xref: /linux/arch/parisc/mm/init.c (revision cd354f1ae75e6466a7e31b727faede57a1f89ca5)
1 /*
2  *  linux/arch/parisc/mm/init.c
3  *
4  *  Copyright (C) 1995	Linus Torvalds
5  *  Copyright 1999 SuSE GmbH
6  *    changed by Philipp Rumpf
7  *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8  *  Copyright 2004 Randolph Chung (tausq@debian.org)
9  *  Copyright 2006 Helge Deller (deller@gmx.de)
10  *
11  */
12 
13 
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>		/* for hppa_dma_ops and pcxl_dma_ops */
20 #include <linux/initrd.h>
21 #include <linux/swap.h>
22 #include <linux/unistd.h>
23 #include <linux/nodemask.h>	/* for node_online_map */
24 #include <linux/pagemap.h>	/* for release_pages and page_cache_release */
25 
26 #include <asm/pgalloc.h>
27 #include <asm/tlb.h>
28 #include <asm/pdc_chassis.h>
29 #include <asm/mmzone.h>
30 #include <asm/sections.h>
31 
32 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
33 
34 extern int  data_start;
35 
36 #ifdef CONFIG_DISCONTIGMEM
37 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
38 bootmem_data_t bmem_data[MAX_NUMNODES] __read_mostly;
39 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
40 #endif
41 
42 static struct resource data_resource = {
43 	.name	= "Kernel data",
44 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
45 };
46 
47 static struct resource code_resource = {
48 	.name	= "Kernel code",
49 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
50 };
51 
52 static struct resource pdcdata_resource = {
53 	.name	= "PDC data (Page Zero)",
54 	.start	= 0,
55 	.end	= 0x9ff,
56 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
57 };
58 
59 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
60 
61 /* The following array is initialized from the firmware specific
62  * information retrieved in kernel/inventory.c.
63  */
64 
65 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
66 int npmem_ranges __read_mostly;
67 
68 #ifdef __LP64__
69 #define MAX_MEM         (~0UL)
70 #else /* !__LP64__ */
71 #define MAX_MEM         (3584U*1024U*1024U)
72 #endif /* !__LP64__ */
73 
74 static unsigned long mem_limit __read_mostly = MAX_MEM;
75 
76 static void __init mem_limit_func(void)
77 {
78 	char *cp, *end;
79 	unsigned long limit;
80 
81 	/* We need this before __setup() functions are called */
82 
83 	limit = MAX_MEM;
84 	for (cp = boot_command_line; *cp; ) {
85 		if (memcmp(cp, "mem=", 4) == 0) {
86 			cp += 4;
87 			limit = memparse(cp, &end);
88 			if (end != cp)
89 				break;
90 			cp = end;
91 		} else {
92 			while (*cp != ' ' && *cp)
93 				++cp;
94 			while (*cp == ' ')
95 				++cp;
96 		}
97 	}
98 
99 	if (limit < mem_limit)
100 		mem_limit = limit;
101 }
102 
103 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
104 
105 static void __init setup_bootmem(void)
106 {
107 	unsigned long bootmap_size;
108 	unsigned long mem_max;
109 	unsigned long bootmap_pages;
110 	unsigned long bootmap_start_pfn;
111 	unsigned long bootmap_pfn;
112 #ifndef CONFIG_DISCONTIGMEM
113 	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
114 	int npmem_holes;
115 #endif
116 	int i, sysram_resource_count;
117 
118 	disable_sr_hashing(); /* Turn off space register hashing */
119 
120 	/*
121 	 * Sort the ranges. Since the number of ranges is typically
122 	 * small, and performance is not an issue here, just do
123 	 * a simple insertion sort.
124 	 */
125 
126 	for (i = 1; i < npmem_ranges; i++) {
127 		int j;
128 
129 		for (j = i; j > 0; j--) {
130 			unsigned long tmp;
131 
132 			if (pmem_ranges[j-1].start_pfn <
133 			    pmem_ranges[j].start_pfn) {
134 
135 				break;
136 			}
137 			tmp = pmem_ranges[j-1].start_pfn;
138 			pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
139 			pmem_ranges[j].start_pfn = tmp;
140 			tmp = pmem_ranges[j-1].pages;
141 			pmem_ranges[j-1].pages = pmem_ranges[j].pages;
142 			pmem_ranges[j].pages = tmp;
143 		}
144 	}
145 
146 #ifndef CONFIG_DISCONTIGMEM
147 	/*
148 	 * Throw out ranges that are too far apart (controlled by
149 	 * MAX_GAP).
150 	 */
151 
152 	for (i = 1; i < npmem_ranges; i++) {
153 		if (pmem_ranges[i].start_pfn -
154 			(pmem_ranges[i-1].start_pfn +
155 			 pmem_ranges[i-1].pages) > MAX_GAP) {
156 			npmem_ranges = i;
157 			printk("Large gap in memory detected (%ld pages). "
158 			       "Consider turning on CONFIG_DISCONTIGMEM\n",
159 			       pmem_ranges[i].start_pfn -
160 			       (pmem_ranges[i-1].start_pfn +
161 			        pmem_ranges[i-1].pages));
162 			break;
163 		}
164 	}
165 #endif
166 
167 	if (npmem_ranges > 1) {
168 
169 		/* Print the memory ranges */
170 
171 		printk(KERN_INFO "Memory Ranges:\n");
172 
173 		for (i = 0; i < npmem_ranges; i++) {
174 			unsigned long start;
175 			unsigned long size;
176 
177 			size = (pmem_ranges[i].pages << PAGE_SHIFT);
178 			start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
179 			printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
180 				i,start, start + (size - 1), size >> 20);
181 		}
182 	}
183 
184 	sysram_resource_count = npmem_ranges;
185 	for (i = 0; i < sysram_resource_count; i++) {
186 		struct resource *res = &sysram_resources[i];
187 		res->name = "System RAM";
188 		res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
189 		res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
190 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
191 		request_resource(&iomem_resource, res);
192 	}
193 
194 	/*
195 	 * For 32 bit kernels we limit the amount of memory we can
196 	 * support, in order to preserve enough kernel address space
197 	 * for other purposes. For 64 bit kernels we don't normally
198 	 * limit the memory, but this mechanism can be used to
199 	 * artificially limit the amount of memory (and it is written
200 	 * to work with multiple memory ranges).
201 	 */
202 
203 	mem_limit_func();       /* check for "mem=" argument */
204 
205 	mem_max = 0;
206 	num_physpages = 0;
207 	for (i = 0; i < npmem_ranges; i++) {
208 		unsigned long rsize;
209 
210 		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
211 		if ((mem_max + rsize) > mem_limit) {
212 			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
213 			if (mem_max == mem_limit)
214 				npmem_ranges = i;
215 			else {
216 				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
217 						       - (mem_max >> PAGE_SHIFT);
218 				npmem_ranges = i + 1;
219 				mem_max = mem_limit;
220 			}
221 	        num_physpages += pmem_ranges[i].pages;
222 			break;
223 		}
224 	    num_physpages += pmem_ranges[i].pages;
225 		mem_max += rsize;
226 	}
227 
228 	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
229 
230 #ifndef CONFIG_DISCONTIGMEM
231 	/* Merge the ranges, keeping track of the holes */
232 
233 	{
234 		unsigned long end_pfn;
235 		unsigned long hole_pages;
236 
237 		npmem_holes = 0;
238 		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
239 		for (i = 1; i < npmem_ranges; i++) {
240 
241 			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
242 			if (hole_pages) {
243 				pmem_holes[npmem_holes].start_pfn = end_pfn;
244 				pmem_holes[npmem_holes++].pages = hole_pages;
245 				end_pfn += hole_pages;
246 			}
247 			end_pfn += pmem_ranges[i].pages;
248 		}
249 
250 		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
251 		npmem_ranges = 1;
252 	}
253 #endif
254 
255 	bootmap_pages = 0;
256 	for (i = 0; i < npmem_ranges; i++)
257 		bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
258 
259 	bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
260 
261 #ifdef CONFIG_DISCONTIGMEM
262 	for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
263 		memset(NODE_DATA(i), 0, sizeof(pg_data_t));
264 		NODE_DATA(i)->bdata = &bmem_data[i];
265 	}
266 	memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
267 
268 	for (i = 0; i < npmem_ranges; i++)
269 		node_set_online(i);
270 #endif
271 
272 	/*
273 	 * Initialize and free the full range of memory in each range.
274 	 * Note that the only writing these routines do are to the bootmap,
275 	 * and we've made sure to locate the bootmap properly so that they
276 	 * won't be writing over anything important.
277 	 */
278 
279 	bootmap_pfn = bootmap_start_pfn;
280 	max_pfn = 0;
281 	for (i = 0; i < npmem_ranges; i++) {
282 		unsigned long start_pfn;
283 		unsigned long npages;
284 
285 		start_pfn = pmem_ranges[i].start_pfn;
286 		npages = pmem_ranges[i].pages;
287 
288 		bootmap_size = init_bootmem_node(NODE_DATA(i),
289 						bootmap_pfn,
290 						start_pfn,
291 						(start_pfn + npages) );
292 		free_bootmem_node(NODE_DATA(i),
293 				  (start_pfn << PAGE_SHIFT),
294 				  (npages << PAGE_SHIFT) );
295 		bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
296 		if ((start_pfn + npages) > max_pfn)
297 			max_pfn = start_pfn + npages;
298 	}
299 
300 	/* IOMMU is always used to access "high mem" on those boxes
301 	 * that can support enough mem that a PCI device couldn't
302 	 * directly DMA to any physical addresses.
303 	 * ISA DMA support will need to revisit this.
304 	 */
305 	max_low_pfn = max_pfn;
306 
307 	if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) {
308 		printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n");
309 		BUG();
310 	}
311 
312 	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
313 
314 #define PDC_CONSOLE_IO_IODC_SIZE 32768
315 
316 	reserve_bootmem_node(NODE_DATA(0), 0UL,
317 			(unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE));
318 	reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
319 			(unsigned long)(_end - _text));
320 	reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
321 			((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT));
322 
323 #ifndef CONFIG_DISCONTIGMEM
324 
325 	/* reserve the holes */
326 
327 	for (i = 0; i < npmem_holes; i++) {
328 		reserve_bootmem_node(NODE_DATA(0),
329 				(pmem_holes[i].start_pfn << PAGE_SHIFT),
330 				(pmem_holes[i].pages << PAGE_SHIFT));
331 	}
332 #endif
333 
334 #ifdef CONFIG_BLK_DEV_INITRD
335 	if (initrd_start) {
336 		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
337 		if (__pa(initrd_start) < mem_max) {
338 			unsigned long initrd_reserve;
339 
340 			if (__pa(initrd_end) > mem_max) {
341 				initrd_reserve = mem_max - __pa(initrd_start);
342 			} else {
343 				initrd_reserve = initrd_end - initrd_start;
344 			}
345 			initrd_below_start_ok = 1;
346 			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
347 
348 			reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve);
349 		}
350 	}
351 #endif
352 
353 	data_resource.start =  virt_to_phys(&data_start);
354 	data_resource.end = virt_to_phys(_end) - 1;
355 	code_resource.start = virt_to_phys(_text);
356 	code_resource.end = virt_to_phys(&data_start)-1;
357 
358 	/* We don't know which region the kernel will be in, so try
359 	 * all of them.
360 	 */
361 	for (i = 0; i < sysram_resource_count; i++) {
362 		struct resource *res = &sysram_resources[i];
363 		request_resource(res, &code_resource);
364 		request_resource(res, &data_resource);
365 	}
366 	request_resource(&sysram_resources[0], &pdcdata_resource);
367 }
368 
369 void free_initmem(void)
370 {
371 	unsigned long addr, init_begin, init_end;
372 
373 	printk(KERN_INFO "Freeing unused kernel memory: ");
374 
375 #ifdef CONFIG_DEBUG_KERNEL
376 	/* Attempt to catch anyone trying to execute code here
377 	 * by filling the page with BRK insns.
378 	 *
379 	 * If we disable interrupts for all CPUs, then IPI stops working.
380 	 * Kinda breaks the global cache flushing.
381 	 */
382 	local_irq_disable();
383 
384 	memset(__init_begin, 0x00,
385 		(unsigned long)__init_end - (unsigned long)__init_begin);
386 
387 	flush_data_cache();
388 	asm volatile("sync" : : );
389 	flush_icache_range((unsigned long)__init_begin, (unsigned long)__init_end);
390 	asm volatile("sync" : : );
391 
392 	local_irq_enable();
393 #endif
394 
395 	/* align __init_begin and __init_end to page size,
396 	   ignoring linker script where we might have tried to save RAM */
397 	init_begin = PAGE_ALIGN((unsigned long)(__init_begin));
398 	init_end   = PAGE_ALIGN((unsigned long)(__init_end));
399 	for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
400 		ClearPageReserved(virt_to_page(addr));
401 		init_page_count(virt_to_page(addr));
402 		free_page(addr);
403 		num_physpages++;
404 		totalram_pages++;
405 	}
406 
407 	/* set up a new led state on systems shipped LED State panel */
408 	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
409 
410 	printk("%luk freed\n", (init_end - init_begin) >> 10);
411 }
412 
413 
414 #ifdef CONFIG_DEBUG_RODATA
415 void mark_rodata_ro(void)
416 {
417 	/* rodata memory was already mapped with KERNEL_RO access rights by
418            pagetable_init() and map_pages(). No need to do additional stuff here */
419 	printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
420 		(unsigned long)(__end_rodata - __start_rodata) >> 10);
421 }
422 #endif
423 
424 
425 /*
426  * Just an arbitrary offset to serve as a "hole" between mapping areas
427  * (between top of physical memory and a potential pcxl dma mapping
428  * area, and below the vmalloc mapping area).
429  *
430  * The current 32K value just means that there will be a 32K "hole"
431  * between mapping areas. That means that  any out-of-bounds memory
432  * accesses will hopefully be caught. The vmalloc() routines leaves
433  * a hole of 4kB between each vmalloced area for the same reason.
434  */
435 
436  /* Leave room for gateway page expansion */
437 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
438 #error KERNEL_MAP_START is in gateway reserved region
439 #endif
440 #define MAP_START (KERNEL_MAP_START)
441 
442 #define VM_MAP_OFFSET  (32*1024)
443 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
444 				     & ~(VM_MAP_OFFSET-1)))
445 
446 void *vmalloc_start __read_mostly;
447 EXPORT_SYMBOL(vmalloc_start);
448 
449 #ifdef CONFIG_PA11
450 unsigned long pcxl_dma_start __read_mostly;
451 #endif
452 
453 void __init mem_init(void)
454 {
455 	high_memory = __va((max_pfn << PAGE_SHIFT));
456 
457 #ifndef CONFIG_DISCONTIGMEM
458 	max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
459 	totalram_pages += free_all_bootmem();
460 #else
461 	{
462 		int i;
463 
464 		for (i = 0; i < npmem_ranges; i++)
465 			totalram_pages += free_all_bootmem_node(NODE_DATA(i));
466 	}
467 #endif
468 
469 	printk(KERN_INFO "Memory: %luk available\n", num_physpages << (PAGE_SHIFT-10));
470 
471 #ifdef CONFIG_PA11
472 	if (hppa_dma_ops == &pcxl_dma_ops) {
473 		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
474 		vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE);
475 	} else {
476 		pcxl_dma_start = 0;
477 		vmalloc_start = SET_MAP_OFFSET(MAP_START);
478 	}
479 #else
480 	vmalloc_start = SET_MAP_OFFSET(MAP_START);
481 #endif
482 
483 }
484 
485 unsigned long *empty_zero_page __read_mostly;
486 
487 void show_mem(void)
488 {
489 	int i,free = 0,total = 0,reserved = 0;
490 	int shared = 0, cached = 0;
491 
492 	printk(KERN_INFO "Mem-info:\n");
493 	show_free_areas();
494 	printk(KERN_INFO "Free swap:	 %6ldkB\n",
495 				nr_swap_pages<<(PAGE_SHIFT-10));
496 #ifndef CONFIG_DISCONTIGMEM
497 	i = max_mapnr;
498 	while (i-- > 0) {
499 		total++;
500 		if (PageReserved(mem_map+i))
501 			reserved++;
502 		else if (PageSwapCache(mem_map+i))
503 			cached++;
504 		else if (!page_count(&mem_map[i]))
505 			free++;
506 		else
507 			shared += page_count(&mem_map[i]) - 1;
508 	}
509 #else
510 	for (i = 0; i < npmem_ranges; i++) {
511 		int j;
512 
513 		for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
514 			struct page *p;
515 			unsigned long flags;
516 
517 			pgdat_resize_lock(NODE_DATA(i), &flags);
518 			p = nid_page_nr(i, j) - node_start_pfn(i);
519 
520 			total++;
521 			if (PageReserved(p))
522 				reserved++;
523 			else if (PageSwapCache(p))
524 				cached++;
525 			else if (!page_count(p))
526 				free++;
527 			else
528 				shared += page_count(p) - 1;
529 			pgdat_resize_unlock(NODE_DATA(i), &flags);
530         	}
531 	}
532 #endif
533 	printk(KERN_INFO "%d pages of RAM\n", total);
534 	printk(KERN_INFO "%d reserved pages\n", reserved);
535 	printk(KERN_INFO "%d pages shared\n", shared);
536 	printk(KERN_INFO "%d pages swap cached\n", cached);
537 
538 
539 #ifdef CONFIG_DISCONTIGMEM
540 	{
541 		struct zonelist *zl;
542 		int i, j, k;
543 
544 		for (i = 0; i < npmem_ranges; i++) {
545 			for (j = 0; j < MAX_NR_ZONES; j++) {
546 				zl = NODE_DATA(i)->node_zonelists + j;
547 
548 				printk("Zone list for zone %d on node %d: ", j, i);
549 				for (k = 0; zl->zones[k] != NULL; k++)
550 					printk("[%d/%s] ", zone_to_nid(zl->zones[k]), zl->zones[k]->name);
551 				printk("\n");
552 			}
553 		}
554 	}
555 #endif
556 }
557 
558 
559 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
560 {
561 	pgd_t *pg_dir;
562 	pmd_t *pmd;
563 	pte_t *pg_table;
564 	unsigned long end_paddr;
565 	unsigned long start_pmd;
566 	unsigned long start_pte;
567 	unsigned long tmp1;
568 	unsigned long tmp2;
569 	unsigned long address;
570 	unsigned long ro_start;
571 	unsigned long ro_end;
572 	unsigned long fv_addr;
573 	unsigned long gw_addr;
574 	extern const unsigned long fault_vector_20;
575 	extern void * const linux_gateway_page;
576 
577 	ro_start = __pa((unsigned long)_text);
578 	ro_end   = __pa((unsigned long)&data_start);
579 	fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
580 	gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
581 
582 	end_paddr = start_paddr + size;
583 
584 	pg_dir = pgd_offset_k(start_vaddr);
585 
586 #if PTRS_PER_PMD == 1
587 	start_pmd = 0;
588 #else
589 	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
590 #endif
591 	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
592 
593 	address = start_paddr;
594 	while (address < end_paddr) {
595 #if PTRS_PER_PMD == 1
596 		pmd = (pmd_t *)__pa(pg_dir);
597 #else
598 		pmd = (pmd_t *)pgd_address(*pg_dir);
599 
600 		/*
601 		 * pmd is physical at this point
602 		 */
603 
604 		if (!pmd) {
605 			pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER);
606 			pmd = (pmd_t *) __pa(pmd);
607 		}
608 
609 		pgd_populate(NULL, pg_dir, __va(pmd));
610 #endif
611 		pg_dir++;
612 
613 		/* now change pmd to kernel virtual addresses */
614 
615 		pmd = (pmd_t *)__va(pmd) + start_pmd;
616 		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
617 
618 			/*
619 			 * pg_table is physical at this point
620 			 */
621 
622 			pg_table = (pte_t *)pmd_address(*pmd);
623 			if (!pg_table) {
624 				pg_table = (pte_t *)
625 					alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
626 				pg_table = (pte_t *) __pa(pg_table);
627 			}
628 
629 			pmd_populate_kernel(NULL, pmd, __va(pg_table));
630 
631 			/* now change pg_table to kernel virtual addresses */
632 
633 			pg_table = (pte_t *) __va(pg_table) + start_pte;
634 			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
635 				pte_t pte;
636 
637 				/*
638 				 * Map the fault vector writable so we can
639 				 * write the HPMC checksum.
640 				 */
641 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
642 				if (address >= ro_start && address < ro_end
643 							&& address != fv_addr
644 							&& address != gw_addr)
645 				    pte = __mk_pte(address, PAGE_KERNEL_RO);
646 				else
647 #endif
648 				    pte = __mk_pte(address, pgprot);
649 
650 				if (address >= end_paddr)
651 					pte_val(pte) = 0;
652 
653 				set_pte(pg_table, pte);
654 
655 				address += PAGE_SIZE;
656 			}
657 			start_pte = 0;
658 
659 			if (address >= end_paddr)
660 			    break;
661 		}
662 		start_pmd = 0;
663 	}
664 }
665 
666 /*
667  * pagetable_init() sets up the page tables
668  *
669  * Note that gateway_init() places the Linux gateway page at page 0.
670  * Since gateway pages cannot be dereferenced this has the desirable
671  * side effect of trapping those pesky NULL-reference errors in the
672  * kernel.
673  */
674 static void __init pagetable_init(void)
675 {
676 	int range;
677 
678 	/* Map each physical memory range to its kernel vaddr */
679 
680 	for (range = 0; range < npmem_ranges; range++) {
681 		unsigned long start_paddr;
682 		unsigned long end_paddr;
683 		unsigned long size;
684 
685 		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
686 		end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
687 		size = pmem_ranges[range].pages << PAGE_SHIFT;
688 
689 		map_pages((unsigned long)__va(start_paddr), start_paddr,
690 			size, PAGE_KERNEL);
691 	}
692 
693 #ifdef CONFIG_BLK_DEV_INITRD
694 	if (initrd_end && initrd_end > mem_limit) {
695 		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
696 		map_pages(initrd_start, __pa(initrd_start),
697 			initrd_end - initrd_start, PAGE_KERNEL);
698 	}
699 #endif
700 
701 	empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
702 	memset(empty_zero_page, 0, PAGE_SIZE);
703 }
704 
705 static void __init gateway_init(void)
706 {
707 	unsigned long linux_gateway_page_addr;
708 	/* FIXME: This is 'const' in order to trick the compiler
709 	   into not treating it as DP-relative data. */
710 	extern void * const linux_gateway_page;
711 
712 	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
713 
714 	/*
715 	 * Setup Linux Gateway page.
716 	 *
717 	 * The Linux gateway page will reside in kernel space (on virtual
718 	 * page 0), so it doesn't need to be aliased into user space.
719 	 */
720 
721 	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
722 		PAGE_SIZE, PAGE_GATEWAY);
723 }
724 
725 #ifdef CONFIG_HPUX
726 void
727 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
728 {
729 	pgd_t *pg_dir;
730 	pmd_t *pmd;
731 	pte_t *pg_table;
732 	unsigned long start_pmd;
733 	unsigned long start_pte;
734 	unsigned long address;
735 	unsigned long hpux_gw_page_addr;
736 	/* FIXME: This is 'const' in order to trick the compiler
737 	   into not treating it as DP-relative data. */
738 	extern void * const hpux_gateway_page;
739 
740 	hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
741 
742 	/*
743 	 * Setup HP-UX Gateway page.
744 	 *
745 	 * The HP-UX gateway page resides in the user address space,
746 	 * so it needs to be aliased into each process.
747 	 */
748 
749 	pg_dir = pgd_offset(mm,hpux_gw_page_addr);
750 
751 #if PTRS_PER_PMD == 1
752 	start_pmd = 0;
753 #else
754 	start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
755 #endif
756 	start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
757 
758 	address = __pa(&hpux_gateway_page);
759 #if PTRS_PER_PMD == 1
760 	pmd = (pmd_t *)__pa(pg_dir);
761 #else
762 	pmd = (pmd_t *) pgd_address(*pg_dir);
763 
764 	/*
765 	 * pmd is physical at this point
766 	 */
767 
768 	if (!pmd) {
769 		pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
770 		pmd = (pmd_t *) __pa(pmd);
771 	}
772 
773 	__pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
774 #endif
775 	/* now change pmd to kernel virtual addresses */
776 
777 	pmd = (pmd_t *)__va(pmd) + start_pmd;
778 
779 	/*
780 	 * pg_table is physical at this point
781 	 */
782 
783 	pg_table = (pte_t *) pmd_address(*pmd);
784 	if (!pg_table)
785 		pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
786 
787 	__pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
788 
789 	/* now change pg_table to kernel virtual addresses */
790 
791 	pg_table = (pte_t *) __va(pg_table) + start_pte;
792 	set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
793 }
794 EXPORT_SYMBOL(map_hpux_gateway_page);
795 #endif
796 
797 void __init paging_init(void)
798 {
799 	int i;
800 
801 	setup_bootmem();
802 	pagetable_init();
803 	gateway_init();
804 	flush_cache_all_local(); /* start with known state */
805 	flush_tlb_all_local(NULL);
806 
807 	for (i = 0; i < npmem_ranges; i++) {
808 		unsigned long zones_size[MAX_NR_ZONES] = { 0, };
809 
810 		zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
811 
812 #ifdef CONFIG_DISCONTIGMEM
813 		/* Need to initialize the pfnnid_map before we can initialize
814 		   the zone */
815 		{
816 		    int j;
817 		    for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
818 			 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
819 			 j++) {
820 			pfnnid_map[j] = i;
821 		    }
822 		}
823 #endif
824 
825 		free_area_init_node(i, NODE_DATA(i), zones_size,
826 				pmem_ranges[i].start_pfn, NULL);
827 	}
828 }
829 
830 #ifdef CONFIG_PA20
831 
832 /*
833  * Currently, all PA20 chips have 18 bit protection id's, which is the
834  * limiting factor (space ids are 32 bits).
835  */
836 
837 #define NR_SPACE_IDS 262144
838 
839 #else
840 
841 /*
842  * Currently we have a one-to-one relationship between space id's and
843  * protection id's. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
844  * support 15 bit protection id's, so that is the limiting factor.
845  * PCXT' has 18 bit protection id's, but only 16 bit spaceids, so it's
846  * probably not worth the effort for a special case here.
847  */
848 
849 #define NR_SPACE_IDS 32768
850 
851 #endif  /* !CONFIG_PA20 */
852 
853 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
854 #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
855 
856 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
857 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
858 static unsigned long space_id_index;
859 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
860 static unsigned long dirty_space_ids = 0;
861 
862 static DEFINE_SPINLOCK(sid_lock);
863 
864 unsigned long alloc_sid(void)
865 {
866 	unsigned long index;
867 
868 	spin_lock(&sid_lock);
869 
870 	if (free_space_ids == 0) {
871 		if (dirty_space_ids != 0) {
872 			spin_unlock(&sid_lock);
873 			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
874 			spin_lock(&sid_lock);
875 		}
876 		BUG_ON(free_space_ids == 0);
877 	}
878 
879 	free_space_ids--;
880 
881 	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
882 	space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
883 	space_id_index = index;
884 
885 	spin_unlock(&sid_lock);
886 
887 	return index << SPACEID_SHIFT;
888 }
889 
890 void free_sid(unsigned long spaceid)
891 {
892 	unsigned long index = spaceid >> SPACEID_SHIFT;
893 	unsigned long *dirty_space_offset;
894 
895 	dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
896 	index &= (BITS_PER_LONG - 1);
897 
898 	spin_lock(&sid_lock);
899 
900 	BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
901 
902 	*dirty_space_offset |= (1L << index);
903 	dirty_space_ids++;
904 
905 	spin_unlock(&sid_lock);
906 }
907 
908 
909 #ifdef CONFIG_SMP
910 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
911 {
912 	int i;
913 
914 	/* NOTE: sid_lock must be held upon entry */
915 
916 	*ndirtyptr = dirty_space_ids;
917 	if (dirty_space_ids != 0) {
918 	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
919 		dirty_array[i] = dirty_space_id[i];
920 		dirty_space_id[i] = 0;
921 	    }
922 	    dirty_space_ids = 0;
923 	}
924 
925 	return;
926 }
927 
928 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
929 {
930 	int i;
931 
932 	/* NOTE: sid_lock must be held upon entry */
933 
934 	if (ndirty != 0) {
935 		for (i = 0; i < SID_ARRAY_SIZE; i++) {
936 			space_id[i] ^= dirty_array[i];
937 		}
938 
939 		free_space_ids += ndirty;
940 		space_id_index = 0;
941 	}
942 }
943 
944 #else /* CONFIG_SMP */
945 
946 static void recycle_sids(void)
947 {
948 	int i;
949 
950 	/* NOTE: sid_lock must be held upon entry */
951 
952 	if (dirty_space_ids != 0) {
953 		for (i = 0; i < SID_ARRAY_SIZE; i++) {
954 			space_id[i] ^= dirty_space_id[i];
955 			dirty_space_id[i] = 0;
956 		}
957 
958 		free_space_ids += dirty_space_ids;
959 		dirty_space_ids = 0;
960 		space_id_index = 0;
961 	}
962 }
963 #endif
964 
965 /*
966  * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
967  * purged, we can safely reuse the space ids that were released but
968  * not flushed from the tlb.
969  */
970 
971 #ifdef CONFIG_SMP
972 
973 static unsigned long recycle_ndirty;
974 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
975 static unsigned int recycle_inuse;
976 
977 void flush_tlb_all(void)
978 {
979 	int do_recycle;
980 
981 	do_recycle = 0;
982 	spin_lock(&sid_lock);
983 	if (dirty_space_ids > RECYCLE_THRESHOLD) {
984 	    BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
985 	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
986 	    recycle_inuse++;
987 	    do_recycle++;
988 	}
989 	spin_unlock(&sid_lock);
990 	on_each_cpu(flush_tlb_all_local, NULL, 1, 1);
991 	if (do_recycle) {
992 	    spin_lock(&sid_lock);
993 	    recycle_sids(recycle_ndirty,recycle_dirty_array);
994 	    recycle_inuse = 0;
995 	    spin_unlock(&sid_lock);
996 	}
997 }
998 #else
999 void flush_tlb_all(void)
1000 {
1001 	spin_lock(&sid_lock);
1002 	flush_tlb_all_local(NULL);
1003 	recycle_sids();
1004 	spin_unlock(&sid_lock);
1005 }
1006 #endif
1007 
1008 #ifdef CONFIG_BLK_DEV_INITRD
1009 void free_initrd_mem(unsigned long start, unsigned long end)
1010 {
1011 	if (start >= end)
1012 		return;
1013 	printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1014 	for (; start < end; start += PAGE_SIZE) {
1015 		ClearPageReserved(virt_to_page(start));
1016 		init_page_count(virt_to_page(start));
1017 		free_page(start);
1018 		num_physpages++;
1019 		totalram_pages++;
1020 	}
1021 }
1022 #endif
1023