xref: /linux/arch/powerpc/include/asm/book3s/64/pgtable.h (revision 4e1a33b105ddf201f66dcc44490c6086a25eca0b)
1 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
2 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 
4 #ifndef __ASSEMBLY__
5 #include <linux/mmdebug.h>
6 #endif
7 /*
8  * Common bits between hash and Radix page table
9  */
10 #define _PAGE_BIT_SWAP_TYPE	0
11 
12 #define _PAGE_RO		0
13 
14 #define _PAGE_EXEC		0x00001 /* execute permission */
15 #define _PAGE_WRITE		0x00002 /* write access allowed */
16 #define _PAGE_READ		0x00004	/* read access allowed */
17 #define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
18 #define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
19 #define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
20 #define _PAGE_SAO		0x00010 /* Strong access order */
21 #define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
22 #define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
23 #define _PAGE_DIRTY		0x00080 /* C: page changed */
24 #define _PAGE_ACCESSED		0x00100 /* R: page referenced */
25 /*
26  * Software bits
27  */
28 #define _RPAGE_SW0		0x2000000000000000UL
29 #define _RPAGE_SW1		0x00800
30 #define _RPAGE_SW2		0x00400
31 #define _RPAGE_SW3		0x00200
32 #define _RPAGE_RSV1		0x1000000000000000UL
33 #define _RPAGE_RSV2		0x0800000000000000UL
34 #define _RPAGE_RSV3		0x0400000000000000UL
35 #define _RPAGE_RSV4		0x0200000000000000UL
36 
37 #ifdef CONFIG_MEM_SOFT_DIRTY
38 #define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
39 #else
40 #define _PAGE_SOFT_DIRTY	0x00000
41 #endif
42 #define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
43 
44 /*
45  * For P9 DD1 only, we need to track whether the pte's huge.
46  */
47 #define _PAGE_LARGE	_RPAGE_RSV1
48 
49 
50 #define _PAGE_PTE		(1ul << 62)	/* distinguishes PTEs from pointers */
51 #define _PAGE_PRESENT		(1ul << 63)	/* pte contains a translation */
52 /*
53  * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
54  * Instead of fixing all of them, add an alternate define which
55  * maps CI pte mapping.
56  */
57 #define _PAGE_NO_CACHE		_PAGE_TOLERANT
58 /*
59  * We support 57 bit real address in pte. Clear everything above 57, and
60  * every thing below PAGE_SHIFT;
61  */
62 #define PTE_RPN_MASK	(((1UL << 57) - 1) & (PAGE_MASK))
63 /*
64  * set of bits not changed in pmd_modify. Even though we have hash specific bits
65  * in here, on radix we expect them to be zero.
66  */
67 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
68 			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
69 			 _PAGE_SOFT_DIRTY)
70 /*
71  * user access blocked by key
72  */
73 #define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
74 #define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
75 #define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY |	\
76 				 _PAGE_RW | _PAGE_EXEC)
77 /*
78  * No page size encoding in the linux PTE
79  */
80 #define _PAGE_PSIZE		0
81 /*
82  * _PAGE_CHG_MASK masks of bits that are to be preserved across
83  * pgprot changes
84  */
85 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
86 			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
87 			 _PAGE_SOFT_DIRTY)
88 /*
89  * Mask of bits returned by pte_pgprot()
90  */
91 #define PAGE_PROT_BITS  (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \
92 			 H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \
93 			 _PAGE_READ | _PAGE_WRITE |  _PAGE_DIRTY | _PAGE_EXEC | \
94 			 _PAGE_SOFT_DIRTY)
95 /*
96  * We define 2 sets of base prot bits, one for basic pages (ie,
97  * cacheable kernel and user pages) and one for non cacheable
98  * pages. We always set _PAGE_COHERENT when SMP is enabled or
99  * the processor might need it for DMA coherency.
100  */
101 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE)
102 #define _PAGE_BASE	(_PAGE_BASE_NC)
103 
104 /* Permission masks used to generate the __P and __S table,
105  *
106  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
107  *
108  * Write permissions imply read permissions for now (we could make write-only
109  * pages on BookE but we don't bother for now). Execute permission control is
110  * possible on platforms that define _PAGE_EXEC
111  *
112  * Note due to the way vm flags are laid out, the bits are XWR
113  */
114 #define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
115 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
116 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
117 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
118 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
119 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
120 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
121 
122 #define __P000	PAGE_NONE
123 #define __P001	PAGE_READONLY
124 #define __P010	PAGE_COPY
125 #define __P011	PAGE_COPY
126 #define __P100	PAGE_READONLY_X
127 #define __P101	PAGE_READONLY_X
128 #define __P110	PAGE_COPY_X
129 #define __P111	PAGE_COPY_X
130 
131 #define __S000	PAGE_NONE
132 #define __S001	PAGE_READONLY
133 #define __S010	PAGE_SHARED
134 #define __S011	PAGE_SHARED
135 #define __S100	PAGE_READONLY_X
136 #define __S101	PAGE_READONLY_X
137 #define __S110	PAGE_SHARED_X
138 #define __S111	PAGE_SHARED_X
139 
140 /* Permission masks used for kernel mappings */
141 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
142 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
143 				 _PAGE_TOLERANT)
144 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
145 				 _PAGE_NON_IDEMPOTENT)
146 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
147 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
148 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
149 
150 /*
151  * Protection used for kernel text. We want the debuggers to be able to
152  * set breakpoints anywhere, so don't write protect the kernel text
153  * on platforms where such control is possible.
154  */
155 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
156 	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
157 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
158 #else
159 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
160 #endif
161 
162 /* Make modules code happy. We don't set RO yet */
163 #define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
164 #define PAGE_AGP		(PAGE_KERNEL_NC)
165 
166 #ifndef __ASSEMBLY__
167 /*
168  * page table defines
169  */
170 extern unsigned long __pte_index_size;
171 extern unsigned long __pmd_index_size;
172 extern unsigned long __pud_index_size;
173 extern unsigned long __pgd_index_size;
174 extern unsigned long __pmd_cache_index;
175 #define PTE_INDEX_SIZE  __pte_index_size
176 #define PMD_INDEX_SIZE  __pmd_index_size
177 #define PUD_INDEX_SIZE  __pud_index_size
178 #define PGD_INDEX_SIZE  __pgd_index_size
179 #define PMD_CACHE_INDEX __pmd_cache_index
180 /*
181  * Because of use of pte fragments and THP, size of page table
182  * are not always derived out of index size above.
183  */
184 extern unsigned long __pte_table_size;
185 extern unsigned long __pmd_table_size;
186 extern unsigned long __pud_table_size;
187 extern unsigned long __pgd_table_size;
188 #define PTE_TABLE_SIZE	__pte_table_size
189 #define PMD_TABLE_SIZE	__pmd_table_size
190 #define PUD_TABLE_SIZE	__pud_table_size
191 #define PGD_TABLE_SIZE	__pgd_table_size
192 
193 extern unsigned long __pmd_val_bits;
194 extern unsigned long __pud_val_bits;
195 extern unsigned long __pgd_val_bits;
196 #define PMD_VAL_BITS	__pmd_val_bits
197 #define PUD_VAL_BITS	__pud_val_bits
198 #define PGD_VAL_BITS	__pgd_val_bits
199 
200 extern unsigned long __pte_frag_nr;
201 #define PTE_FRAG_NR __pte_frag_nr
202 extern unsigned long __pte_frag_size_shift;
203 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
204 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
205 /*
206  * Pgtable size used by swapper, init in asm code
207  */
208 #define MAX_PGD_TABLE_SIZE (sizeof(pgd_t) << RADIX_PGD_INDEX_SIZE)
209 
210 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
211 #define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
212 #define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
213 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
214 
215 /* PMD_SHIFT determines what a second-level page table entry can map */
216 #define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
217 #define PMD_SIZE	(1UL << PMD_SHIFT)
218 #define PMD_MASK	(~(PMD_SIZE-1))
219 
220 /* PUD_SHIFT determines what a third-level page table entry can map */
221 #define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
222 #define PUD_SIZE	(1UL << PUD_SHIFT)
223 #define PUD_MASK	(~(PUD_SIZE-1))
224 
225 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
226 #define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
227 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
228 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
229 
230 /* Bits to mask out from a PMD to get to the PTE page */
231 #define PMD_MASKED_BITS		0xc0000000000000ffUL
232 /* Bits to mask out from a PUD to get to the PMD page */
233 #define PUD_MASKED_BITS		0xc0000000000000ffUL
234 /* Bits to mask out from a PGD to get to the PUD page */
235 #define PGD_MASKED_BITS		0xc0000000000000ffUL
236 
237 extern unsigned long __vmalloc_start;
238 extern unsigned long __vmalloc_end;
239 #define VMALLOC_START	__vmalloc_start
240 #define VMALLOC_END	__vmalloc_end
241 
242 extern unsigned long __kernel_virt_start;
243 extern unsigned long __kernel_virt_size;
244 #define KERN_VIRT_START __kernel_virt_start
245 #define KERN_VIRT_SIZE  __kernel_virt_size
246 extern struct page *vmemmap;
247 extern unsigned long ioremap_bot;
248 extern unsigned long pci_io_base;
249 #endif /* __ASSEMBLY__ */
250 
251 #include <asm/book3s/64/hash.h>
252 #include <asm/book3s/64/radix.h>
253 
254 #ifdef CONFIG_PPC_64K_PAGES
255 #include <asm/book3s/64/pgtable-64k.h>
256 #else
257 #include <asm/book3s/64/pgtable-4k.h>
258 #endif
259 
260 #include <asm/barrier.h>
261 /*
262  * The second half of the kernel virtual space is used for IO mappings,
263  * it's itself carved into the PIO region (ISA and PHB IO space) and
264  * the ioremap space
265  *
266  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
267  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
268  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
269  */
270 #define KERN_IO_START	(KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
271 #define FULL_IO_SIZE	0x80000000ul
272 #define  ISA_IO_BASE	(KERN_IO_START)
273 #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
274 #define  PHB_IO_BASE	(ISA_IO_END)
275 #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
276 #define IOREMAP_BASE	(PHB_IO_END)
277 #define IOREMAP_END	(KERN_VIRT_START + KERN_VIRT_SIZE)
278 
279 /* Advertise special mapping type for AGP */
280 #define HAVE_PAGE_AGP
281 
282 /* Advertise support for _PAGE_SPECIAL */
283 #define __HAVE_ARCH_PTE_SPECIAL
284 
285 #ifndef __ASSEMBLY__
286 
287 /*
288  * This is the default implementation of various PTE accessors, it's
289  * used in all cases except Book3S with 64K pages where we have a
290  * concept of sub-pages
291  */
292 #ifndef __real_pte
293 
294 #define __real_pte(e,p)		((real_pte_t){(e)})
295 #define __rpte_to_pte(r)	((r).pte)
296 #define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
297 
298 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
299 	do {							         \
300 		index = 0;					         \
301 		shift = mmu_psize_defs[psize].shift;		         \
302 
303 #define pte_iterate_hashed_end() } while(0)
304 
305 /*
306  * We expect this to be called only for user addresses or kernel virtual
307  * addresses other than the linear mapping.
308  */
309 #define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
310 
311 #endif /* __real_pte */
312 
313 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
314 				       pte_t *ptep, unsigned long clr,
315 				       unsigned long set, int huge)
316 {
317 	if (radix_enabled())
318 		return radix__pte_update(mm, addr, ptep, clr, set, huge);
319 	return hash__pte_update(mm, addr, ptep, clr, set, huge);
320 }
321 /*
322  * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
323  * We currently remove entries from the hashtable regardless of whether
324  * the entry was young or dirty.
325  *
326  * We should be more intelligent about this but for the moment we override
327  * these functions and force a tlb flush unconditionally
328  * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
329  * function for both hash and radix.
330  */
331 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
332 					      unsigned long addr, pte_t *ptep)
333 {
334 	unsigned long old;
335 
336 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
337 		return 0;
338 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
339 	return (old & _PAGE_ACCESSED) != 0;
340 }
341 
342 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
343 #define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
344 ({								\
345 	int __r;						\
346 	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
347 	__r;							\
348 })
349 
350 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
351 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
352 				      pte_t *ptep)
353 {
354 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_WRITE)) == 0)
355 		return;
356 
357 	pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
358 }
359 
360 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
361 					   unsigned long addr, pte_t *ptep)
362 {
363 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_WRITE)) == 0)
364 		return;
365 
366 	pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
367 }
368 
369 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
370 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
371 				       unsigned long addr, pte_t *ptep)
372 {
373 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
374 	return __pte(old);
375 }
376 
377 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
378 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
379 					    unsigned long addr,
380 					    pte_t *ptep, int full)
381 {
382 	if (full && radix_enabled()) {
383 		/*
384 		 * Let's skip the DD1 style pte update here. We know that
385 		 * this is a full mm pte clear and hence can be sure there is
386 		 * no parallel set_pte.
387 		 */
388 		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
389 	}
390 	return ptep_get_and_clear(mm, addr, ptep);
391 }
392 
393 
394 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
395 			     pte_t * ptep)
396 {
397 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
398 }
399 
400 static inline int pte_write(pte_t pte)
401 {
402 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
403 }
404 
405 static inline int pte_dirty(pte_t pte)
406 {
407 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
408 }
409 
410 static inline int pte_young(pte_t pte)
411 {
412 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
413 }
414 
415 static inline int pte_special(pte_t pte)
416 {
417 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
418 }
419 
420 static inline pgprot_t pte_pgprot(pte_t pte)	{ return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
421 
422 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
423 static inline bool pte_soft_dirty(pte_t pte)
424 {
425 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
426 }
427 
428 static inline pte_t pte_mksoft_dirty(pte_t pte)
429 {
430 	return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
431 }
432 
433 static inline pte_t pte_clear_soft_dirty(pte_t pte)
434 {
435 	return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY);
436 }
437 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
438 
439 #ifdef CONFIG_NUMA_BALANCING
440 static inline int pte_protnone(pte_t pte)
441 {
442 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
443 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
444 }
445 
446 #define pte_mk_savedwrite pte_mk_savedwrite
447 static inline pte_t pte_mk_savedwrite(pte_t pte)
448 {
449 	/*
450 	 * Used by Autonuma subsystem to preserve the write bit
451 	 * while marking the pte PROT_NONE. Only allow this
452 	 * on PROT_NONE pte
453 	 */
454 	VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
455 		  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
456 	return __pte(pte_val(pte) & ~_PAGE_PRIVILEGED);
457 }
458 
459 #define pte_clear_savedwrite pte_clear_savedwrite
460 static inline pte_t pte_clear_savedwrite(pte_t pte)
461 {
462 	/*
463 	 * Used by KSM subsystem to make a protnone pte readonly.
464 	 */
465 	VM_BUG_ON(!pte_protnone(pte));
466 	return __pte(pte_val(pte) | _PAGE_PRIVILEGED);
467 }
468 
469 #define pte_savedwrite pte_savedwrite
470 static inline bool pte_savedwrite(pte_t pte)
471 {
472 	/*
473 	 * Saved write ptes are prot none ptes that doesn't have
474 	 * privileged bit sit. We mark prot none as one which has
475 	 * present and pviliged bit set and RWX cleared. To mark
476 	 * protnone which used to have _PAGE_WRITE set we clear
477 	 * the privileged bit.
478 	 */
479 	VM_BUG_ON(!pte_protnone(pte));
480 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
481 }
482 #endif /* CONFIG_NUMA_BALANCING */
483 
484 static inline int pte_present(pte_t pte)
485 {
486 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
487 }
488 /*
489  * Conversion functions: convert a page and protection to a page entry,
490  * and a page entry and page directory to the page they refer to.
491  *
492  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
493  * long for now.
494  */
495 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
496 {
497 	return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
498 		     pgprot_val(pgprot));
499 }
500 
501 static inline unsigned long pte_pfn(pte_t pte)
502 {
503 	return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
504 }
505 
506 /* Generic modifiers for PTE bits */
507 static inline pte_t pte_wrprotect(pte_t pte)
508 {
509 	return __pte(pte_val(pte) & ~_PAGE_WRITE);
510 }
511 
512 static inline pte_t pte_mkclean(pte_t pte)
513 {
514 	return __pte(pte_val(pte) & ~_PAGE_DIRTY);
515 }
516 
517 static inline pte_t pte_mkold(pte_t pte)
518 {
519 	return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
520 }
521 
522 static inline pte_t pte_mkwrite(pte_t pte)
523 {
524 	/*
525 	 * write implies read, hence set both
526 	 */
527 	return __pte(pte_val(pte) | _PAGE_RW);
528 }
529 
530 static inline pte_t pte_mkdirty(pte_t pte)
531 {
532 	return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
533 }
534 
535 static inline pte_t pte_mkyoung(pte_t pte)
536 {
537 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
538 }
539 
540 static inline pte_t pte_mkspecial(pte_t pte)
541 {
542 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
543 }
544 
545 static inline pte_t pte_mkhuge(pte_t pte)
546 {
547 	return pte;
548 }
549 
550 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
551 {
552 	/* FIXME!! check whether this need to be a conditional */
553 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
554 }
555 
556 static inline bool pte_user(pte_t pte)
557 {
558 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
559 }
560 
561 /* Encode and de-code a swap entry */
562 #define MAX_SWAPFILES_CHECK() do { \
563 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
564 	/*							\
565 	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
566 	 * We filter HPTEFLAGS on set_pte.			\
567 	 */							\
568 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
569 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
570 	} while (0)
571 /*
572  * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
573  */
574 #define SWP_TYPE_BITS 5
575 #define __swp_type(x)		(((x).val >> _PAGE_BIT_SWAP_TYPE) \
576 				& ((1UL << SWP_TYPE_BITS) - 1))
577 #define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
578 #define __swp_entry(type, offset)	((swp_entry_t) { \
579 				((type) << _PAGE_BIT_SWAP_TYPE) \
580 				| (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
581 /*
582  * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
583  * swap type and offset we get from swap and convert that to pte to find a
584  * matching pte in linux page table.
585  * Clear bits not found in swap entries here.
586  */
587 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
588 #define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
589 
590 #ifdef CONFIG_MEM_SOFT_DIRTY
591 #define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
592 #else
593 #define _PAGE_SWP_SOFT_DIRTY	0UL
594 #endif /* CONFIG_MEM_SOFT_DIRTY */
595 
596 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
597 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
598 {
599 	return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
600 }
601 
602 static inline bool pte_swp_soft_dirty(pte_t pte)
603 {
604 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
605 }
606 
607 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
608 {
609 	return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY);
610 }
611 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
612 
613 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
614 {
615 	/*
616 	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
617 	 */
618 	if (access & ~ptev)
619 		return false;
620 	/*
621 	 * This check for access to privilege space
622 	 */
623 	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
624 		return false;
625 
626 	return true;
627 }
628 /*
629  * Generic functions with hash/radix callbacks
630  */
631 
632 static inline void __ptep_set_access_flags(struct mm_struct *mm,
633 					   pte_t *ptep, pte_t entry,
634 					   unsigned long address)
635 {
636 	if (radix_enabled())
637 		return radix__ptep_set_access_flags(mm, ptep, entry, address);
638 	return hash__ptep_set_access_flags(ptep, entry);
639 }
640 
641 #define __HAVE_ARCH_PTE_SAME
642 static inline int pte_same(pte_t pte_a, pte_t pte_b)
643 {
644 	if (radix_enabled())
645 		return radix__pte_same(pte_a, pte_b);
646 	return hash__pte_same(pte_a, pte_b);
647 }
648 
649 static inline int pte_none(pte_t pte)
650 {
651 	if (radix_enabled())
652 		return radix__pte_none(pte);
653 	return hash__pte_none(pte);
654 }
655 
656 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
657 				pte_t *ptep, pte_t pte, int percpu)
658 {
659 	if (radix_enabled())
660 		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
661 	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
662 }
663 
664 #define _PAGE_CACHE_CTL	(_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
665 
666 #define pgprot_noncached pgprot_noncached
667 static inline pgprot_t pgprot_noncached(pgprot_t prot)
668 {
669 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
670 			_PAGE_NON_IDEMPOTENT);
671 }
672 
673 #define pgprot_noncached_wc pgprot_noncached_wc
674 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
675 {
676 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
677 			_PAGE_TOLERANT);
678 }
679 
680 #define pgprot_cached pgprot_cached
681 static inline pgprot_t pgprot_cached(pgprot_t prot)
682 {
683 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
684 }
685 
686 #define pgprot_writecombine pgprot_writecombine
687 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
688 {
689 	return pgprot_noncached_wc(prot);
690 }
691 /*
692  * check a pte mapping have cache inhibited property
693  */
694 static inline bool pte_ci(pte_t pte)
695 {
696 	unsigned long pte_v = pte_val(pte);
697 
698 	if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) ||
699 	    ((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT))
700 		return true;
701 	return false;
702 }
703 
704 static inline void pmd_set(pmd_t *pmdp, unsigned long val)
705 {
706 	*pmdp = __pmd(val);
707 }
708 
709 static inline void pmd_clear(pmd_t *pmdp)
710 {
711 	*pmdp = __pmd(0);
712 }
713 
714 static inline int pmd_none(pmd_t pmd)
715 {
716 	return !pmd_raw(pmd);
717 }
718 
719 static inline int pmd_present(pmd_t pmd)
720 {
721 
722 	return !pmd_none(pmd);
723 }
724 
725 static inline int pmd_bad(pmd_t pmd)
726 {
727 	if (radix_enabled())
728 		return radix__pmd_bad(pmd);
729 	return hash__pmd_bad(pmd);
730 }
731 
732 static inline void pud_set(pud_t *pudp, unsigned long val)
733 {
734 	*pudp = __pud(val);
735 }
736 
737 static inline void pud_clear(pud_t *pudp)
738 {
739 	*pudp = __pud(0);
740 }
741 
742 static inline int pud_none(pud_t pud)
743 {
744 	return !pud_raw(pud);
745 }
746 
747 static inline int pud_present(pud_t pud)
748 {
749 	return !pud_none(pud);
750 }
751 
752 extern struct page *pud_page(pud_t pud);
753 extern struct page *pmd_page(pmd_t pmd);
754 static inline pte_t pud_pte(pud_t pud)
755 {
756 	return __pte_raw(pud_raw(pud));
757 }
758 
759 static inline pud_t pte_pud(pte_t pte)
760 {
761 	return __pud_raw(pte_raw(pte));
762 }
763 #define pud_write(pud)		pte_write(pud_pte(pud))
764 
765 static inline int pud_bad(pud_t pud)
766 {
767 	if (radix_enabled())
768 		return radix__pud_bad(pud);
769 	return hash__pud_bad(pud);
770 }
771 
772 
773 #define pgd_write(pgd)		pte_write(pgd_pte(pgd))
774 static inline void pgd_set(pgd_t *pgdp, unsigned long val)
775 {
776 	*pgdp = __pgd(val);
777 }
778 
779 static inline void pgd_clear(pgd_t *pgdp)
780 {
781 	*pgdp = __pgd(0);
782 }
783 
784 static inline int pgd_none(pgd_t pgd)
785 {
786 	return !pgd_raw(pgd);
787 }
788 
789 static inline int pgd_present(pgd_t pgd)
790 {
791 	return !pgd_none(pgd);
792 }
793 
794 static inline pte_t pgd_pte(pgd_t pgd)
795 {
796 	return __pte_raw(pgd_raw(pgd));
797 }
798 
799 static inline pgd_t pte_pgd(pte_t pte)
800 {
801 	return __pgd_raw(pte_raw(pte));
802 }
803 
804 static inline int pgd_bad(pgd_t pgd)
805 {
806 	if (radix_enabled())
807 		return radix__pgd_bad(pgd);
808 	return hash__pgd_bad(pgd);
809 }
810 
811 extern struct page *pgd_page(pgd_t pgd);
812 
813 /* Pointers in the page table tree are physical addresses */
814 #define __pgtable_ptr_val(ptr)	__pa(ptr)
815 
816 #define pmd_page_vaddr(pmd)	__va(pmd_val(pmd) & ~PMD_MASKED_BITS)
817 #define pud_page_vaddr(pud)	__va(pud_val(pud) & ~PUD_MASKED_BITS)
818 #define pgd_page_vaddr(pgd)	__va(pgd_val(pgd) & ~PGD_MASKED_BITS)
819 
820 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
821 #define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
822 #define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
823 #define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
824 
825 /*
826  * Find an entry in a page-table-directory.  We combine the address region
827  * (the high order N bits) and the pgd portion of the address.
828  */
829 
830 #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
831 
832 #define pud_offset(pgdp, addr)	\
833 	(((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
834 #define pmd_offset(pudp,addr) \
835 	(((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
836 #define pte_offset_kernel(dir,addr) \
837 	(((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
838 
839 #define pte_offset_map(dir,addr)	pte_offset_kernel((dir), (addr))
840 #define pte_unmap(pte)			do { } while(0)
841 
842 /* to find an entry in a kernel page-table-directory */
843 /* This now only contains the vmalloc pages */
844 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
845 
846 #define pte_ERROR(e) \
847 	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
848 #define pmd_ERROR(e) \
849 	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
850 #define pud_ERROR(e) \
851 	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
852 #define pgd_ERROR(e) \
853 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
854 
855 static inline int map_kernel_page(unsigned long ea, unsigned long pa,
856 				  unsigned long flags)
857 {
858 	if (radix_enabled()) {
859 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
860 		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
861 		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
862 #endif
863 		return radix__map_kernel_page(ea, pa, __pgprot(flags), PAGE_SIZE);
864 	}
865 	return hash__map_kernel_page(ea, pa, flags);
866 }
867 
868 static inline int __meminit vmemmap_create_mapping(unsigned long start,
869 						   unsigned long page_size,
870 						   unsigned long phys)
871 {
872 	if (radix_enabled())
873 		return radix__vmemmap_create_mapping(start, page_size, phys);
874 	return hash__vmemmap_create_mapping(start, page_size, phys);
875 }
876 
877 #ifdef CONFIG_MEMORY_HOTPLUG
878 static inline void vmemmap_remove_mapping(unsigned long start,
879 					  unsigned long page_size)
880 {
881 	if (radix_enabled())
882 		return radix__vmemmap_remove_mapping(start, page_size);
883 	return hash__vmemmap_remove_mapping(start, page_size);
884 }
885 #endif
886 struct page *realmode_pfn_to_page(unsigned long pfn);
887 
888 static inline pte_t pmd_pte(pmd_t pmd)
889 {
890 	return __pte_raw(pmd_raw(pmd));
891 }
892 
893 static inline pmd_t pte_pmd(pte_t pte)
894 {
895 	return __pmd_raw(pte_raw(pte));
896 }
897 
898 static inline pte_t *pmdp_ptep(pmd_t *pmd)
899 {
900 	return (pte_t *)pmd;
901 }
902 #define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
903 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
904 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
905 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
906 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
907 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
908 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
909 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
910 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
911 #define pmd_mk_savedwrite(pmd)	pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
912 #define pmd_clear_savedwrite(pmd)	pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
913 
914 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
915 #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
916 #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
917 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
918 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
919 
920 #ifdef CONFIG_NUMA_BALANCING
921 static inline int pmd_protnone(pmd_t pmd)
922 {
923 	return pte_protnone(pmd_pte(pmd));
924 }
925 #endif /* CONFIG_NUMA_BALANCING */
926 
927 #define __HAVE_ARCH_PMD_WRITE
928 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
929 #define pmd_savedwrite(pmd)	pte_savedwrite(pmd_pte(pmd))
930 
931 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
932 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
933 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
934 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
935 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
936 		       pmd_t *pmdp, pmd_t pmd);
937 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
938 				 pmd_t *pmd);
939 extern int hash__has_transparent_hugepage(void);
940 static inline int has_transparent_hugepage(void)
941 {
942 	if (radix_enabled())
943 		return radix__has_transparent_hugepage();
944 	return hash__has_transparent_hugepage();
945 }
946 #define has_transparent_hugepage has_transparent_hugepage
947 
948 static inline unsigned long
949 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
950 		    unsigned long clr, unsigned long set)
951 {
952 	if (radix_enabled())
953 		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
954 	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
955 }
956 
957 static inline int pmd_large(pmd_t pmd)
958 {
959 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
960 }
961 
962 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
963 {
964 	return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
965 }
966 /*
967  * For radix we should always find H_PAGE_HASHPTE zero. Hence
968  * the below will work for radix too
969  */
970 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
971 					      unsigned long addr, pmd_t *pmdp)
972 {
973 	unsigned long old;
974 
975 	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
976 		return 0;
977 	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
978 	return ((old & _PAGE_ACCESSED) != 0);
979 }
980 
981 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
982 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
983 				      pmd_t *pmdp)
984 {
985 
986 	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_WRITE)) == 0)
987 		return;
988 
989 	pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
990 }
991 
992 static inline int pmd_trans_huge(pmd_t pmd)
993 {
994 	if (radix_enabled())
995 		return radix__pmd_trans_huge(pmd);
996 	return hash__pmd_trans_huge(pmd);
997 }
998 
999 #define __HAVE_ARCH_PMD_SAME
1000 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1001 {
1002 	if (radix_enabled())
1003 		return radix__pmd_same(pmd_a, pmd_b);
1004 	return hash__pmd_same(pmd_a, pmd_b);
1005 }
1006 
1007 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1008 {
1009 	if (radix_enabled())
1010 		return radix__pmd_mkhuge(pmd);
1011 	return hash__pmd_mkhuge(pmd);
1012 }
1013 
1014 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1015 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1016 				 unsigned long address, pmd_t *pmdp,
1017 				 pmd_t entry, int dirty);
1018 
1019 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1020 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1021 				     unsigned long address, pmd_t *pmdp);
1022 
1023 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1024 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1025 					    unsigned long addr, pmd_t *pmdp)
1026 {
1027 	if (radix_enabled())
1028 		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1029 	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1030 }
1031 
1032 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1033 					unsigned long address, pmd_t *pmdp)
1034 {
1035 	if (radix_enabled())
1036 		return radix__pmdp_collapse_flush(vma, address, pmdp);
1037 	return hash__pmdp_collapse_flush(vma, address, pmdp);
1038 }
1039 #define pmdp_collapse_flush pmdp_collapse_flush
1040 
1041 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1042 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1043 					      pmd_t *pmdp, pgtable_t pgtable)
1044 {
1045 	if (radix_enabled())
1046 		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1047 	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1048 }
1049 
1050 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1051 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1052 						    pmd_t *pmdp)
1053 {
1054 	if (radix_enabled())
1055 		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1056 	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1057 }
1058 
1059 #define __HAVE_ARCH_PMDP_INVALIDATE
1060 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1061 			    pmd_t *pmdp);
1062 
1063 #define __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
1064 static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma,
1065 					   unsigned long address, pmd_t *pmdp)
1066 {
1067 	if (radix_enabled())
1068 		return radix__pmdp_huge_split_prepare(vma, address, pmdp);
1069 	return hash__pmdp_huge_split_prepare(vma, address, pmdp);
1070 }
1071 
1072 #define pmd_move_must_withdraw pmd_move_must_withdraw
1073 struct spinlock;
1074 static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1075 					 struct spinlock *old_pmd_ptl,
1076 					 struct vm_area_struct *vma)
1077 {
1078 	if (radix_enabled())
1079 		return false;
1080 	/*
1081 	 * Archs like ppc64 use pgtable to store per pmd
1082 	 * specific information. So when we switch the pmd,
1083 	 * we should also withdraw and deposit the pgtable
1084 	 */
1085 	return true;
1086 }
1087 
1088 
1089 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1090 static inline bool arch_needs_pgtable_deposit(void)
1091 {
1092 	if (radix_enabled())
1093 		return false;
1094 	return true;
1095 }
1096 
1097 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1098 #endif /* __ASSEMBLY__ */
1099 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1100