1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_POWERPC_BOOK3S_64_HASH_4K_H 3 #define _ASM_POWERPC_BOOK3S_64_HASH_4K_H 4 5 #define H_PTE_INDEX_SIZE 9 // size: 8B << 9 = 4KB, maps: 2^9 x 4KB = 2MB 6 #define H_PMD_INDEX_SIZE 7 // size: 8B << 7 = 1KB, maps: 2^7 x 2MB = 256MB 7 #define H_PUD_INDEX_SIZE 9 // size: 8B << 9 = 4KB, maps: 2^9 x 256MB = 128GB 8 #define H_PGD_INDEX_SIZE 9 // size: 8B << 9 = 4KB, maps: 2^9 x 128GB = 64TB 9 10 /* 11 * Each context is 512TB. But on 4k we restrict our max TASK size to 64TB 12 * Hence also limit max EA bits to 64TB. 13 */ 14 #define MAX_EA_BITS_PER_CONTEXT 46 15 16 17 /* 18 * Our page table limit us to 64TB. For 64TB physical memory, we only need 64GB 19 * of vmemmap space. To better support sparse memory layout, we use 61TB 20 * linear map range, 1TB of vmalloc, 1TB of I/O and 1TB of vmememmap. 21 */ 22 #define REGION_SHIFT (40) 23 #define H_KERN_MAP_SIZE (ASM_CONST(1) << REGION_SHIFT) 24 25 /* 26 * Limits the linear mapping range 27 */ 28 #define H_MAX_PHYSMEM_BITS 46 29 30 /* 31 * Define the address range of the kernel non-linear virtual area (61TB) 32 */ 33 #define H_KERN_VIRT_START ASM_CONST(0xc0003d0000000000) 34 35 #ifndef __ASSEMBLY__ 36 #define H_PTE_TABLE_SIZE (sizeof(pte_t) << H_PTE_INDEX_SIZE) 37 #define H_PMD_TABLE_SIZE (sizeof(pmd_t) << H_PMD_INDEX_SIZE) 38 #define H_PUD_TABLE_SIZE (sizeof(pud_t) << H_PUD_INDEX_SIZE) 39 #define H_PGD_TABLE_SIZE (sizeof(pgd_t) << H_PGD_INDEX_SIZE) 40 41 #define H_PAGE_F_GIX_SHIFT _PAGE_PA_MAX 42 #define H_PAGE_F_SECOND _RPAGE_PKEY_BIT0 /* HPTE is in 2ndary HPTEG */ 43 #define H_PAGE_F_GIX (_RPAGE_RPN43 | _RPAGE_RPN42 | _RPAGE_RPN41) 44 #define H_PAGE_BUSY _RPAGE_RSV1 45 #define H_PAGE_HASHPTE _RPAGE_PKEY_BIT4 46 47 /* PTE flags to conserve for HPTE identification */ 48 #define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_HASHPTE | \ 49 H_PAGE_F_SECOND | H_PAGE_F_GIX) 50 /* 51 * Not supported by 4k linux page size 52 */ 53 #define H_PAGE_4K_PFN 0x0 54 #define H_PAGE_THP_HUGE 0x0 55 #define H_PAGE_COMBO 0x0 56 57 /* 8 bytes per each pte entry */ 58 #define H_PTE_FRAG_SIZE_SHIFT (H_PTE_INDEX_SIZE + 3) 59 #define H_PTE_FRAG_NR (PAGE_SIZE >> H_PTE_FRAG_SIZE_SHIFT) 60 #define H_PMD_FRAG_SIZE_SHIFT (H_PMD_INDEX_SIZE + 3) 61 #define H_PMD_FRAG_NR (PAGE_SIZE >> H_PMD_FRAG_SIZE_SHIFT) 62 63 /* memory key bits, only 8 keys supported */ 64 #define H_PTE_PKEY_BIT4 0 65 #define H_PTE_PKEY_BIT3 0 66 #define H_PTE_PKEY_BIT2 _RPAGE_PKEY_BIT3 67 #define H_PTE_PKEY_BIT1 _RPAGE_PKEY_BIT2 68 #define H_PTE_PKEY_BIT0 _RPAGE_PKEY_BIT1 69 70 71 /* 72 * On all 4K setups, remap_4k_pfn() equates to remap_pfn_range() 73 */ 74 #define remap_4k_pfn(vma, addr, pfn, prot) \ 75 remap_pfn_range((vma), (addr), (pfn), PAGE_SIZE, (prot)) 76 77 /* 78 * With 4K page size the real_pte machinery is all nops. 79 */ 80 static inline real_pte_t __real_pte(pte_t pte, pte_t *ptep, int offset) 81 { 82 return (real_pte_t){pte}; 83 } 84 85 #define __rpte_to_pte(r) ((r).pte) 86 87 static inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index) 88 { 89 return pte_val(__rpte_to_pte(rpte)) >> H_PAGE_F_GIX_SHIFT; 90 } 91 92 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \ 93 do { \ 94 index = 0; \ 95 shift = mmu_psize_defs[psize].shift; \ 96 97 #define pte_iterate_hashed_end() } while(0) 98 99 /* 100 * We expect this to be called only for user addresses or kernel virtual 101 * addresses other than the linear mapping. 102 */ 103 #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K 104 105 /* 106 * 4K PTE format is different from 64K PTE format. Saving the hash_slot is just 107 * a matter of returning the PTE bits that need to be modified. On 64K PTE, 108 * things are a little more involved and hence needs many more parameters to 109 * accomplish the same. However we want to abstract this out from the caller by 110 * keeping the prototype consistent across the two formats. 111 */ 112 static inline unsigned long pte_set_hidx(pte_t *ptep, real_pte_t rpte, 113 unsigned int subpg_index, unsigned long hidx, 114 int offset) 115 { 116 return (hidx << H_PAGE_F_GIX_SHIFT) & 117 (H_PAGE_F_SECOND | H_PAGE_F_GIX); 118 } 119 120 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 121 122 static inline char *get_hpte_slot_array(pmd_t *pmdp) 123 { 124 BUG(); 125 return NULL; 126 } 127 128 static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index) 129 { 130 BUG(); 131 return 0; 132 } 133 134 static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array, 135 int index) 136 { 137 BUG(); 138 return 0; 139 } 140 141 static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array, 142 unsigned int index, unsigned int hidx) 143 { 144 BUG(); 145 } 146 147 static inline int hash__pmd_trans_huge(pmd_t pmd) 148 { 149 return 0; 150 } 151 152 static inline pmd_t hash__pmd_mkhuge(pmd_t pmd) 153 { 154 BUG(); 155 return pmd; 156 } 157 158 extern unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, 159 unsigned long addr, pmd_t *pmdp, 160 unsigned long clr, unsigned long set); 161 extern pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, 162 unsigned long address, pmd_t *pmdp); 163 extern void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 164 pgtable_t pgtable); 165 extern pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 166 extern pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm, 167 unsigned long addr, pmd_t *pmdp); 168 extern int hash__has_transparent_hugepage(void); 169 #endif 170 171 #endif /* !__ASSEMBLY__ */ 172 173 #endif /* _ASM_POWERPC_BOOK3S_64_HASH_4K_H */ 174