1 #ifndef _ASM_POWERPC_BOOK3S_64_PGALLOC_H 2 #define _ASM_POWERPC_BOOK3S_64_PGALLOC_H 3 /* 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 */ 9 10 #include <linux/slab.h> 11 #include <linux/cpumask.h> 12 #include <linux/percpu.h> 13 14 struct vmemmap_backing { 15 struct vmemmap_backing *list; 16 unsigned long phys; 17 unsigned long virt_addr; 18 }; 19 extern struct vmemmap_backing *vmemmap_list; 20 21 /* 22 * Functions that deal with pagetables that could be at any level of 23 * the table need to be passed an "index_size" so they know how to 24 * handle allocation. For PTE pages (which are linked to a struct 25 * page for now, and drawn from the main get_free_pages() pool), the 26 * allocation size will be (2^index_size * sizeof(pointer)) and 27 * allocations are drawn from the kmem_cache in PGT_CACHE(index_size). 28 * 29 * The maximum index size needs to be big enough to allow any 30 * pagetable sizes we need, but small enough to fit in the low bits of 31 * any page table pointer. In other words all pagetables, even tiny 32 * ones, must be aligned to allow at least enough low 0 bits to 33 * contain this value. This value is also used as a mask, so it must 34 * be one less than a power of two. 35 */ 36 #define MAX_PGTABLE_INDEX_SIZE 0xf 37 38 extern struct kmem_cache *pgtable_cache[]; 39 #define PGT_CACHE(shift) ({ \ 40 BUG_ON(!(shift)); \ 41 pgtable_cache[(shift) - 1]; \ 42 }) 43 44 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO 45 46 extern pte_t *pte_fragment_alloc(struct mm_struct *, unsigned long, int); 47 extern void pte_fragment_free(unsigned long *, int); 48 extern void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift); 49 #ifdef CONFIG_SMP 50 extern void __tlb_remove_table(void *_table); 51 #endif 52 53 static inline pgd_t *radix__pgd_alloc(struct mm_struct *mm) 54 { 55 #ifdef CONFIG_PPC_64K_PAGES 56 return (pgd_t *)__get_free_page(PGALLOC_GFP); 57 #else 58 struct page *page; 59 page = alloc_pages(PGALLOC_GFP, 4); 60 if (!page) 61 return NULL; 62 return (pgd_t *) page_address(page); 63 #endif 64 } 65 66 static inline void radix__pgd_free(struct mm_struct *mm, pgd_t *pgd) 67 { 68 #ifdef CONFIG_PPC_64K_PAGES 69 free_page((unsigned long)pgd); 70 #else 71 free_pages((unsigned long)pgd, 4); 72 #endif 73 } 74 75 static inline pgd_t *pgd_alloc(struct mm_struct *mm) 76 { 77 if (radix_enabled()) 78 return radix__pgd_alloc(mm); 79 return kmem_cache_alloc(PGT_CACHE(PGD_INDEX_SIZE), GFP_KERNEL); 80 } 81 82 static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd) 83 { 84 if (radix_enabled()) 85 return radix__pgd_free(mm, pgd); 86 kmem_cache_free(PGT_CACHE(PGD_INDEX_SIZE), pgd); 87 } 88 89 static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgd, pud_t *pud) 90 { 91 pgd_set(pgd, __pgtable_ptr_val(pud) | PGD_VAL_BITS); 92 } 93 94 static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr) 95 { 96 return kmem_cache_alloc(PGT_CACHE(PUD_INDEX_SIZE), 97 GFP_KERNEL|__GFP_REPEAT); 98 } 99 100 static inline void pud_free(struct mm_struct *mm, pud_t *pud) 101 { 102 kmem_cache_free(PGT_CACHE(PUD_INDEX_SIZE), pud); 103 } 104 105 static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd) 106 { 107 pud_set(pud, __pgtable_ptr_val(pmd) | PUD_VAL_BITS); 108 } 109 110 static inline void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud, 111 unsigned long address) 112 { 113 pgtable_free_tlb(tlb, pud, PUD_INDEX_SIZE); 114 } 115 116 static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr) 117 { 118 return kmem_cache_alloc(PGT_CACHE(PMD_CACHE_INDEX), 119 GFP_KERNEL|__GFP_REPEAT); 120 } 121 122 static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd) 123 { 124 kmem_cache_free(PGT_CACHE(PMD_CACHE_INDEX), pmd); 125 } 126 127 static inline void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd, 128 unsigned long address) 129 { 130 return pgtable_free_tlb(tlb, pmd, PMD_CACHE_INDEX); 131 } 132 133 static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd, 134 pte_t *pte) 135 { 136 pmd_set(pmd, __pgtable_ptr_val(pte) | PMD_VAL_BITS); 137 } 138 139 static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd, 140 pgtable_t pte_page) 141 { 142 pmd_set(pmd, __pgtable_ptr_val(pte_page) | PMD_VAL_BITS); 143 } 144 145 static inline pgtable_t pmd_pgtable(pmd_t pmd) 146 { 147 return (pgtable_t)pmd_page_vaddr(pmd); 148 } 149 150 #ifdef CONFIG_PPC_4K_PAGES 151 static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm, 152 unsigned long address) 153 { 154 return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_REPEAT | __GFP_ZERO); 155 } 156 157 static inline pgtable_t pte_alloc_one(struct mm_struct *mm, 158 unsigned long address) 159 { 160 struct page *page; 161 pte_t *pte; 162 163 pte = pte_alloc_one_kernel(mm, address); 164 if (!pte) 165 return NULL; 166 page = virt_to_page(pte); 167 if (!pgtable_page_ctor(page)) { 168 __free_page(page); 169 return NULL; 170 } 171 return pte; 172 } 173 #else /* if CONFIG_PPC_64K_PAGES */ 174 175 static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm, 176 unsigned long address) 177 { 178 return (pte_t *)pte_fragment_alloc(mm, address, 1); 179 } 180 181 static inline pgtable_t pte_alloc_one(struct mm_struct *mm, 182 unsigned long address) 183 { 184 return (pgtable_t)pte_fragment_alloc(mm, address, 0); 185 } 186 #endif 187 188 static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte) 189 { 190 pte_fragment_free((unsigned long *)pte, 1); 191 } 192 193 static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage) 194 { 195 pte_fragment_free((unsigned long *)ptepage, 0); 196 } 197 198 static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table, 199 unsigned long address) 200 { 201 tlb_flush_pgtable(tlb, address); 202 pgtable_free_tlb(tlb, table, 0); 203 } 204 205 #define check_pgt_cache() do { } while (0) 206 207 #endif /* _ASM_POWERPC_BOOK3S_64_PGALLOC_H */ 208