1 #ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ 2 #define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ 3 /* 4 * PowerPC64 memory management structures 5 * 6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com> 7 * PPC64 rework. 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * as published by the Free Software Foundation; either version 12 * 2 of the License, or (at your option) any later version. 13 */ 14 15 #include <asm/asm-compat.h> 16 #include <asm/page.h> 17 #include <asm/bug.h> 18 19 /* 20 * This is necessary to get the definition of PGTABLE_RANGE which we 21 * need for various slices related matters. Note that this isn't the 22 * complete pgtable.h but only a portion of it. 23 */ 24 #include <asm/book3s/64/pgtable.h> 25 #include <asm/bug.h> 26 #include <asm/processor.h> 27 28 /* 29 * SLB 30 */ 31 32 #define SLB_NUM_BOLTED 3 33 #define SLB_CACHE_ENTRIES 8 34 #define SLB_MIN_SIZE 32 35 36 /* Bits in the SLB ESID word */ 37 #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */ 38 39 /* Bits in the SLB VSID word */ 40 #define SLB_VSID_SHIFT 12 41 #define SLB_VSID_SHIFT_1T 24 42 #define SLB_VSID_SSIZE_SHIFT 62 43 #define SLB_VSID_B ASM_CONST(0xc000000000000000) 44 #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000) 45 #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000) 46 #define SLB_VSID_KS ASM_CONST(0x0000000000000800) 47 #define SLB_VSID_KP ASM_CONST(0x0000000000000400) 48 #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */ 49 #define SLB_VSID_L ASM_CONST(0x0000000000000100) 50 #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */ 51 #define SLB_VSID_LP ASM_CONST(0x0000000000000030) 52 #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000) 53 #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010) 54 #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020) 55 #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030) 56 #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP) 57 58 #define SLB_VSID_KERNEL (SLB_VSID_KP) 59 #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C) 60 61 #define SLBIE_C (0x08000000) 62 #define SLBIE_SSIZE_SHIFT 25 63 64 /* 65 * Hash table 66 */ 67 68 #define HPTES_PER_GROUP 8 69 70 #define HPTE_V_SSIZE_SHIFT 62 71 #define HPTE_V_AVPN_SHIFT 7 72 #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80) 73 #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT) 74 #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL)) 75 #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010) 76 #define HPTE_V_LOCK ASM_CONST(0x0000000000000008) 77 #define HPTE_V_LARGE ASM_CONST(0x0000000000000004) 78 #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002) 79 #define HPTE_V_VALID ASM_CONST(0x0000000000000001) 80 81 /* 82 * ISA 3.0 have a different HPTE format. 83 */ 84 #define HPTE_R_3_0_SSIZE_SHIFT 58 85 #define HPTE_R_PP0 ASM_CONST(0x8000000000000000) 86 #define HPTE_R_TS ASM_CONST(0x4000000000000000) 87 #define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000) 88 #define HPTE_R_RPN_SHIFT 12 89 #define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000) 90 #define HPTE_R_PP ASM_CONST(0x0000000000000003) 91 #define HPTE_R_N ASM_CONST(0x0000000000000004) 92 #define HPTE_R_G ASM_CONST(0x0000000000000008) 93 #define HPTE_R_M ASM_CONST(0x0000000000000010) 94 #define HPTE_R_I ASM_CONST(0x0000000000000020) 95 #define HPTE_R_W ASM_CONST(0x0000000000000040) 96 #define HPTE_R_WIMG ASM_CONST(0x0000000000000078) 97 #define HPTE_R_C ASM_CONST(0x0000000000000080) 98 #define HPTE_R_R ASM_CONST(0x0000000000000100) 99 #define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00) 100 101 #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000) 102 #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000) 103 104 /* Values for PP (assumes Ks=0, Kp=1) */ 105 #define PP_RWXX 0 /* Supervisor read/write, User none */ 106 #define PP_RWRX 1 /* Supervisor read/write, User read */ 107 #define PP_RWRW 2 /* Supervisor read/write, User read/write */ 108 #define PP_RXRX 3 /* Supervisor read, User read */ 109 #define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */ 110 111 /* Fields for tlbiel instruction in architecture 2.06 */ 112 #define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */ 113 #define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */ 114 #define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */ 115 #define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */ 116 #define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */ 117 #define TLBIEL_INVAL_SET_SHIFT 12 118 119 #define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */ 120 #define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */ 121 #define POWER9_TLB_SETS_HASH 256 /* # sets in POWER9 TLB Hash mode */ 122 #define POWER9_TLB_SETS_RADIX 128 /* # sets in POWER9 TLB Radix mode */ 123 124 #ifndef __ASSEMBLY__ 125 126 struct hash_pte { 127 __be64 v; 128 __be64 r; 129 }; 130 131 extern struct hash_pte *htab_address; 132 extern unsigned long htab_size_bytes; 133 extern unsigned long htab_hash_mask; 134 135 136 static inline int shift_to_mmu_psize(unsigned int shift) 137 { 138 int psize; 139 140 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) 141 if (mmu_psize_defs[psize].shift == shift) 142 return psize; 143 return -1; 144 } 145 146 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize) 147 { 148 if (mmu_psize_defs[mmu_psize].shift) 149 return mmu_psize_defs[mmu_psize].shift; 150 BUG(); 151 } 152 153 #endif /* __ASSEMBLY__ */ 154 155 /* 156 * Segment sizes. 157 * These are the values used by hardware in the B field of 158 * SLB entries and the first dword of MMU hashtable entries. 159 * The B field is 2 bits; the values 2 and 3 are unused and reserved. 160 */ 161 #define MMU_SEGSIZE_256M 0 162 #define MMU_SEGSIZE_1T 1 163 164 /* 165 * encode page number shift. 166 * in order to fit the 78 bit va in a 64 bit variable we shift the va by 167 * 12 bits. This enable us to address upto 76 bit va. 168 * For hpt hash from a va we can ignore the page size bits of va and for 169 * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure 170 * we work in all cases including 4k page size. 171 */ 172 #define VPN_SHIFT 12 173 174 /* 175 * HPTE Large Page (LP) details 176 */ 177 #define LP_SHIFT 12 178 #define LP_BITS 8 179 #define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT) 180 181 #ifndef __ASSEMBLY__ 182 183 static inline int slb_vsid_shift(int ssize) 184 { 185 if (ssize == MMU_SEGSIZE_256M) 186 return SLB_VSID_SHIFT; 187 return SLB_VSID_SHIFT_1T; 188 } 189 190 static inline int segment_shift(int ssize) 191 { 192 if (ssize == MMU_SEGSIZE_256M) 193 return SID_SHIFT; 194 return SID_SHIFT_1T; 195 } 196 197 /* 198 * The current system page and segment sizes 199 */ 200 extern int mmu_kernel_ssize; 201 extern int mmu_highuser_ssize; 202 extern u16 mmu_slb_size; 203 extern unsigned long tce_alloc_start, tce_alloc_end; 204 205 /* 206 * If the processor supports 64k normal pages but not 64k cache 207 * inhibited pages, we have to be prepared to switch processes 208 * to use 4k pages when they create cache-inhibited mappings. 209 * If this is the case, mmu_ci_restrictions will be set to 1. 210 */ 211 extern int mmu_ci_restrictions; 212 213 /* 214 * This computes the AVPN and B fields of the first dword of a HPTE, 215 * for use when we want to match an existing PTE. The bottom 7 bits 216 * of the returned value are zero. 217 */ 218 static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize, 219 int ssize) 220 { 221 unsigned long v; 222 /* 223 * The AVA field omits the low-order 23 bits of the 78 bits VA. 224 * These bits are not needed in the PTE, because the 225 * low-order b of these bits are part of the byte offset 226 * into the virtual page and, if b < 23, the high-order 227 * 23-b of these bits are always used in selecting the 228 * PTEGs to be searched 229 */ 230 v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm); 231 v <<= HPTE_V_AVPN_SHIFT; 232 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 233 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT; 234 return v; 235 } 236 237 /* 238 * This function sets the AVPN and L fields of the HPTE appropriately 239 * using the base page size and actual page size. 240 */ 241 static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize, 242 int actual_psize, int ssize) 243 { 244 unsigned long v; 245 v = hpte_encode_avpn(vpn, base_psize, ssize); 246 if (actual_psize != MMU_PAGE_4K) 247 v |= HPTE_V_LARGE; 248 return v; 249 } 250 251 /* 252 * This function sets the ARPN, and LP fields of the HPTE appropriately 253 * for the page size. We assume the pa is already "clean" that is properly 254 * aligned for the requested page size 255 */ 256 static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize, 257 int actual_psize, int ssize) 258 { 259 260 if (cpu_has_feature(CPU_FTR_ARCH_300)) 261 pa |= ((unsigned long) ssize) << HPTE_R_3_0_SSIZE_SHIFT; 262 263 /* A 4K page needs no special encoding */ 264 if (actual_psize == MMU_PAGE_4K) 265 return pa & HPTE_R_RPN; 266 else { 267 unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize]; 268 unsigned int shift = mmu_psize_defs[actual_psize].shift; 269 return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT); 270 } 271 } 272 273 /* 274 * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size. 275 */ 276 static inline unsigned long hpt_vpn(unsigned long ea, 277 unsigned long vsid, int ssize) 278 { 279 unsigned long mask; 280 int s_shift = segment_shift(ssize); 281 282 mask = (1ul << (s_shift - VPN_SHIFT)) - 1; 283 return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask); 284 } 285 286 /* 287 * This hashes a virtual address 288 */ 289 static inline unsigned long hpt_hash(unsigned long vpn, 290 unsigned int shift, int ssize) 291 { 292 int mask; 293 unsigned long hash, vsid; 294 295 /* VPN_SHIFT can be atmost 12 */ 296 if (ssize == MMU_SEGSIZE_256M) { 297 mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1; 298 hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^ 299 ((vpn & mask) >> (shift - VPN_SHIFT)); 300 } else { 301 mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1; 302 vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT); 303 hash = vsid ^ (vsid << 25) ^ 304 ((vpn & mask) >> (shift - VPN_SHIFT)) ; 305 } 306 return hash & 0x7fffffffffUL; 307 } 308 309 #define HPTE_LOCAL_UPDATE 0x1 310 #define HPTE_NOHPTE_UPDATE 0x2 311 312 extern int __hash_page_4K(unsigned long ea, unsigned long access, 313 unsigned long vsid, pte_t *ptep, unsigned long trap, 314 unsigned long flags, int ssize, int subpage_prot); 315 extern int __hash_page_64K(unsigned long ea, unsigned long access, 316 unsigned long vsid, pte_t *ptep, unsigned long trap, 317 unsigned long flags, int ssize); 318 struct mm_struct; 319 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap); 320 extern int hash_page_mm(struct mm_struct *mm, unsigned long ea, 321 unsigned long access, unsigned long trap, 322 unsigned long flags); 323 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap, 324 unsigned long dsisr); 325 int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid, 326 pte_t *ptep, unsigned long trap, unsigned long flags, 327 int ssize, unsigned int shift, unsigned int mmu_psize); 328 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 329 extern int __hash_page_thp(unsigned long ea, unsigned long access, 330 unsigned long vsid, pmd_t *pmdp, unsigned long trap, 331 unsigned long flags, int ssize, unsigned int psize); 332 #else 333 static inline int __hash_page_thp(unsigned long ea, unsigned long access, 334 unsigned long vsid, pmd_t *pmdp, 335 unsigned long trap, unsigned long flags, 336 int ssize, unsigned int psize) 337 { 338 BUG(); 339 return -1; 340 } 341 #endif 342 extern void hash_failure_debug(unsigned long ea, unsigned long access, 343 unsigned long vsid, unsigned long trap, 344 int ssize, int psize, int lpsize, 345 unsigned long pte); 346 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend, 347 unsigned long pstart, unsigned long prot, 348 int psize, int ssize); 349 int htab_remove_mapping(unsigned long vstart, unsigned long vend, 350 int psize, int ssize); 351 extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages); 352 extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr); 353 354 extern void hpte_init_native(void); 355 extern void hpte_init_lpar(void); 356 extern void hpte_init_beat(void); 357 extern void hpte_init_beat_v3(void); 358 359 extern void slb_initialize(void); 360 extern void slb_flush_and_rebolt(void); 361 362 extern void slb_vmalloc_update(void); 363 extern void slb_set_size(u16 size); 364 #endif /* __ASSEMBLY__ */ 365 366 /* 367 * VSID allocation (256MB segment) 368 * 369 * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated 370 * from mmu context id and effective segment id of the address. 371 * 372 * For user processes max context id is limited to ((1ul << 19) - 5) 373 * for kernel space, we use the top 4 context ids to map address as below 374 * NOTE: each context only support 64TB now. 375 * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ] 376 * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ] 377 * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ] 378 * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ] 379 * 380 * The proto-VSIDs are then scrambled into real VSIDs with the 381 * multiplicative hash: 382 * 383 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS 384 * 385 * VSID_MULTIPLIER is prime, so in particular it is 386 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function. 387 * Because the modulus is 2^n-1 we can compute it efficiently without 388 * a divide or extra multiply (see below). The scramble function gives 389 * robust scattering in the hash table (at least based on some initial 390 * results). 391 * 392 * We also consider VSID 0 special. We use VSID 0 for slb entries mapping 393 * bad address. This enables us to consolidate bad address handling in 394 * hash_page. 395 * 396 * We also need to avoid the last segment of the last context, because that 397 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0 398 * because of the modulo operation in vsid scramble. But the vmemmap 399 * (which is what uses region 0xf) will never be close to 64TB in size 400 * (it's 56 bytes per page of system memory). 401 */ 402 403 #define CONTEXT_BITS 19 404 #define ESID_BITS 18 405 #define ESID_BITS_1T 6 406 407 /* 408 * 256MB segment 409 * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments 410 * available for user + kernel mapping. The top 4 contexts are used for 411 * kernel mapping. Each segment contains 2^28 bytes. Each 412 * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts 413 * (19 == 37 + 28 - 46). 414 */ 415 #define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 5) 416 417 /* 418 * This should be computed such that protovosid * vsid_mulitplier 419 * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus 420 */ 421 #define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */ 422 #define VSID_BITS_256M (CONTEXT_BITS + ESID_BITS) 423 #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1) 424 425 #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */ 426 #define VSID_BITS_1T (CONTEXT_BITS + ESID_BITS_1T) 427 #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1) 428 429 430 #define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT)) 431 432 /* 433 * This macro generates asm code to compute the VSID scramble 434 * function. Used in slb_allocate() and do_stab_bolted. The function 435 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS 436 * 437 * rt = register containing the proto-VSID and into which the 438 * VSID will be stored 439 * rx = scratch register (clobbered) 440 * 441 * - rt and rx must be different registers 442 * - The answer will end up in the low VSID_BITS bits of rt. The higher 443 * bits may contain other garbage, so you may need to mask the 444 * result. 445 */ 446 #define ASM_VSID_SCRAMBLE(rt, rx, size) \ 447 lis rx,VSID_MULTIPLIER_##size@h; \ 448 ori rx,rx,VSID_MULTIPLIER_##size@l; \ 449 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \ 450 \ 451 srdi rx,rt,VSID_BITS_##size; \ 452 clrldi rt,rt,(64-VSID_BITS_##size); \ 453 add rt,rt,rx; /* add high and low bits */ \ 454 /* NOTE: explanation based on VSID_BITS_##size = 36 \ 455 * Now, r3 == VSID (mod 2^36-1), and lies between 0 and \ 456 * 2^36-1+2^28-1. That in particular means that if r3 >= \ 457 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \ 458 * the bit clear, r3 already has the answer we want, if it \ 459 * doesn't, the answer is the low 36 bits of r3+1. So in all \ 460 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\ 461 addi rx,rt,1; \ 462 srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \ 463 add rt,rt,rx 464 465 /* 4 bits per slice and we have one slice per 1TB */ 466 #define SLICE_ARRAY_SIZE (H_PGTABLE_RANGE >> 41) 467 468 #ifndef __ASSEMBLY__ 469 470 #ifdef CONFIG_PPC_SUBPAGE_PROT 471 /* 472 * For the sub-page protection option, we extend the PGD with one of 473 * these. Basically we have a 3-level tree, with the top level being 474 * the protptrs array. To optimize speed and memory consumption when 475 * only addresses < 4GB are being protected, pointers to the first 476 * four pages of sub-page protection words are stored in the low_prot 477 * array. 478 * Each page of sub-page protection words protects 1GB (4 bytes 479 * protects 64k). For the 3-level tree, each page of pointers then 480 * protects 8TB. 481 */ 482 struct subpage_prot_table { 483 unsigned long maxaddr; /* only addresses < this are protected */ 484 unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)]; 485 unsigned int *low_prot[4]; 486 }; 487 488 #define SBP_L1_BITS (PAGE_SHIFT - 2) 489 #define SBP_L2_BITS (PAGE_SHIFT - 3) 490 #define SBP_L1_COUNT (1 << SBP_L1_BITS) 491 #define SBP_L2_COUNT (1 << SBP_L2_BITS) 492 #define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS) 493 #define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS) 494 495 extern void subpage_prot_free(struct mm_struct *mm); 496 extern void subpage_prot_init_new_context(struct mm_struct *mm); 497 #else 498 static inline void subpage_prot_free(struct mm_struct *mm) {} 499 static inline void subpage_prot_init_new_context(struct mm_struct *mm) { } 500 #endif /* CONFIG_PPC_SUBPAGE_PROT */ 501 502 #if 0 503 /* 504 * The code below is equivalent to this function for arguments 505 * < 2^VSID_BITS, which is all this should ever be called 506 * with. However gcc is not clever enough to compute the 507 * modulus (2^n-1) without a second multiply. 508 */ 509 #define vsid_scramble(protovsid, size) \ 510 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size)) 511 512 #else /* 1 */ 513 #define vsid_scramble(protovsid, size) \ 514 ({ \ 515 unsigned long x; \ 516 x = (protovsid) * VSID_MULTIPLIER_##size; \ 517 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \ 518 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \ 519 }) 520 #endif /* 1 */ 521 522 /* Returns the segment size indicator for a user address */ 523 static inline int user_segment_size(unsigned long addr) 524 { 525 /* Use 1T segments if possible for addresses >= 1T */ 526 if (addr >= (1UL << SID_SHIFT_1T)) 527 return mmu_highuser_ssize; 528 return MMU_SEGSIZE_256M; 529 } 530 531 static inline unsigned long get_vsid(unsigned long context, unsigned long ea, 532 int ssize) 533 { 534 /* 535 * Bad address. We return VSID 0 for that 536 */ 537 if ((ea & ~REGION_MASK) >= H_PGTABLE_RANGE) 538 return 0; 539 540 if (ssize == MMU_SEGSIZE_256M) 541 return vsid_scramble((context << ESID_BITS) 542 | (ea >> SID_SHIFT), 256M); 543 return vsid_scramble((context << ESID_BITS_1T) 544 | (ea >> SID_SHIFT_1T), 1T); 545 } 546 547 /* 548 * This is only valid for addresses >= PAGE_OFFSET 549 * 550 * For kernel space, we use the top 4 context ids to map address as below 551 * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ] 552 * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ] 553 * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ] 554 * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ] 555 */ 556 static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize) 557 { 558 unsigned long context; 559 560 /* 561 * kernel take the top 4 context from the available range 562 */ 563 context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1; 564 return get_vsid(context, ea, ssize); 565 } 566 567 unsigned htab_shift_for_mem_size(unsigned long mem_size); 568 569 #endif /* __ASSEMBLY__ */ 570 571 #endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */ 572