud_b);
1247 	return hash__pud_same(pud_a, pud_b);
1248 }
1249 
1250 
1251 static inline pmd_t __pmd_mkhuge(pmd_t pmd)
1252 {
1253 	if (radix_enabled())
1254 		return radix__pmd_mkhuge(pmd);
1255 	return hash__pmd_mkhuge(pmd);
1256 }
1257 
1258 static inline pud_t __pud_mkhuge(pud_t pud)
1259 {
1260 	if (radix_enabled())
1261 		return radix__pud_mkhuge(pud);
1262 	BUG();
1263 	return pud;
1264 }
1265 
1266 /*
1267  * pfn_pmd return a pmd_t that can be used as pmd pte entry.
1268  */
1269 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1270 {
1271 #ifdef CONFIG_DEBUG_VM
1272 	if (radix_enabled())
1273 		WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)) == 0);
1274 	else
1275 		WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE)) !=
1276 			cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE));
1277 #endif
1278 	return pmd;
1279 }
1280 
1281 static inline pud_t pud_mkhuge(pud_t pud)
1282 {
1283 #ifdef CONFIG_DEBUG_VM
1284 	if (radix_enabled())
1285 		WARN_ON((pud_raw(pud) & cpu_to_be64(_PAGE_PTE)) == 0);
1286 	else
1287 		WARN_ON(1);
1288 #endif
1289 	return pud;
1290 }
1291 
1292 
1293 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1294 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1295 				 unsigned long address, pmd_t *pmdp,
1296 				 pmd_t entry, int dirty);
1297 #define __HAVE_ARCH_PUDP_SET_ACCESS_FLAGS
1298 extern int pudp_set_access_flags(struct vm_area_struct *vma,
1299 				 unsigned long address, pud_t *pudp,
1300 				 pud_t entry, int dirty);
1301 
1302 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1303 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1304 				     unsigned long address, pmd_t *pmdp);
1305 #define __HAVE_ARCH_PUDP_TEST_AND_CLEAR_YOUNG
1306 extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1307 				     unsigned long address, pud_t *pudp);
1308 
1309 
1310 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1311 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1312 					    unsigned long addr, pmd_t *pmdp)
1313 {
1314 	pmd_t old_pmd;
1315 
1316 	if (radix_enabled()) {
1317 		old_pmd = radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1318 	} else {
1319 		old_pmd = hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1320 	}
1321 
1322 	page_table_check_pmd_clear(mm, addr, old_pmd);
1323 
1324 	return old_pmd;
1325 }
1326 
1327 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
1328 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1329 					    unsigned long addr, pud_t *pudp)
1330 {
1331 	pud_t old_pud;
1332 
1333 	if (radix_enabled()) {
1334 		old_pud = radix__pudp_huge_get_and_clear(mm, addr, pudp);
1335 	} else {
1336 		BUG();
1337 	}
1338 
1339 	page_table_check_pud_clear(mm, addr, old_pud);
1340 
1341 	return old_pud;
1342 }
1343 
1344 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1345 					unsigned long address, pmd_t *pmdp)
1346 {
1347 	if (radix_enabled())
1348 		return radix__pmdp_collapse_flush(vma, address, pmdp);
1349 	return hash__pmdp_collapse_flush(vma, address, pmdp);
1350 }
1351 #define pmdp_collapse_flush pmdp_collapse_flush
1352 
1353 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1354 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1355 				   unsigned long addr,
1356 				   pmd_t *pmdp, int full);
1357 
1358 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
1359 pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
1360 				   unsigned long addr,
1361 				   pud_t *pudp, int full);
1362 
1363 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1364 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1365 					      pmd_t *pmdp, pgtable_t pgtable)
1366 {
1367 	if (radix_enabled())
1368 		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1369 	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1370 }
1371 
1372 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1373 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1374 						    pmd_t *pmdp)
1375 {
1376 	if (radix_enabled())
1377 		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1378 	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1379 }
1380 
1381 #define __HAVE_ARCH_PMDP_INVALIDATE
1382 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1383 			     pmd_t *pmdp);
1384 extern pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
1385 			     pud_t *pudp);
1386 
1387 #define pmd_move_must_withdraw pmd_move_must_withdraw
1388 struct spinlock;
1389 extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1390 				  struct spinlock *old_pmd_ptl,
1391 				  struct vm_area_struct *vma);
1392 /*
1393  * Hash translation mode use the deposited table to store hash pte
1394  * slot information.
1395  */
1396 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1397 static inline bool arch_needs_pgtable_deposit(void)
1398 {
1399 	if (radix_enabled())
1400 		return false;
1401 	return true;
1402 }
1403 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1404 
1405 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1406 
1407 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1408 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1409 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1410 			     pte_t *, pte_t, pte_t);
1411 
1412 /*
1413  * Returns true for a R -> RW upgrade of pte
1414  */
1415 static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1416 {
1417 	if (!(old_val & _PAGE_READ))
1418 		return false;
1419 
1420 	if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1421 		return true;
1422 
1423 	return false;
1424 }
1425 
1426 #endif /* __ASSEMBLER__ */
1427 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1428