1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Glue code for SHA-1 implementation for SPE instructions (PPC) 4 * 5 * Based on generic implementation. 6 * 7 * Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de> 8 */ 9 10 #include <crypto/internal/hash.h> 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mm.h> 14 #include <linux/types.h> 15 #include <crypto/sha1.h> 16 #include <crypto/sha1_base.h> 17 #include <asm/byteorder.h> 18 #include <asm/switch_to.h> 19 #include <linux/hardirq.h> 20 21 /* 22 * MAX_BYTES defines the number of bytes that are allowed to be processed 23 * between preempt_disable() and preempt_enable(). SHA1 takes ~1000 24 * operations per 64 bytes. e500 cores can issue two arithmetic instructions 25 * per clock cycle using one 32/64 bit unit (SU1) and one 32 bit unit (SU2). 26 * Thus 2KB of input data will need an estimated maximum of 18,000 cycles. 27 * Headroom for cache misses included. Even with the low end model clocked 28 * at 667 MHz this equals to a critical time window of less than 27us. 29 * 30 */ 31 #define MAX_BYTES 2048 32 33 extern void ppc_spe_sha1_transform(u32 *state, const u8 *src, u32 blocks); 34 35 static void spe_begin(void) 36 { 37 /* We just start SPE operations and will save SPE registers later. */ 38 preempt_disable(); 39 enable_kernel_spe(); 40 } 41 42 static void spe_end(void) 43 { 44 disable_kernel_spe(); 45 /* reenable preemption */ 46 preempt_enable(); 47 } 48 49 static inline void ppc_sha1_clear_context(struct sha1_state *sctx) 50 { 51 int count = sizeof(struct sha1_state) >> 2; 52 u32 *ptr = (u32 *)sctx; 53 54 /* make sure we can clear the fast way */ 55 BUILD_BUG_ON(sizeof(struct sha1_state) % 4); 56 do { *ptr++ = 0; } while (--count); 57 } 58 59 static int ppc_spe_sha1_update(struct shash_desc *desc, const u8 *data, 60 unsigned int len) 61 { 62 struct sha1_state *sctx = shash_desc_ctx(desc); 63 const unsigned int offset = sctx->count & 0x3f; 64 const unsigned int avail = 64 - offset; 65 unsigned int bytes; 66 const u8 *src = data; 67 68 if (avail > len) { 69 sctx->count += len; 70 memcpy((char *)sctx->buffer + offset, src, len); 71 return 0; 72 } 73 74 sctx->count += len; 75 76 if (offset) { 77 memcpy((char *)sctx->buffer + offset, src, avail); 78 79 spe_begin(); 80 ppc_spe_sha1_transform(sctx->state, (const u8 *)sctx->buffer, 1); 81 spe_end(); 82 83 len -= avail; 84 src += avail; 85 } 86 87 while (len > 63) { 88 bytes = (len > MAX_BYTES) ? MAX_BYTES : len; 89 bytes = bytes & ~0x3f; 90 91 spe_begin(); 92 ppc_spe_sha1_transform(sctx->state, src, bytes >> 6); 93 spe_end(); 94 95 src += bytes; 96 len -= bytes; 97 } 98 99 memcpy((char *)sctx->buffer, src, len); 100 return 0; 101 } 102 103 static int ppc_spe_sha1_final(struct shash_desc *desc, u8 *out) 104 { 105 struct sha1_state *sctx = shash_desc_ctx(desc); 106 const unsigned int offset = sctx->count & 0x3f; 107 char *p = (char *)sctx->buffer + offset; 108 int padlen; 109 __be64 *pbits = (__be64 *)(((char *)&sctx->buffer) + 56); 110 __be32 *dst = (__be32 *)out; 111 112 padlen = 55 - offset; 113 *p++ = 0x80; 114 115 spe_begin(); 116 117 if (padlen < 0) { 118 memset(p, 0x00, padlen + sizeof (u64)); 119 ppc_spe_sha1_transform(sctx->state, sctx->buffer, 1); 120 p = (char *)sctx->buffer; 121 padlen = 56; 122 } 123 124 memset(p, 0, padlen); 125 *pbits = cpu_to_be64(sctx->count << 3); 126 ppc_spe_sha1_transform(sctx->state, sctx->buffer, 1); 127 128 spe_end(); 129 130 dst[0] = cpu_to_be32(sctx->state[0]); 131 dst[1] = cpu_to_be32(sctx->state[1]); 132 dst[2] = cpu_to_be32(sctx->state[2]); 133 dst[3] = cpu_to_be32(sctx->state[3]); 134 dst[4] = cpu_to_be32(sctx->state[4]); 135 136 ppc_sha1_clear_context(sctx); 137 return 0; 138 } 139 140 static int ppc_spe_sha1_export(struct shash_desc *desc, void *out) 141 { 142 struct sha1_state *sctx = shash_desc_ctx(desc); 143 144 memcpy(out, sctx, sizeof(*sctx)); 145 return 0; 146 } 147 148 static int ppc_spe_sha1_import(struct shash_desc *desc, const void *in) 149 { 150 struct sha1_state *sctx = shash_desc_ctx(desc); 151 152 memcpy(sctx, in, sizeof(*sctx)); 153 return 0; 154 } 155 156 static struct shash_alg alg = { 157 .digestsize = SHA1_DIGEST_SIZE, 158 .init = sha1_base_init, 159 .update = ppc_spe_sha1_update, 160 .final = ppc_spe_sha1_final, 161 .export = ppc_spe_sha1_export, 162 .import = ppc_spe_sha1_import, 163 .descsize = sizeof(struct sha1_state), 164 .statesize = sizeof(struct sha1_state), 165 .base = { 166 .cra_name = "sha1", 167 .cra_driver_name= "sha1-ppc-spe", 168 .cra_priority = 300, 169 .cra_blocksize = SHA1_BLOCK_SIZE, 170 .cra_module = THIS_MODULE, 171 } 172 }; 173 174 static int __init ppc_spe_sha1_mod_init(void) 175 { 176 return crypto_register_shash(&alg); 177 } 178 179 static void __exit ppc_spe_sha1_mod_fini(void) 180 { 181 crypto_unregister_shash(&alg); 182 } 183 184 module_init(ppc_spe_sha1_mod_init); 185 module_exit(ppc_spe_sha1_mod_fini); 186 187 MODULE_LICENSE("GPL"); 188 MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, SPE optimized"); 189 190 MODULE_ALIAS_CRYPTO("sha1"); 191 MODULE_ALIAS_CRYPTO("sha1-ppc-spe"); 192