1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H 3 #define _ASM_POWERPC_BOOK3S_32_PGTABLE_H 4 5 #include <asm-generic/pgtable-nopmd.h> 6 7 /* 8 * The "classic" 32-bit implementation of the PowerPC MMU uses a hash 9 * table containing PTEs, together with a set of 16 segment registers, 10 * to define the virtual to physical address mapping. 11 * 12 * We use the hash table as an extended TLB, i.e. a cache of currently 13 * active mappings. We maintain a two-level page table tree, much 14 * like that used by the i386, for the sake of the Linux memory 15 * management code. Low-level assembler code in hash_low_32.S 16 * (procedure hash_page) is responsible for extracting ptes from the 17 * tree and putting them into the hash table when necessary, and 18 * updating the accessed and modified bits in the page table tree. 19 */ 20 21 #define _PAGE_PRESENT 0x001 /* software: pte contains a translation */ 22 #define _PAGE_HASHPTE 0x002 /* hash_page has made an HPTE for this pte */ 23 #define _PAGE_READ 0x004 /* software: read access allowed */ 24 #define _PAGE_GUARDED 0x008 /* G: prohibit speculative access */ 25 #define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */ 26 #define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */ 27 #define _PAGE_WRITETHRU 0x040 /* W: cache write-through */ 28 #define _PAGE_DIRTY 0x080 /* C: page changed */ 29 #define _PAGE_ACCESSED 0x100 /* R: page referenced */ 30 #define _PAGE_EXEC 0x200 /* software: exec allowed */ 31 #define _PAGE_WRITE 0x400 /* software: user write access allowed */ 32 #define _PAGE_SPECIAL 0x800 /* software: Special page */ 33 34 #ifdef CONFIG_PTE_64BIT 35 /* We never clear the high word of the pte */ 36 #define _PTE_NONE_MASK (0xffffffff00000000ULL | _PAGE_HASHPTE) 37 #else 38 #define _PTE_NONE_MASK _PAGE_HASHPTE 39 #endif 40 41 #define _PMD_PRESENT 0 42 #define _PMD_PRESENT_MASK (PAGE_MASK) 43 #define _PMD_BAD (~PAGE_MASK) 44 45 /* We borrow the _PAGE_READ bit to store the exclusive marker in swap PTEs. */ 46 #define _PAGE_SWP_EXCLUSIVE _PAGE_READ 47 48 /* And here we include common definitions */ 49 50 #define _PAGE_HPTEFLAGS _PAGE_HASHPTE 51 52 /* 53 * Location of the PFN in the PTE. Most 32-bit platforms use the same 54 * as _PAGE_SHIFT here (ie, naturally aligned). 55 * Platform who don't just pre-define the value so we don't override it here. 56 */ 57 #define PTE_RPN_SHIFT (PAGE_SHIFT) 58 59 /* 60 * The mask covered by the RPN must be a ULL on 32-bit platforms with 61 * 64-bit PTEs. 62 */ 63 #ifdef CONFIG_PTE_64BIT 64 #define PTE_RPN_MASK (~((1ULL << PTE_RPN_SHIFT) - 1)) 65 #define MAX_POSSIBLE_PHYSMEM_BITS 36 66 #else 67 #define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1)) 68 #define MAX_POSSIBLE_PHYSMEM_BITS 32 69 #endif 70 71 /* 72 * _PAGE_CHG_MASK masks of bits that are to be preserved across 73 * pgprot changes. 74 */ 75 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HASHPTE | _PAGE_DIRTY | \ 76 _PAGE_ACCESSED | _PAGE_SPECIAL) 77 78 /* 79 * We define 2 sets of base prot bits, one for basic pages (ie, 80 * cacheable kernel and user pages) and one for non cacheable 81 * pages. We always set _PAGE_COHERENT when SMP is enabled or 82 * the processor might need it for DMA coherency. 83 */ 84 #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED) 85 #define _PAGE_BASE (_PAGE_BASE_NC | _PAGE_COHERENT) 86 87 #include <asm/pgtable-masks.h> 88 89 /* Permission masks used for kernel mappings */ 90 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW) 91 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE) 92 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE | _PAGE_GUARDED) 93 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX) 94 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO) 95 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX) 96 97 #define PTE_INDEX_SIZE PTE_SHIFT 98 #define PMD_INDEX_SIZE 0 99 #define PUD_INDEX_SIZE 0 100 #define PGD_INDEX_SIZE (32 - PGDIR_SHIFT) 101 102 #define PMD_CACHE_INDEX PMD_INDEX_SIZE 103 #define PUD_CACHE_INDEX PUD_INDEX_SIZE 104 105 #ifndef __ASSEMBLY__ 106 #define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE) 107 #define PMD_TABLE_SIZE 0 108 #define PUD_TABLE_SIZE 0 109 #define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE) 110 111 /* Bits to mask out from a PMD to get to the PTE page */ 112 #define PMD_MASKED_BITS (PTE_TABLE_SIZE - 1) 113 #endif /* __ASSEMBLY__ */ 114 115 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE) 116 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE) 117 118 /* 119 * The normal case is that PTEs are 32-bits and we have a 1-page 120 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus 121 * 122 * For any >32-bit physical address platform, we can use the following 123 * two level page table layout where the pgdir is 8KB and the MS 13 bits 124 * are an index to the second level table. The combined pgdir/pmd first 125 * level has 2048 entries and the second level has 512 64-bit PTE entries. 126 * -Matt 127 */ 128 /* PGDIR_SHIFT determines what a top-level page table entry can map */ 129 #define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE) 130 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 131 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 132 133 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 134 135 #ifndef __ASSEMBLY__ 136 137 int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot); 138 void unmap_kernel_page(unsigned long va); 139 140 #endif /* !__ASSEMBLY__ */ 141 142 /* 143 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary 144 * value (for now) on others, from where we can start layout kernel 145 * virtual space that goes below PKMAP and FIXMAP 146 */ 147 148 #define FIXADDR_SIZE 0 149 #ifdef CONFIG_KASAN 150 #include <asm/kasan.h> 151 #define FIXADDR_TOP (KASAN_SHADOW_START - PAGE_SIZE) 152 #else 153 #define FIXADDR_TOP ((unsigned long)(-PAGE_SIZE)) 154 #endif 155 156 /* 157 * ioremap_bot starts at that address. Early ioremaps move down from there, 158 * until mem_init() at which point this becomes the top of the vmalloc 159 * and ioremap space 160 */ 161 #ifdef CONFIG_HIGHMEM 162 #define IOREMAP_TOP PKMAP_BASE 163 #else 164 #define IOREMAP_TOP FIXADDR_START 165 #endif 166 167 /* PPC32 shares vmalloc area with ioremap */ 168 #define IOREMAP_START VMALLOC_START 169 #define IOREMAP_END VMALLOC_END 170 171 /* 172 * Just any arbitrary offset to the start of the vmalloc VM area: the 173 * current 16MB value just means that there will be a 64MB "hole" after the 174 * physical memory until the kernel virtual memory starts. That means that 175 * any out-of-bounds memory accesses will hopefully be caught. 176 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 177 * area for the same reason. ;) 178 * 179 * We no longer map larger than phys RAM with the BATs so we don't have 180 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry 181 * about clashes between our early calls to ioremap() that start growing down 182 * from ioremap_base being run into the VM area allocations (growing upwards 183 * from VMALLOC_START). For this reason we have ioremap_bot to check when 184 * we actually run into our mappings setup in the early boot with the VM 185 * system. This really does become a problem for machines with good amounts 186 * of RAM. -- Cort 187 */ 188 #define VMALLOC_OFFSET (0x1000000) /* 16M */ 189 190 #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) 191 192 #ifdef CONFIG_KASAN_VMALLOC 193 #define VMALLOC_END ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT) 194 #else 195 #define VMALLOC_END ioremap_bot 196 #endif 197 198 #define MODULES_END ALIGN_DOWN(PAGE_OFFSET, SZ_256M) 199 #define MODULES_VADDR (MODULES_END - SZ_256M) 200 201 #ifndef __ASSEMBLY__ 202 #include <linux/sched.h> 203 #include <linux/threads.h> 204 205 /* Bits to mask out from a PGD to get to the PUD page */ 206 #define PGD_MASKED_BITS 0 207 208 #define pgd_ERROR(e) \ 209 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 210 /* 211 * Bits in a linux-style PTE. These match the bits in the 212 * (hardware-defined) PowerPC PTE as closely as possible. 213 */ 214 215 #define pte_clear(mm, addr, ptep) \ 216 do { pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0); } while (0) 217 218 #define pmd_none(pmd) (!pmd_val(pmd)) 219 #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD) 220 #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK) 221 static inline void pmd_clear(pmd_t *pmdp) 222 { 223 *pmdp = __pmd(0); 224 } 225 226 227 /* 228 * When flushing the tlb entry for a page, we also need to flush the hash 229 * table entry. flush_hash_pages is assembler (for speed) in hashtable.S. 230 */ 231 extern int flush_hash_pages(unsigned context, unsigned long va, 232 unsigned long pmdval, int count); 233 234 /* Add an HPTE to the hash table */ 235 extern void add_hash_page(unsigned context, unsigned long va, 236 unsigned long pmdval); 237 238 /* Flush an entry from the TLB/hash table */ 239 static inline void flush_hash_entry(struct mm_struct *mm, pte_t *ptep, unsigned long addr) 240 { 241 if (mmu_has_feature(MMU_FTR_HPTE_TABLE)) { 242 unsigned long ptephys = __pa(ptep) & PAGE_MASK; 243 244 flush_hash_pages(mm->context.id, addr, ptephys, 1); 245 } 246 } 247 248 /* 249 * PTE updates. This function is called whenever an existing 250 * valid PTE is updated. This does -not- include set_pte_at() 251 * which nowadays only sets a new PTE. 252 * 253 * Depending on the type of MMU, we may need to use atomic updates 254 * and the PTE may be either 32 or 64 bit wide. In the later case, 255 * when using atomic updates, only the low part of the PTE is 256 * accessed atomically. 257 */ 258 static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p, 259 unsigned long clr, unsigned long set, int huge) 260 { 261 pte_basic_t old; 262 263 if (mmu_has_feature(MMU_FTR_HPTE_TABLE)) { 264 unsigned long tmp; 265 266 asm volatile( 267 #ifndef CONFIG_PTE_64BIT 268 "1: lwarx %0, 0, %3\n" 269 " andc %1, %0, %4\n" 270 #else 271 "1: lwarx %L0, 0, %3\n" 272 " lwz %0, -4(%3)\n" 273 " andc %1, %L0, %4\n" 274 #endif 275 " or %1, %1, %5\n" 276 " stwcx. %1, 0, %3\n" 277 " bne- 1b" 278 : "=&r" (old), "=&r" (tmp), "=m" (*p) 279 #ifndef CONFIG_PTE_64BIT 280 : "r" (p), 281 #else 282 : "b" ((unsigned long)(p) + 4), 283 #endif 284 "r" (clr), "r" (set), "m" (*p) 285 : "cc" ); 286 } else { 287 old = pte_val(*p); 288 289 *p = __pte((old & ~(pte_basic_t)clr) | set); 290 } 291 292 return old; 293 } 294 295 /* 296 * 2.6 calls this without flushing the TLB entry; this is wrong 297 * for our hash-based implementation, we fix that up here. 298 */ 299 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 300 static inline int __ptep_test_and_clear_young(struct mm_struct *mm, 301 unsigned long addr, pte_t *ptep) 302 { 303 unsigned long old; 304 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0); 305 if (old & _PAGE_HASHPTE) 306 flush_hash_entry(mm, ptep, addr); 307 308 return (old & _PAGE_ACCESSED) != 0; 309 } 310 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ 311 __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep) 312 313 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 314 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, 315 pte_t *ptep) 316 { 317 return __pte(pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0)); 318 } 319 320 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 321 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, 322 pte_t *ptep) 323 { 324 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0); 325 } 326 327 static inline void __ptep_set_access_flags(struct vm_area_struct *vma, 328 pte_t *ptep, pte_t entry, 329 unsigned long address, 330 int psize) 331 { 332 unsigned long set = pte_val(entry) & 333 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); 334 335 pte_update(vma->vm_mm, address, ptep, 0, set, 0); 336 337 flush_tlb_page(vma, address); 338 } 339 340 #define __HAVE_ARCH_PTE_SAME 341 #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0) 342 343 #define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT) 344 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) 345 346 /* 347 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that 348 * are !pte_none() && !pte_present(). 349 * 350 * Format of swap PTEs (32bit PTEs): 351 * 352 * 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 353 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 354 * <----------------- offset --------------------> < type -> E H P 355 * 356 * E is the exclusive marker that is not stored in swap entries. 357 * _PAGE_PRESENT (P) and __PAGE_HASHPTE (H) must be 0. 358 * 359 * For 64bit PTEs, the offset is extended by 32bit. 360 */ 361 #define __swp_type(entry) ((entry).val & 0x1f) 362 #define __swp_offset(entry) ((entry).val >> 5) 363 #define __swp_entry(type, offset) ((swp_entry_t) { ((type) & 0x1f) | ((offset) << 5) }) 364 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 }) 365 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 }) 366 367 static inline int pte_swp_exclusive(pte_t pte) 368 { 369 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; 370 } 371 372 static inline pte_t pte_swp_mkexclusive(pte_t pte) 373 { 374 return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE); 375 } 376 377 static inline pte_t pte_swp_clear_exclusive(pte_t pte) 378 { 379 return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE); 380 } 381 382 /* Generic accessors to PTE bits */ 383 static inline bool pte_read(pte_t pte) 384 { 385 return !!(pte_val(pte) & _PAGE_READ); 386 } 387 388 static inline bool pte_write(pte_t pte) 389 { 390 return !!(pte_val(pte) & _PAGE_WRITE); 391 } 392 393 static inline int pte_dirty(pte_t pte) { return !!(pte_val(pte) & _PAGE_DIRTY); } 394 static inline int pte_young(pte_t pte) { return !!(pte_val(pte) & _PAGE_ACCESSED); } 395 static inline int pte_special(pte_t pte) { return !!(pte_val(pte) & _PAGE_SPECIAL); } 396 static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; } 397 static inline bool pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } 398 399 static inline int pte_present(pte_t pte) 400 { 401 return pte_val(pte) & _PAGE_PRESENT; 402 } 403 404 static inline bool pte_hw_valid(pte_t pte) 405 { 406 return pte_val(pte) & _PAGE_PRESENT; 407 } 408 409 static inline bool pte_hashpte(pte_t pte) 410 { 411 return !!(pte_val(pte) & _PAGE_HASHPTE); 412 } 413 414 static inline bool pte_ci(pte_t pte) 415 { 416 return !!(pte_val(pte) & _PAGE_NO_CACHE); 417 } 418 419 /* 420 * We only find page table entry in the last level 421 * Hence no need for other accessors 422 */ 423 #define pte_access_permitted pte_access_permitted 424 static inline bool pte_access_permitted(pte_t pte, bool write) 425 { 426 /* 427 * A read-only access is controlled by _PAGE_READ bit. 428 * We have _PAGE_READ set for WRITE 429 */ 430 if (!pte_present(pte) || !pte_read(pte)) 431 return false; 432 433 if (write && !pte_write(pte)) 434 return false; 435 436 return true; 437 } 438 439 /* Conversion functions: convert a page and protection to a page entry, 440 * and a page entry and page directory to the page they refer to. 441 * 442 * Even if PTEs can be unsigned long long, a PFN is always an unsigned 443 * long for now. 444 */ 445 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) 446 { 447 return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) | 448 pgprot_val(pgprot)); 449 } 450 451 /* Generic modifiers for PTE bits */ 452 static inline pte_t pte_wrprotect(pte_t pte) 453 { 454 return __pte(pte_val(pte) & ~_PAGE_WRITE); 455 } 456 457 static inline pte_t pte_exprotect(pte_t pte) 458 { 459 return __pte(pte_val(pte) & ~_PAGE_EXEC); 460 } 461 462 static inline pte_t pte_mkclean(pte_t pte) 463 { 464 return __pte(pte_val(pte) & ~_PAGE_DIRTY); 465 } 466 467 static inline pte_t pte_mkold(pte_t pte) 468 { 469 return __pte(pte_val(pte) & ~_PAGE_ACCESSED); 470 } 471 472 static inline pte_t pte_mkexec(pte_t pte) 473 { 474 return __pte(pte_val(pte) | _PAGE_EXEC); 475 } 476 477 static inline pte_t pte_mkpte(pte_t pte) 478 { 479 return pte; 480 } 481 482 static inline pte_t pte_mkwrite_novma(pte_t pte) 483 { 484 /* 485 * write implies read, hence set both 486 */ 487 return __pte(pte_val(pte) | _PAGE_RW); 488 } 489 490 static inline pte_t pte_mkdirty(pte_t pte) 491 { 492 return __pte(pte_val(pte) | _PAGE_DIRTY); 493 } 494 495 static inline pte_t pte_mkyoung(pte_t pte) 496 { 497 return __pte(pte_val(pte) | _PAGE_ACCESSED); 498 } 499 500 static inline pte_t pte_mkspecial(pte_t pte) 501 { 502 return __pte(pte_val(pte) | _PAGE_SPECIAL); 503 } 504 505 static inline pte_t pte_mkhuge(pte_t pte) 506 { 507 return pte; 508 } 509 510 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 511 { 512 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); 513 } 514 515 516 517 /* This low level function performs the actual PTE insertion 518 * Setting the PTE depends on the MMU type and other factors. 519 * 520 * First case is 32-bit in UP mode with 32-bit PTEs, we need to preserve 521 * the _PAGE_HASHPTE bit since we may not have invalidated the previous 522 * translation in the hash yet (done in a subsequent flush_tlb_xxx()) 523 * and see we need to keep track that this PTE needs invalidating. 524 * 525 * Second case is 32-bit with 64-bit PTE. In this case, we 526 * can just store as long as we do the two halves in the right order 527 * with a barrier in between. This is possible because we take care, 528 * in the hash code, to pre-invalidate if the PTE was already hashed, 529 * which synchronizes us with any concurrent invalidation. 530 * In the percpu case, we fallback to the simple update preserving 531 * the hash bits (ie, same as the non-SMP case). 532 * 533 * Third case is 32-bit in SMP mode with 32-bit PTEs. We use the 534 * helper pte_update() which does an atomic update. We need to do that 535 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a 536 * per-CPU PTE such as a kmap_atomic, we also do a simple update preserving 537 * the hash bits instead. 538 */ 539 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, 540 pte_t *ptep, pte_t pte, int percpu) 541 { 542 if ((!IS_ENABLED(CONFIG_SMP) && !IS_ENABLED(CONFIG_PTE_64BIT)) || percpu) { 543 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) | 544 (pte_val(pte) & ~_PAGE_HASHPTE)); 545 } else if (IS_ENABLED(CONFIG_PTE_64BIT)) { 546 if (pte_val(*ptep) & _PAGE_HASHPTE) 547 flush_hash_entry(mm, ptep, addr); 548 549 asm volatile("stw%X0 %2,%0; eieio; stw%X1 %L2,%1" : 550 "=m" (*ptep), "=m" (*((unsigned char *)ptep+4)) : 551 "r" (pte) : "memory"); 552 } else { 553 pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, pte_val(pte), 0); 554 } 555 } 556 557 /* 558 * Macro to mark a page protection value as "uncacheable". 559 */ 560 561 #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \ 562 _PAGE_WRITETHRU) 563 564 #define pgprot_noncached pgprot_noncached 565 static inline pgprot_t pgprot_noncached(pgprot_t prot) 566 { 567 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 568 _PAGE_NO_CACHE | _PAGE_GUARDED); 569 } 570 571 #define pgprot_noncached_wc pgprot_noncached_wc 572 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot) 573 { 574 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 575 _PAGE_NO_CACHE); 576 } 577 578 #define pgprot_cached pgprot_cached 579 static inline pgprot_t pgprot_cached(pgprot_t prot) 580 { 581 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 582 _PAGE_COHERENT); 583 } 584 585 #define pgprot_cached_wthru pgprot_cached_wthru 586 static inline pgprot_t pgprot_cached_wthru(pgprot_t prot) 587 { 588 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 589 _PAGE_COHERENT | _PAGE_WRITETHRU); 590 } 591 592 #define pgprot_cached_noncoherent pgprot_cached_noncoherent 593 static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot) 594 { 595 return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL); 596 } 597 598 #define pgprot_writecombine pgprot_writecombine 599 static inline pgprot_t pgprot_writecombine(pgprot_t prot) 600 { 601 return pgprot_noncached_wc(prot); 602 } 603 604 #endif /* !__ASSEMBLY__ */ 605 606 #endif /* _ASM_POWERPC_BOOK3S_32_PGTABLE_H */ 607