xref: /linux/arch/powerpc/include/asm/book3s/64/hash-64k.h (revision ebf68996de0ab250c5d520eb2291ab65643e9a1e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_HASH_64K_H
3 #define _ASM_POWERPC_BOOK3S_64_HASH_64K_H
4 
5 #define H_PTE_INDEX_SIZE   8  // size: 8B <<  8 = 2KB, maps 2^8  x 64KB = 16MB
6 #define H_PMD_INDEX_SIZE  10  // size: 8B << 10 = 8KB, maps 2^10 x 16MB = 16GB
7 #define H_PUD_INDEX_SIZE  10  // size: 8B << 10 = 8KB, maps 2^10 x 16GB = 16TB
8 #define H_PGD_INDEX_SIZE   8  // size: 8B <<  8 = 2KB, maps 2^8  x 16TB =  4PB
9 
10 
11 /*
12  * Each context is 512TB size. SLB miss for first context/default context
13  * is handled in the hotpath.
14  */
15 #define MAX_EA_BITS_PER_CONTEXT		49
16 #define REGION_SHIFT		MAX_EA_BITS_PER_CONTEXT
17 
18 /*
19  * We use one context for each MAP area.
20  */
21 #define H_KERN_MAP_SIZE		(1UL << MAX_EA_BITS_PER_CONTEXT)
22 
23 /*
24  * Define the address range of the kernel non-linear virtual area
25  * 2PB
26  */
27 #define H_KERN_VIRT_START	ASM_CONST(0xc008000000000000)
28 
29 /*
30  * 64k aligned address free up few of the lower bits of RPN for us
31  * We steal that here. For more deatils look at pte_pfn/pfn_pte()
32  */
33 #define H_PAGE_COMBO	_RPAGE_RPN0 /* this is a combo 4k page */
34 #define H_PAGE_4K_PFN	_RPAGE_RPN1 /* PFN is for a single 4k page */
35 #define H_PAGE_BUSY	_RPAGE_RPN44     /* software: PTE & hash are busy */
36 #define H_PAGE_HASHPTE	_RPAGE_RPN43	/* PTE has associated HPTE */
37 
38 /* memory key bits. */
39 #define H_PTE_PKEY_BIT0	_RPAGE_RSV1
40 #define H_PTE_PKEY_BIT1	_RPAGE_RSV2
41 #define H_PTE_PKEY_BIT2	_RPAGE_RSV3
42 #define H_PTE_PKEY_BIT3	_RPAGE_RSV4
43 #define H_PTE_PKEY_BIT4	_RPAGE_RSV5
44 
45 /*
46  * We need to differentiate between explicit huge page and THP huge
47  * page, since THP huge page also need to track real subpage details
48  */
49 #define H_PAGE_THP_HUGE  H_PAGE_4K_PFN
50 
51 /* PTE flags to conserve for HPTE identification */
52 #define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_HASHPTE | H_PAGE_COMBO)
53 /*
54  * We use a 2K PTE page fragment and another 2K for storing
55  * real_pte_t hash index
56  * 8 bytes per each pte entry and another 8 bytes for storing
57  * slot details.
58  */
59 #define H_PTE_FRAG_SIZE_SHIFT  (H_PTE_INDEX_SIZE + 3 + 1)
60 #define H_PTE_FRAG_NR	(PAGE_SIZE >> H_PTE_FRAG_SIZE_SHIFT)
61 
62 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
63 #define H_PMD_FRAG_SIZE_SHIFT  (H_PMD_INDEX_SIZE + 3 + 1)
64 #else
65 #define H_PMD_FRAG_SIZE_SHIFT  (H_PMD_INDEX_SIZE + 3)
66 #endif
67 #define H_PMD_FRAG_NR	(PAGE_SIZE >> H_PMD_FRAG_SIZE_SHIFT)
68 
69 #ifndef __ASSEMBLY__
70 #include <asm/errno.h>
71 
72 /*
73  * With 64K pages on hash table, we have a special PTE format that
74  * uses a second "half" of the page table to encode sub-page information
75  * in order to deal with 64K made of 4K HW pages. Thus we override the
76  * generic accessors and iterators here
77  */
78 #define __real_pte __real_pte
79 static inline real_pte_t __real_pte(pte_t pte, pte_t *ptep, int offset)
80 {
81 	real_pte_t rpte;
82 	unsigned long *hidxp;
83 
84 	rpte.pte = pte;
85 
86 	/*
87 	 * Ensure that we do not read the hidx before we read the PTE. Because
88 	 * the writer side is expected to finish writing the hidx first followed
89 	 * by the PTE, by using smp_wmb(). pte_set_hash_slot() ensures that.
90 	 */
91 	smp_rmb();
92 
93 	hidxp = (unsigned long *)(ptep + offset);
94 	rpte.hidx = *hidxp;
95 	return rpte;
96 }
97 
98 /*
99  * shift the hidx representation by one-modulo-0xf; i.e hidx 0 is respresented
100  * as 1, 1 as 2,... , and 0xf as 0.  This convention lets us represent a
101  * invalid hidx 0xf with a 0x0 bit value. PTEs are anyway zero'd when
102  * allocated. We dont have to zero them gain; thus save on the initialization.
103  */
104 #define HIDX_UNSHIFT_BY_ONE(x) ((x + 0xfUL) & 0xfUL) /* shift backward by one */
105 #define HIDX_SHIFT_BY_ONE(x) ((x + 0x1UL) & 0xfUL)   /* shift forward by one */
106 #define HIDX_BITS(x, index)  (x << (index << 2))
107 #define BITS_TO_HIDX(x, index)  ((x >> (index << 2)) & 0xfUL)
108 #define INVALID_RPTE_HIDX  0x0UL
109 
110 static inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index)
111 {
112 	return HIDX_UNSHIFT_BY_ONE(BITS_TO_HIDX(rpte.hidx, index));
113 }
114 
115 /*
116  * Commit the hidx and return PTE bits that needs to be modified. The caller is
117  * expected to modify the PTE bits accordingly and commit the PTE to memory.
118  */
119 static inline unsigned long pte_set_hidx(pte_t *ptep, real_pte_t rpte,
120 					 unsigned int subpg_index,
121 					 unsigned long hidx, int offset)
122 {
123 	unsigned long *hidxp = (unsigned long *)(ptep + offset);
124 
125 	rpte.hidx &= ~HIDX_BITS(0xfUL, subpg_index);
126 	*hidxp = rpte.hidx  | HIDX_BITS(HIDX_SHIFT_BY_ONE(hidx), subpg_index);
127 
128 	/*
129 	 * Anyone reading PTE must ensure hidx bits are read after reading the
130 	 * PTE by using the read-side barrier smp_rmb(). __real_pte() can be
131 	 * used for that.
132 	 */
133 	smp_wmb();
134 
135 	/* No PTE bits to be modified, return 0x0UL */
136 	return 0x0UL;
137 }
138 
139 #define __rpte_to_pte(r)	((r).pte)
140 extern bool __rpte_sub_valid(real_pte_t rpte, unsigned long index);
141 /*
142  * Trick: we set __end to va + 64k, which happens works for
143  * a 16M page as well as we want only one iteration
144  */
145 #define pte_iterate_hashed_subpages(rpte, psize, vpn, index, shift)	\
146 	do {								\
147 		unsigned long __end = vpn + (1UL << (PAGE_SHIFT - VPN_SHIFT));	\
148 		unsigned __split = (psize == MMU_PAGE_4K ||		\
149 				    psize == MMU_PAGE_64K_AP);		\
150 		shift = mmu_psize_defs[psize].shift;			\
151 		for (index = 0; vpn < __end; index++,			\
152 			     vpn += (1L << (shift - VPN_SHIFT))) {	\
153 		if (!__split || __rpte_sub_valid(rpte, index))
154 
155 #define pte_iterate_hashed_end()  } } while(0)
156 
157 #define pte_pagesize_index(mm, addr, pte)	\
158 	(((pte) & H_PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K)
159 
160 extern int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
161 			   unsigned long pfn, unsigned long size, pgprot_t);
162 static inline int hash__remap_4k_pfn(struct vm_area_struct *vma, unsigned long addr,
163 				 unsigned long pfn, pgprot_t prot)
164 {
165 	if (pfn > (PTE_RPN_MASK >> PAGE_SHIFT)) {
166 		WARN(1, "remap_4k_pfn called with wrong pfn value\n");
167 		return -EINVAL;
168 	}
169 	return remap_pfn_range(vma, addr, pfn, PAGE_SIZE,
170 			       __pgprot(pgprot_val(prot) | H_PAGE_4K_PFN));
171 }
172 
173 #define H_PTE_TABLE_SIZE	PTE_FRAG_SIZE
174 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined (CONFIG_HUGETLB_PAGE)
175 #define H_PMD_TABLE_SIZE	((sizeof(pmd_t) << PMD_INDEX_SIZE) + \
176 				 (sizeof(unsigned long) << PMD_INDEX_SIZE))
177 #else
178 #define H_PMD_TABLE_SIZE	(sizeof(pmd_t) << PMD_INDEX_SIZE)
179 #endif
180 #ifdef CONFIG_HUGETLB_PAGE
181 #define H_PUD_TABLE_SIZE	((sizeof(pud_t) << PUD_INDEX_SIZE) +	\
182 				 (sizeof(unsigned long) << PUD_INDEX_SIZE))
183 #else
184 #define H_PUD_TABLE_SIZE	(sizeof(pud_t) << PUD_INDEX_SIZE)
185 #endif
186 #define H_PGD_TABLE_SIZE	(sizeof(pgd_t) << PGD_INDEX_SIZE)
187 
188 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
189 static inline char *get_hpte_slot_array(pmd_t *pmdp)
190 {
191 	/*
192 	 * The hpte hindex is stored in the pgtable whose address is in the
193 	 * second half of the PMD
194 	 *
195 	 * Order this load with the test for pmd_trans_huge in the caller
196 	 */
197 	smp_rmb();
198 	return *(char **)(pmdp + PTRS_PER_PMD);
199 
200 
201 }
202 /*
203  * The linux hugepage PMD now include the pmd entries followed by the address
204  * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
205  * [ 000 | 1 bit secondary | 3 bit hidx | 1 bit valid]. We use one byte per
206  * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
207  * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
208  *
209  * The top three bits are intentionally left as zero. This memory location
210  * are also used as normal page PTE pointers. So if we have any pointers
211  * left around while we collapse a hugepage, we need to make sure
212  * _PAGE_PRESENT bit of that is zero when we look at them
213  */
214 static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
215 {
216 	return hpte_slot_array[index] & 0x1;
217 }
218 
219 static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
220 					   int index)
221 {
222 	return hpte_slot_array[index] >> 1;
223 }
224 
225 static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
226 					unsigned int index, unsigned int hidx)
227 {
228 	hpte_slot_array[index] = (hidx << 1) | 0x1;
229 }
230 
231 /*
232  *
233  * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
234  * page. The hugetlbfs page table walking and mangling paths are totally
235  * separated form the core VM paths and they're differentiated by
236  *  VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
237  *
238  * pmd_trans_huge() is defined as false at build time if
239  * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
240  * time in such case.
241  *
242  * For ppc64 we need to differntiate from explicit hugepages from THP, because
243  * for THP we also track the subpage details at the pmd level. We don't do
244  * that for explicit huge pages.
245  *
246  */
247 static inline int hash__pmd_trans_huge(pmd_t pmd)
248 {
249 	return !!((pmd_val(pmd) & (_PAGE_PTE | H_PAGE_THP_HUGE)) ==
250 		  (_PAGE_PTE | H_PAGE_THP_HUGE));
251 }
252 
253 static inline int hash__pmd_same(pmd_t pmd_a, pmd_t pmd_b)
254 {
255 	return (((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) & ~cpu_to_be64(_PAGE_HPTEFLAGS)) == 0);
256 }
257 
258 static inline pmd_t hash__pmd_mkhuge(pmd_t pmd)
259 {
260 	return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE));
261 }
262 
263 extern unsigned long hash__pmd_hugepage_update(struct mm_struct *mm,
264 					   unsigned long addr, pmd_t *pmdp,
265 					   unsigned long clr, unsigned long set);
266 extern pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma,
267 				   unsigned long address, pmd_t *pmdp);
268 extern void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
269 					 pgtable_t pgtable);
270 extern pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
271 extern pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
272 				       unsigned long addr, pmd_t *pmdp);
273 extern int hash__has_transparent_hugepage(void);
274 #endif /*  CONFIG_TRANSPARENT_HUGEPAGE */
275 #endif	/* __ASSEMBLY__ */
276 
277 #endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */
278