1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H 3 #define _ASM_POWERPC_BOOK3S_32_PGTABLE_H 4 5 #define __ARCH_USE_5LEVEL_HACK 6 #include <asm-generic/pgtable-nopmd.h> 7 8 #include <asm/book3s/32/hash.h> 9 10 /* And here we include common definitions */ 11 #include <asm/pte-common.h> 12 13 #define PTE_INDEX_SIZE PTE_SHIFT 14 #define PMD_INDEX_SIZE 0 15 #define PUD_INDEX_SIZE 0 16 #define PGD_INDEX_SIZE (32 - PGDIR_SHIFT) 17 18 #define PMD_CACHE_INDEX PMD_INDEX_SIZE 19 #define PUD_CACHE_INDEX PUD_INDEX_SIZE 20 21 #ifndef __ASSEMBLY__ 22 #define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE) 23 #define PMD_TABLE_SIZE 0 24 #define PUD_TABLE_SIZE 0 25 #define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE) 26 #endif /* __ASSEMBLY__ */ 27 28 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE) 29 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE) 30 31 /* 32 * The normal case is that PTEs are 32-bits and we have a 1-page 33 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus 34 * 35 * For any >32-bit physical address platform, we can use the following 36 * two level page table layout where the pgdir is 8KB and the MS 13 bits 37 * are an index to the second level table. The combined pgdir/pmd first 38 * level has 2048 entries and the second level has 512 64-bit PTE entries. 39 * -Matt 40 */ 41 /* PGDIR_SHIFT determines what a top-level page table entry can map */ 42 #define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE) 43 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 44 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 45 46 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 47 /* 48 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary 49 * value (for now) on others, from where we can start layout kernel 50 * virtual space that goes below PKMAP and FIXMAP 51 */ 52 #ifdef CONFIG_HIGHMEM 53 #define KVIRT_TOP PKMAP_BASE 54 #else 55 #define KVIRT_TOP (0xfe000000UL) /* for now, could be FIXMAP_BASE ? */ 56 #endif 57 58 /* 59 * ioremap_bot starts at that address. Early ioremaps move down from there, 60 * until mem_init() at which point this becomes the top of the vmalloc 61 * and ioremap space 62 */ 63 #ifdef CONFIG_NOT_COHERENT_CACHE 64 #define IOREMAP_TOP ((KVIRT_TOP - CONFIG_CONSISTENT_SIZE) & PAGE_MASK) 65 #else 66 #define IOREMAP_TOP KVIRT_TOP 67 #endif 68 69 /* 70 * Just any arbitrary offset to the start of the vmalloc VM area: the 71 * current 16MB value just means that there will be a 64MB "hole" after the 72 * physical memory until the kernel virtual memory starts. That means that 73 * any out-of-bounds memory accesses will hopefully be caught. 74 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 75 * area for the same reason. ;) 76 * 77 * We no longer map larger than phys RAM with the BATs so we don't have 78 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry 79 * about clashes between our early calls to ioremap() that start growing down 80 * from ioremap_base being run into the VM area allocations (growing upwards 81 * from VMALLOC_START). For this reason we have ioremap_bot to check when 82 * we actually run into our mappings setup in the early boot with the VM 83 * system. This really does become a problem for machines with good amounts 84 * of RAM. -- Cort 85 */ 86 #define VMALLOC_OFFSET (0x1000000) /* 16M */ 87 #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) 88 #define VMALLOC_END ioremap_bot 89 90 #ifndef __ASSEMBLY__ 91 #include <linux/sched.h> 92 #include <linux/threads.h> 93 94 extern unsigned long ioremap_bot; 95 96 /* Bits to mask out from a PGD to get to the PUD page */ 97 #define PGD_MASKED_BITS 0 98 99 #define pte_ERROR(e) \ 100 pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \ 101 (unsigned long long)pte_val(e)) 102 #define pgd_ERROR(e) \ 103 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 104 /* 105 * Bits in a linux-style PTE. These match the bits in the 106 * (hardware-defined) PowerPC PTE as closely as possible. 107 */ 108 109 #define pte_clear(mm, addr, ptep) \ 110 do { pte_update(ptep, ~_PAGE_HASHPTE, 0); } while (0) 111 112 #define pmd_none(pmd) (!pmd_val(pmd)) 113 #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD) 114 #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK) 115 static inline void pmd_clear(pmd_t *pmdp) 116 { 117 *pmdp = __pmd(0); 118 } 119 120 121 /* 122 * When flushing the tlb entry for a page, we also need to flush the hash 123 * table entry. flush_hash_pages is assembler (for speed) in hashtable.S. 124 */ 125 extern int flush_hash_pages(unsigned context, unsigned long va, 126 unsigned long pmdval, int count); 127 128 /* Add an HPTE to the hash table */ 129 extern void add_hash_page(unsigned context, unsigned long va, 130 unsigned long pmdval); 131 132 /* Flush an entry from the TLB/hash table */ 133 extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep, 134 unsigned long address); 135 136 /* 137 * PTE updates. This function is called whenever an existing 138 * valid PTE is updated. This does -not- include set_pte_at() 139 * which nowadays only sets a new PTE. 140 * 141 * Depending on the type of MMU, we may need to use atomic updates 142 * and the PTE may be either 32 or 64 bit wide. In the later case, 143 * when using atomic updates, only the low part of the PTE is 144 * accessed atomically. 145 * 146 * In addition, on 44x, we also maintain a global flag indicating 147 * that an executable user mapping was modified, which is needed 148 * to properly flush the virtually tagged instruction cache of 149 * those implementations. 150 */ 151 #ifndef CONFIG_PTE_64BIT 152 static inline unsigned long pte_update(pte_t *p, 153 unsigned long clr, 154 unsigned long set) 155 { 156 unsigned long old, tmp; 157 158 __asm__ __volatile__("\ 159 1: lwarx %0,0,%3\n\ 160 andc %1,%0,%4\n\ 161 or %1,%1,%5\n" 162 " stwcx. %1,0,%3\n\ 163 bne- 1b" 164 : "=&r" (old), "=&r" (tmp), "=m" (*p) 165 : "r" (p), "r" (clr), "r" (set), "m" (*p) 166 : "cc" ); 167 168 return old; 169 } 170 #else /* CONFIG_PTE_64BIT */ 171 static inline unsigned long long pte_update(pte_t *p, 172 unsigned long clr, 173 unsigned long set) 174 { 175 unsigned long long old; 176 unsigned long tmp; 177 178 __asm__ __volatile__("\ 179 1: lwarx %L0,0,%4\n\ 180 lwzx %0,0,%3\n\ 181 andc %1,%L0,%5\n\ 182 or %1,%1,%6\n" 183 " stwcx. %1,0,%4\n\ 184 bne- 1b" 185 : "=&r" (old), "=&r" (tmp), "=m" (*p) 186 : "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p) 187 : "cc" ); 188 189 return old; 190 } 191 #endif /* CONFIG_PTE_64BIT */ 192 193 /* 194 * 2.6 calls this without flushing the TLB entry; this is wrong 195 * for our hash-based implementation, we fix that up here. 196 */ 197 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 198 static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep) 199 { 200 unsigned long old; 201 old = pte_update(ptep, _PAGE_ACCESSED, 0); 202 if (old & _PAGE_HASHPTE) { 203 unsigned long ptephys = __pa(ptep) & PAGE_MASK; 204 flush_hash_pages(context, addr, ptephys, 1); 205 } 206 return (old & _PAGE_ACCESSED) != 0; 207 } 208 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ 209 __ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep) 210 211 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 212 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, 213 pte_t *ptep) 214 { 215 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0)); 216 } 217 218 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 219 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, 220 pte_t *ptep) 221 { 222 pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), _PAGE_RO); 223 } 224 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm, 225 unsigned long addr, pte_t *ptep) 226 { 227 ptep_set_wrprotect(mm, addr, ptep); 228 } 229 230 231 static inline void __ptep_set_access_flags(struct vm_area_struct *vma, 232 pte_t *ptep, pte_t entry, 233 unsigned long address, 234 int psize) 235 { 236 unsigned long set = pte_val(entry) & 237 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); 238 unsigned long clr = ~pte_val(entry) & _PAGE_RO; 239 240 pte_update(ptep, clr, set); 241 242 flush_tlb_page(vma, address); 243 } 244 245 #define __HAVE_ARCH_PTE_SAME 246 #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0) 247 248 /* 249 * Note that on Book E processors, the pmd contains the kernel virtual 250 * (lowmem) address of the pte page. The physical address is less useful 251 * because everything runs with translation enabled (even the TLB miss 252 * handler). On everything else the pmd contains the physical address 253 * of the pte page. -- paulus 254 */ 255 #ifndef CONFIG_BOOKE 256 #define pmd_page_vaddr(pmd) \ 257 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 258 #define pmd_page(pmd) \ 259 pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT) 260 #else 261 #define pmd_page_vaddr(pmd) \ 262 ((unsigned long) (pmd_val(pmd) & PAGE_MASK)) 263 #define pmd_page(pmd) \ 264 pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT)) 265 #endif 266 267 /* to find an entry in a kernel page-table-directory */ 268 #define pgd_offset_k(address) pgd_offset(&init_mm, address) 269 270 /* to find an entry in a page-table-directory */ 271 #define pgd_index(address) ((address) >> PGDIR_SHIFT) 272 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 273 274 /* Find an entry in the third-level page table.. */ 275 #define pte_index(address) \ 276 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 277 #define pte_offset_kernel(dir, addr) \ 278 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr)) 279 #define pte_offset_map(dir, addr) \ 280 ((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr)) 281 #define pte_unmap(pte) kunmap_atomic(pte) 282 283 /* 284 * Encode and decode a swap entry. 285 * Note that the bits we use in a PTE for representing a swap entry 286 * must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used). 287 * -- paulus 288 */ 289 #define __swp_type(entry) ((entry).val & 0x1f) 290 #define __swp_offset(entry) ((entry).val >> 5) 291 #define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) }) 292 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 }) 293 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 }) 294 295 int map_kernel_page(unsigned long va, phys_addr_t pa, int flags); 296 297 /* Generic accessors to PTE bits */ 298 static inline int pte_write(pte_t pte) { return !!(pte_val(pte) & _PAGE_RW);} 299 static inline int pte_read(pte_t pte) { return 1; } 300 static inline int pte_dirty(pte_t pte) { return !!(pte_val(pte) & _PAGE_DIRTY); } 301 static inline int pte_young(pte_t pte) { return !!(pte_val(pte) & _PAGE_ACCESSED); } 302 static inline int pte_special(pte_t pte) { return !!(pte_val(pte) & _PAGE_SPECIAL); } 303 static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; } 304 static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); } 305 306 static inline int pte_present(pte_t pte) 307 { 308 return pte_val(pte) & _PAGE_PRESENT; 309 } 310 311 /* 312 * We only find page table entry in the last level 313 * Hence no need for other accessors 314 */ 315 #define pte_access_permitted pte_access_permitted 316 static inline bool pte_access_permitted(pte_t pte, bool write) 317 { 318 unsigned long pteval = pte_val(pte); 319 /* 320 * A read-only access is controlled by _PAGE_USER bit. 321 * We have _PAGE_READ set for WRITE and EXECUTE 322 */ 323 unsigned long need_pte_bits = _PAGE_PRESENT | _PAGE_USER; 324 325 if (write) 326 need_pte_bits |= _PAGE_WRITE; 327 328 if ((pteval & need_pte_bits) != need_pte_bits) 329 return false; 330 331 return true; 332 } 333 334 /* Conversion functions: convert a page and protection to a page entry, 335 * and a page entry and page directory to the page they refer to. 336 * 337 * Even if PTEs can be unsigned long long, a PFN is always an unsigned 338 * long for now. 339 */ 340 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) 341 { 342 return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) | 343 pgprot_val(pgprot)); 344 } 345 346 static inline unsigned long pte_pfn(pte_t pte) 347 { 348 return pte_val(pte) >> PTE_RPN_SHIFT; 349 } 350 351 /* Generic modifiers for PTE bits */ 352 static inline pte_t pte_wrprotect(pte_t pte) 353 { 354 return __pte(pte_val(pte) & ~_PAGE_RW); 355 } 356 357 static inline pte_t pte_mkclean(pte_t pte) 358 { 359 return __pte(pte_val(pte) & ~_PAGE_DIRTY); 360 } 361 362 static inline pte_t pte_mkold(pte_t pte) 363 { 364 return __pte(pte_val(pte) & ~_PAGE_ACCESSED); 365 } 366 367 static inline pte_t pte_mkwrite(pte_t pte) 368 { 369 return __pte(pte_val(pte) | _PAGE_RW); 370 } 371 372 static inline pte_t pte_mkdirty(pte_t pte) 373 { 374 return __pte(pte_val(pte) | _PAGE_DIRTY); 375 } 376 377 static inline pte_t pte_mkyoung(pte_t pte) 378 { 379 return __pte(pte_val(pte) | _PAGE_ACCESSED); 380 } 381 382 static inline pte_t pte_mkspecial(pte_t pte) 383 { 384 return __pte(pte_val(pte) | _PAGE_SPECIAL); 385 } 386 387 static inline pte_t pte_mkhuge(pte_t pte) 388 { 389 return pte; 390 } 391 392 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 393 { 394 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); 395 } 396 397 398 399 /* This low level function performs the actual PTE insertion 400 * Setting the PTE depends on the MMU type and other factors. It's 401 * an horrible mess that I'm not going to try to clean up now but 402 * I'm keeping it in one place rather than spread around 403 */ 404 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, 405 pte_t *ptep, pte_t pte, int percpu) 406 { 407 #if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT) 408 /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the 409 * helper pte_update() which does an atomic update. We need to do that 410 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a 411 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving 412 * the hash bits instead (ie, same as the non-SMP case) 413 */ 414 if (percpu) 415 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 416 | (pte_val(pte) & ~_PAGE_HASHPTE)); 417 else 418 pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte)); 419 420 #elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT) 421 /* Second case is 32-bit with 64-bit PTE. In this case, we 422 * can just store as long as we do the two halves in the right order 423 * with a barrier in between. This is possible because we take care, 424 * in the hash code, to pre-invalidate if the PTE was already hashed, 425 * which synchronizes us with any concurrent invalidation. 426 * In the percpu case, we also fallback to the simple update preserving 427 * the hash bits 428 */ 429 if (percpu) { 430 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 431 | (pte_val(pte) & ~_PAGE_HASHPTE)); 432 return; 433 } 434 if (pte_val(*ptep) & _PAGE_HASHPTE) 435 flush_hash_entry(mm, ptep, addr); 436 __asm__ __volatile__("\ 437 stw%U0%X0 %2,%0\n\ 438 eieio\n\ 439 stw%U0%X0 %L2,%1" 440 : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4)) 441 : "r" (pte) : "memory"); 442 443 #elif defined(CONFIG_PPC_STD_MMU_32) 444 /* Third case is 32-bit hash table in UP mode, we need to preserve 445 * the _PAGE_HASHPTE bit since we may not have invalidated the previous 446 * translation in the hash yet (done in a subsequent flush_tlb_xxx()) 447 * and see we need to keep track that this PTE needs invalidating 448 */ 449 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 450 | (pte_val(pte) & ~_PAGE_HASHPTE)); 451 452 #else 453 #error "Not supported " 454 #endif 455 } 456 457 /* 458 * Macro to mark a page protection value as "uncacheable". 459 */ 460 461 #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \ 462 _PAGE_WRITETHRU) 463 464 #define pgprot_noncached pgprot_noncached 465 static inline pgprot_t pgprot_noncached(pgprot_t prot) 466 { 467 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 468 _PAGE_NO_CACHE | _PAGE_GUARDED); 469 } 470 471 #define pgprot_noncached_wc pgprot_noncached_wc 472 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot) 473 { 474 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 475 _PAGE_NO_CACHE); 476 } 477 478 #define pgprot_cached pgprot_cached 479 static inline pgprot_t pgprot_cached(pgprot_t prot) 480 { 481 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 482 _PAGE_COHERENT); 483 } 484 485 #define pgprot_cached_wthru pgprot_cached_wthru 486 static inline pgprot_t pgprot_cached_wthru(pgprot_t prot) 487 { 488 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 489 _PAGE_COHERENT | _PAGE_WRITETHRU); 490 } 491 492 #define pgprot_cached_noncoherent pgprot_cached_noncoherent 493 static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot) 494 { 495 return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL); 496 } 497 498 #define pgprot_writecombine pgprot_writecombine 499 static inline pgprot_t pgprot_writecombine(pgprot_t prot) 500 { 501 return pgprot_noncached_wc(prot); 502 } 503 504 #endif /* !__ASSEMBLY__ */ 505 506 #endif /* _ASM_POWERPC_BOOK3S_32_PGTABLE_H */ 507