1 #ifndef _ASM_POWERPC_BOOK3S_64_PGALLOC_H 2 #define _ASM_POWERPC_BOOK3S_64_PGALLOC_H 3 /* 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 */ 9 10 #include <linux/slab.h> 11 #include <linux/cpumask.h> 12 #include <linux/percpu.h> 13 14 struct vmemmap_backing { 15 struct vmemmap_backing *list; 16 unsigned long phys; 17 unsigned long virt_addr; 18 }; 19 extern struct vmemmap_backing *vmemmap_list; 20 21 /* 22 * Functions that deal with pagetables that could be at any level of 23 * the table need to be passed an "index_size" so they know how to 24 * handle allocation. For PTE pages (which are linked to a struct 25 * page for now, and drawn from the main get_free_pages() pool), the 26 * allocation size will be (2^index_size * sizeof(pointer)) and 27 * allocations are drawn from the kmem_cache in PGT_CACHE(index_size). 28 * 29 * The maximum index size needs to be big enough to allow any 30 * pagetable sizes we need, but small enough to fit in the low bits of 31 * any page table pointer. In other words all pagetables, even tiny 32 * ones, must be aligned to allow at least enough low 0 bits to 33 * contain this value. This value is also used as a mask, so it must 34 * be one less than a power of two. 35 */ 36 #define MAX_PGTABLE_INDEX_SIZE 0xf 37 38 extern struct kmem_cache *pgtable_cache[]; 39 #define PGT_CACHE(shift) ({ \ 40 BUG_ON(!(shift)); \ 41 pgtable_cache[(shift) - 1]; \ 42 }) 43 44 extern pte_t *pte_fragment_alloc(struct mm_struct *, unsigned long, int); 45 extern pmd_t *pmd_fragment_alloc(struct mm_struct *, unsigned long); 46 extern void pte_fragment_free(unsigned long *, int); 47 extern void pmd_fragment_free(unsigned long *); 48 extern void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift); 49 #ifdef CONFIG_SMP 50 extern void __tlb_remove_table(void *_table); 51 #endif 52 53 static inline pgd_t *radix__pgd_alloc(struct mm_struct *mm) 54 { 55 #ifdef CONFIG_PPC_64K_PAGES 56 return (pgd_t *)__get_free_page(pgtable_gfp_flags(mm, PGALLOC_GFP)); 57 #else 58 struct page *page; 59 page = alloc_pages(pgtable_gfp_flags(mm, PGALLOC_GFP | __GFP_RETRY_MAYFAIL), 60 4); 61 if (!page) 62 return NULL; 63 return (pgd_t *) page_address(page); 64 #endif 65 } 66 67 static inline void radix__pgd_free(struct mm_struct *mm, pgd_t *pgd) 68 { 69 #ifdef CONFIG_PPC_64K_PAGES 70 free_page((unsigned long)pgd); 71 #else 72 free_pages((unsigned long)pgd, 4); 73 #endif 74 } 75 76 static inline pgd_t *pgd_alloc(struct mm_struct *mm) 77 { 78 pgd_t *pgd; 79 80 if (radix_enabled()) 81 return radix__pgd_alloc(mm); 82 83 pgd = kmem_cache_alloc(PGT_CACHE(PGD_INDEX_SIZE), 84 pgtable_gfp_flags(mm, GFP_KERNEL)); 85 /* 86 * With hugetlb, we don't clear the second half of the page table. 87 * If we share the same slab cache with the pmd or pud level table, 88 * we need to make sure we zero out the full table on alloc. 89 * With 4K we don't store slot in the second half. Hence we don't 90 * need to do this for 4k. 91 */ 92 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_PPC_64K_PAGES) && \ 93 (H_PGD_INDEX_SIZE == H_PUD_CACHE_INDEX) 94 memset(pgd, 0, PGD_TABLE_SIZE); 95 #endif 96 return pgd; 97 } 98 99 static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd) 100 { 101 if (radix_enabled()) 102 return radix__pgd_free(mm, pgd); 103 kmem_cache_free(PGT_CACHE(PGD_INDEX_SIZE), pgd); 104 } 105 106 static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgd, pud_t *pud) 107 { 108 pgd_set(pgd, __pgtable_ptr_val(pud) | PGD_VAL_BITS); 109 } 110 111 static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr) 112 { 113 return kmem_cache_alloc(PGT_CACHE(PUD_CACHE_INDEX), 114 pgtable_gfp_flags(mm, GFP_KERNEL)); 115 } 116 117 static inline void pud_free(struct mm_struct *mm, pud_t *pud) 118 { 119 kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), pud); 120 } 121 122 static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd) 123 { 124 pud_set(pud, __pgtable_ptr_val(pmd) | PUD_VAL_BITS); 125 } 126 127 static inline void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud, 128 unsigned long address) 129 { 130 /* 131 * By now all the pud entries should be none entries. So go 132 * ahead and flush the page walk cache 133 */ 134 flush_tlb_pgtable(tlb, address); 135 pgtable_free_tlb(tlb, pud, PUD_INDEX); 136 } 137 138 static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr) 139 { 140 return pmd_fragment_alloc(mm, addr); 141 } 142 143 static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd) 144 { 145 pmd_fragment_free((unsigned long *)pmd); 146 } 147 148 static inline void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd, 149 unsigned long address) 150 { 151 /* 152 * By now all the pud entries should be none entries. So go 153 * ahead and flush the page walk cache 154 */ 155 flush_tlb_pgtable(tlb, address); 156 return pgtable_free_tlb(tlb, pmd, PMD_INDEX); 157 } 158 159 static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd, 160 pte_t *pte) 161 { 162 pmd_set(pmd, __pgtable_ptr_val(pte) | PMD_VAL_BITS); 163 } 164 165 static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd, 166 pgtable_t pte_page) 167 { 168 pmd_set(pmd, __pgtable_ptr_val(pte_page) | PMD_VAL_BITS); 169 } 170 171 static inline pgtable_t pmd_pgtable(pmd_t pmd) 172 { 173 return (pgtable_t)pmd_page_vaddr(pmd); 174 } 175 176 static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm, 177 unsigned long address) 178 { 179 return (pte_t *)pte_fragment_alloc(mm, address, 1); 180 } 181 182 static inline pgtable_t pte_alloc_one(struct mm_struct *mm, 183 unsigned long address) 184 { 185 return (pgtable_t)pte_fragment_alloc(mm, address, 0); 186 } 187 188 static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte) 189 { 190 pte_fragment_free((unsigned long *)pte, 1); 191 } 192 193 static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage) 194 { 195 pte_fragment_free((unsigned long *)ptepage, 0); 196 } 197 198 static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table, 199 unsigned long address) 200 { 201 /* 202 * By now all the pud entries should be none entries. So go 203 * ahead and flush the page walk cache 204 */ 205 flush_tlb_pgtable(tlb, address); 206 pgtable_free_tlb(tlb, table, PTE_INDEX); 207 } 208 209 #define check_pgt_cache() do { } while (0) 210 211 #endif /* _ASM_POWERPC_BOOK3S_64_PGALLOC_H */ 212