1 /* 2 * linux/arch/parisc/mm/init.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright 1999 SuSE GmbH 6 * changed by Philipp Rumpf 7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org) 8 * Copyright 2004 Randolph Chung (tausq@debian.org) 9 * Copyright 2006-2007 Helge Deller (deller@gmx.de) 10 * 11 */ 12 13 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/bootmem.h> 17 #include <linux/gfp.h> 18 #include <linux/delay.h> 19 #include <linux/init.h> 20 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */ 21 #include <linux/initrd.h> 22 #include <linux/swap.h> 23 #include <linux/unistd.h> 24 #include <linux/nodemask.h> /* for node_online_map */ 25 #include <linux/pagemap.h> /* for release_pages and page_cache_release */ 26 27 #include <asm/pgalloc.h> 28 #include <asm/pgtable.h> 29 #include <asm/tlb.h> 30 #include <asm/pdc_chassis.h> 31 #include <asm/mmzone.h> 32 #include <asm/sections.h> 33 34 extern int data_start; 35 36 #if PT_NLEVELS == 3 37 /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout 38 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually 39 * guarantee that global objects will be laid out in memory in the same order 40 * as the order of declaration, so put these in different sections and use 41 * the linker script to order them. */ 42 pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE))); 43 #endif 44 45 pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE))); 46 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE))); 47 48 #ifdef CONFIG_DISCONTIGMEM 49 struct node_map_data node_data[MAX_NUMNODES] __read_mostly; 50 signed char pfnnid_map[PFNNID_MAP_MAX] __read_mostly; 51 #endif 52 53 static struct resource data_resource = { 54 .name = "Kernel data", 55 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 56 }; 57 58 static struct resource code_resource = { 59 .name = "Kernel code", 60 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 61 }; 62 63 static struct resource pdcdata_resource = { 64 .name = "PDC data (Page Zero)", 65 .start = 0, 66 .end = 0x9ff, 67 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 68 }; 69 70 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly; 71 72 /* The following array is initialized from the firmware specific 73 * information retrieved in kernel/inventory.c. 74 */ 75 76 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly; 77 int npmem_ranges __read_mostly; 78 79 #ifdef CONFIG_64BIT 80 #define MAX_MEM (~0UL) 81 #else /* !CONFIG_64BIT */ 82 #define MAX_MEM (3584U*1024U*1024U) 83 #endif /* !CONFIG_64BIT */ 84 85 static unsigned long mem_limit __read_mostly = MAX_MEM; 86 87 static void __init mem_limit_func(void) 88 { 89 char *cp, *end; 90 unsigned long limit; 91 92 /* We need this before __setup() functions are called */ 93 94 limit = MAX_MEM; 95 for (cp = boot_command_line; *cp; ) { 96 if (memcmp(cp, "mem=", 4) == 0) { 97 cp += 4; 98 limit = memparse(cp, &end); 99 if (end != cp) 100 break; 101 cp = end; 102 } else { 103 while (*cp != ' ' && *cp) 104 ++cp; 105 while (*cp == ' ') 106 ++cp; 107 } 108 } 109 110 if (limit < mem_limit) 111 mem_limit = limit; 112 } 113 114 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT) 115 116 static void __init setup_bootmem(void) 117 { 118 unsigned long bootmap_size; 119 unsigned long mem_max; 120 unsigned long bootmap_pages; 121 unsigned long bootmap_start_pfn; 122 unsigned long bootmap_pfn; 123 #ifndef CONFIG_DISCONTIGMEM 124 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1]; 125 int npmem_holes; 126 #endif 127 int i, sysram_resource_count; 128 129 disable_sr_hashing(); /* Turn off space register hashing */ 130 131 /* 132 * Sort the ranges. Since the number of ranges is typically 133 * small, and performance is not an issue here, just do 134 * a simple insertion sort. 135 */ 136 137 for (i = 1; i < npmem_ranges; i++) { 138 int j; 139 140 for (j = i; j > 0; j--) { 141 unsigned long tmp; 142 143 if (pmem_ranges[j-1].start_pfn < 144 pmem_ranges[j].start_pfn) { 145 146 break; 147 } 148 tmp = pmem_ranges[j-1].start_pfn; 149 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn; 150 pmem_ranges[j].start_pfn = tmp; 151 tmp = pmem_ranges[j-1].pages; 152 pmem_ranges[j-1].pages = pmem_ranges[j].pages; 153 pmem_ranges[j].pages = tmp; 154 } 155 } 156 157 #ifndef CONFIG_DISCONTIGMEM 158 /* 159 * Throw out ranges that are too far apart (controlled by 160 * MAX_GAP). 161 */ 162 163 for (i = 1; i < npmem_ranges; i++) { 164 if (pmem_ranges[i].start_pfn - 165 (pmem_ranges[i-1].start_pfn + 166 pmem_ranges[i-1].pages) > MAX_GAP) { 167 npmem_ranges = i; 168 printk("Large gap in memory detected (%ld pages). " 169 "Consider turning on CONFIG_DISCONTIGMEM\n", 170 pmem_ranges[i].start_pfn - 171 (pmem_ranges[i-1].start_pfn + 172 pmem_ranges[i-1].pages)); 173 break; 174 } 175 } 176 #endif 177 178 if (npmem_ranges > 1) { 179 180 /* Print the memory ranges */ 181 182 printk(KERN_INFO "Memory Ranges:\n"); 183 184 for (i = 0; i < npmem_ranges; i++) { 185 unsigned long start; 186 unsigned long size; 187 188 size = (pmem_ranges[i].pages << PAGE_SHIFT); 189 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT); 190 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n", 191 i,start, start + (size - 1), size >> 20); 192 } 193 } 194 195 sysram_resource_count = npmem_ranges; 196 for (i = 0; i < sysram_resource_count; i++) { 197 struct resource *res = &sysram_resources[i]; 198 res->name = "System RAM"; 199 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT; 200 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1; 201 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 202 request_resource(&iomem_resource, res); 203 } 204 205 /* 206 * For 32 bit kernels we limit the amount of memory we can 207 * support, in order to preserve enough kernel address space 208 * for other purposes. For 64 bit kernels we don't normally 209 * limit the memory, but this mechanism can be used to 210 * artificially limit the amount of memory (and it is written 211 * to work with multiple memory ranges). 212 */ 213 214 mem_limit_func(); /* check for "mem=" argument */ 215 216 mem_max = 0; 217 for (i = 0; i < npmem_ranges; i++) { 218 unsigned long rsize; 219 220 rsize = pmem_ranges[i].pages << PAGE_SHIFT; 221 if ((mem_max + rsize) > mem_limit) { 222 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20); 223 if (mem_max == mem_limit) 224 npmem_ranges = i; 225 else { 226 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT) 227 - (mem_max >> PAGE_SHIFT); 228 npmem_ranges = i + 1; 229 mem_max = mem_limit; 230 } 231 break; 232 } 233 mem_max += rsize; 234 } 235 236 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20); 237 238 #ifndef CONFIG_DISCONTIGMEM 239 /* Merge the ranges, keeping track of the holes */ 240 241 { 242 unsigned long end_pfn; 243 unsigned long hole_pages; 244 245 npmem_holes = 0; 246 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages; 247 for (i = 1; i < npmem_ranges; i++) { 248 249 hole_pages = pmem_ranges[i].start_pfn - end_pfn; 250 if (hole_pages) { 251 pmem_holes[npmem_holes].start_pfn = end_pfn; 252 pmem_holes[npmem_holes++].pages = hole_pages; 253 end_pfn += hole_pages; 254 } 255 end_pfn += pmem_ranges[i].pages; 256 } 257 258 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn; 259 npmem_ranges = 1; 260 } 261 #endif 262 263 bootmap_pages = 0; 264 for (i = 0; i < npmem_ranges; i++) 265 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages); 266 267 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT; 268 269 #ifdef CONFIG_DISCONTIGMEM 270 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) { 271 memset(NODE_DATA(i), 0, sizeof(pg_data_t)); 272 NODE_DATA(i)->bdata = &bootmem_node_data[i]; 273 } 274 memset(pfnnid_map, 0xff, sizeof(pfnnid_map)); 275 276 for (i = 0; i < npmem_ranges; i++) { 277 node_set_state(i, N_NORMAL_MEMORY); 278 node_set_online(i); 279 } 280 #endif 281 282 /* 283 * Initialize and free the full range of memory in each range. 284 * Note that the only writing these routines do are to the bootmap, 285 * and we've made sure to locate the bootmap properly so that they 286 * won't be writing over anything important. 287 */ 288 289 bootmap_pfn = bootmap_start_pfn; 290 max_pfn = 0; 291 for (i = 0; i < npmem_ranges; i++) { 292 unsigned long start_pfn; 293 unsigned long npages; 294 295 start_pfn = pmem_ranges[i].start_pfn; 296 npages = pmem_ranges[i].pages; 297 298 bootmap_size = init_bootmem_node(NODE_DATA(i), 299 bootmap_pfn, 300 start_pfn, 301 (start_pfn + npages) ); 302 free_bootmem_node(NODE_DATA(i), 303 (start_pfn << PAGE_SHIFT), 304 (npages << PAGE_SHIFT) ); 305 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 306 if ((start_pfn + npages) > max_pfn) 307 max_pfn = start_pfn + npages; 308 } 309 310 /* IOMMU is always used to access "high mem" on those boxes 311 * that can support enough mem that a PCI device couldn't 312 * directly DMA to any physical addresses. 313 * ISA DMA support will need to revisit this. 314 */ 315 max_low_pfn = max_pfn; 316 317 /* bootmap sizing messed up? */ 318 BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages); 319 320 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */ 321 322 #define PDC_CONSOLE_IO_IODC_SIZE 32768 323 324 reserve_bootmem_node(NODE_DATA(0), 0UL, 325 (unsigned long)(PAGE0->mem_free + 326 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT); 327 reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text), 328 (unsigned long)(_end - _text), BOOTMEM_DEFAULT); 329 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT), 330 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT), 331 BOOTMEM_DEFAULT); 332 333 #ifndef CONFIG_DISCONTIGMEM 334 335 /* reserve the holes */ 336 337 for (i = 0; i < npmem_holes; i++) { 338 reserve_bootmem_node(NODE_DATA(0), 339 (pmem_holes[i].start_pfn << PAGE_SHIFT), 340 (pmem_holes[i].pages << PAGE_SHIFT), 341 BOOTMEM_DEFAULT); 342 } 343 #endif 344 345 #ifdef CONFIG_BLK_DEV_INITRD 346 if (initrd_start) { 347 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end); 348 if (__pa(initrd_start) < mem_max) { 349 unsigned long initrd_reserve; 350 351 if (__pa(initrd_end) > mem_max) { 352 initrd_reserve = mem_max - __pa(initrd_start); 353 } else { 354 initrd_reserve = initrd_end - initrd_start; 355 } 356 initrd_below_start_ok = 1; 357 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max); 358 359 reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start), 360 initrd_reserve, BOOTMEM_DEFAULT); 361 } 362 } 363 #endif 364 365 data_resource.start = virt_to_phys(&data_start); 366 data_resource.end = virt_to_phys(_end) - 1; 367 code_resource.start = virt_to_phys(_text); 368 code_resource.end = virt_to_phys(&data_start)-1; 369 370 /* We don't know which region the kernel will be in, so try 371 * all of them. 372 */ 373 for (i = 0; i < sysram_resource_count; i++) { 374 struct resource *res = &sysram_resources[i]; 375 request_resource(res, &code_resource); 376 request_resource(res, &data_resource); 377 } 378 request_resource(&sysram_resources[0], &pdcdata_resource); 379 } 380 381 static void __init map_pages(unsigned long start_vaddr, 382 unsigned long start_paddr, unsigned long size, 383 pgprot_t pgprot, int force) 384 { 385 pgd_t *pg_dir; 386 pmd_t *pmd; 387 pte_t *pg_table; 388 unsigned long end_paddr; 389 unsigned long start_pmd; 390 unsigned long start_pte; 391 unsigned long tmp1; 392 unsigned long tmp2; 393 unsigned long address; 394 unsigned long vaddr; 395 unsigned long ro_start; 396 unsigned long ro_end; 397 unsigned long fv_addr; 398 unsigned long gw_addr; 399 extern const unsigned long fault_vector_20; 400 extern void * const linux_gateway_page; 401 402 ro_start = __pa((unsigned long)_text); 403 ro_end = __pa((unsigned long)&data_start); 404 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK; 405 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK; 406 407 end_paddr = start_paddr + size; 408 409 pg_dir = pgd_offset_k(start_vaddr); 410 411 #if PTRS_PER_PMD == 1 412 start_pmd = 0; 413 #else 414 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 415 #endif 416 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 417 418 address = start_paddr; 419 vaddr = start_vaddr; 420 while (address < end_paddr) { 421 #if PTRS_PER_PMD == 1 422 pmd = (pmd_t *)__pa(pg_dir); 423 #else 424 pmd = (pmd_t *)pgd_address(*pg_dir); 425 426 /* 427 * pmd is physical at this point 428 */ 429 430 if (!pmd) { 431 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER); 432 pmd = (pmd_t *) __pa(pmd); 433 } 434 435 pgd_populate(NULL, pg_dir, __va(pmd)); 436 #endif 437 pg_dir++; 438 439 /* now change pmd to kernel virtual addresses */ 440 441 pmd = (pmd_t *)__va(pmd) + start_pmd; 442 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) { 443 444 /* 445 * pg_table is physical at this point 446 */ 447 448 pg_table = (pte_t *)pmd_address(*pmd); 449 if (!pg_table) { 450 pg_table = (pte_t *) 451 alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE); 452 pg_table = (pte_t *) __pa(pg_table); 453 } 454 455 pmd_populate_kernel(NULL, pmd, __va(pg_table)); 456 457 /* now change pg_table to kernel virtual addresses */ 458 459 pg_table = (pte_t *) __va(pg_table) + start_pte; 460 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) { 461 pte_t pte; 462 463 /* 464 * Map the fault vector writable so we can 465 * write the HPMC checksum. 466 */ 467 if (force) 468 pte = __mk_pte(address, pgprot); 469 else if (core_kernel_text(vaddr) && 470 address != fv_addr) 471 pte = __mk_pte(address, PAGE_KERNEL_EXEC); 472 else 473 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB) 474 if (address >= ro_start && address < ro_end 475 && address != fv_addr 476 && address != gw_addr) 477 pte = __mk_pte(address, PAGE_KERNEL_RO); 478 else 479 #endif 480 pte = __mk_pte(address, pgprot); 481 482 if (address >= end_paddr) { 483 if (force) 484 break; 485 else 486 pte_val(pte) = 0; 487 } 488 489 set_pte(pg_table, pte); 490 491 address += PAGE_SIZE; 492 vaddr += PAGE_SIZE; 493 } 494 start_pte = 0; 495 496 if (address >= end_paddr) 497 break; 498 } 499 start_pmd = 0; 500 } 501 } 502 503 void free_initmem(void) 504 { 505 unsigned long init_begin = (unsigned long)__init_begin; 506 unsigned long init_end = (unsigned long)__init_end; 507 508 /* The init text pages are marked R-X. We have to 509 * flush the icache and mark them RW- 510 * 511 * This is tricky, because map_pages is in the init section. 512 * Do a dummy remap of the data section first (the data 513 * section is already PAGE_KERNEL) to pull in the TLB entries 514 * for map_kernel */ 515 map_pages(init_begin, __pa(init_begin), init_end - init_begin, 516 PAGE_KERNEL_RWX, 1); 517 /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute 518 * map_pages */ 519 map_pages(init_begin, __pa(init_begin), init_end - init_begin, 520 PAGE_KERNEL, 1); 521 522 /* force the kernel to see the new TLB entries */ 523 __flush_tlb_range(0, init_begin, init_end); 524 /* Attempt to catch anyone trying to execute code here 525 * by filling the page with BRK insns. 526 */ 527 memset((void *)init_begin, 0x00, init_end - init_begin); 528 /* finally dump all the instructions which were cached, since the 529 * pages are no-longer executable */ 530 flush_icache_range(init_begin, init_end); 531 532 free_initmem_default(-1); 533 534 /* set up a new led state on systems shipped LED State panel */ 535 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE); 536 } 537 538 539 #ifdef CONFIG_DEBUG_RODATA 540 void mark_rodata_ro(void) 541 { 542 /* rodata memory was already mapped with KERNEL_RO access rights by 543 pagetable_init() and map_pages(). No need to do additional stuff here */ 544 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n", 545 (unsigned long)(__end_rodata - __start_rodata) >> 10); 546 } 547 #endif 548 549 550 /* 551 * Just an arbitrary offset to serve as a "hole" between mapping areas 552 * (between top of physical memory and a potential pcxl dma mapping 553 * area, and below the vmalloc mapping area). 554 * 555 * The current 32K value just means that there will be a 32K "hole" 556 * between mapping areas. That means that any out-of-bounds memory 557 * accesses will hopefully be caught. The vmalloc() routines leaves 558 * a hole of 4kB between each vmalloced area for the same reason. 559 */ 560 561 /* Leave room for gateway page expansion */ 562 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE 563 #error KERNEL_MAP_START is in gateway reserved region 564 #endif 565 #define MAP_START (KERNEL_MAP_START) 566 567 #define VM_MAP_OFFSET (32*1024) 568 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \ 569 & ~(VM_MAP_OFFSET-1))) 570 571 void *parisc_vmalloc_start __read_mostly; 572 EXPORT_SYMBOL(parisc_vmalloc_start); 573 574 #ifdef CONFIG_PA11 575 unsigned long pcxl_dma_start __read_mostly; 576 #endif 577 578 void __init mem_init(void) 579 { 580 /* Do sanity checks on page table constants */ 581 BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t)); 582 BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t)); 583 BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t)); 584 BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD 585 > BITS_PER_LONG); 586 587 high_memory = __va((max_pfn << PAGE_SHIFT)); 588 set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1); 589 free_all_bootmem(); 590 591 #ifdef CONFIG_PA11 592 if (hppa_dma_ops == &pcxl_dma_ops) { 593 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START); 594 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start 595 + PCXL_DMA_MAP_SIZE); 596 } else { 597 pcxl_dma_start = 0; 598 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START); 599 } 600 #else 601 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START); 602 #endif 603 604 mem_init_print_info(NULL); 605 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */ 606 printk("virtual kernel memory layout:\n" 607 " vmalloc : 0x%p - 0x%p (%4ld MB)\n" 608 " memory : 0x%p - 0x%p (%4ld MB)\n" 609 " .init : 0x%p - 0x%p (%4ld kB)\n" 610 " .data : 0x%p - 0x%p (%4ld kB)\n" 611 " .text : 0x%p - 0x%p (%4ld kB)\n", 612 613 (void*)VMALLOC_START, (void*)VMALLOC_END, 614 (VMALLOC_END - VMALLOC_START) >> 20, 615 616 __va(0), high_memory, 617 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20, 618 619 __init_begin, __init_end, 620 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10, 621 622 _etext, _edata, 623 ((unsigned long)_edata - (unsigned long)_etext) >> 10, 624 625 _text, _etext, 626 ((unsigned long)_etext - (unsigned long)_text) >> 10); 627 #endif 628 } 629 630 unsigned long *empty_zero_page __read_mostly; 631 EXPORT_SYMBOL(empty_zero_page); 632 633 void show_mem(unsigned int filter) 634 { 635 int i,free = 0,total = 0,reserved = 0; 636 int shared = 0, cached = 0; 637 638 printk(KERN_INFO "Mem-info:\n"); 639 show_free_areas(filter); 640 if (filter & SHOW_MEM_FILTER_PAGE_COUNT) 641 return; 642 #ifndef CONFIG_DISCONTIGMEM 643 i = max_mapnr; 644 while (i-- > 0) { 645 total++; 646 if (PageReserved(mem_map+i)) 647 reserved++; 648 else if (PageSwapCache(mem_map+i)) 649 cached++; 650 else if (!page_count(&mem_map[i])) 651 free++; 652 else 653 shared += page_count(&mem_map[i]) - 1; 654 } 655 #else 656 for (i = 0; i < npmem_ranges; i++) { 657 int j; 658 659 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) { 660 struct page *p; 661 unsigned long flags; 662 663 pgdat_resize_lock(NODE_DATA(i), &flags); 664 p = nid_page_nr(i, j) - node_start_pfn(i); 665 666 total++; 667 if (PageReserved(p)) 668 reserved++; 669 else if (PageSwapCache(p)) 670 cached++; 671 else if (!page_count(p)) 672 free++; 673 else 674 shared += page_count(p) - 1; 675 pgdat_resize_unlock(NODE_DATA(i), &flags); 676 } 677 } 678 #endif 679 printk(KERN_INFO "%d pages of RAM\n", total); 680 printk(KERN_INFO "%d reserved pages\n", reserved); 681 printk(KERN_INFO "%d pages shared\n", shared); 682 printk(KERN_INFO "%d pages swap cached\n", cached); 683 684 685 #ifdef CONFIG_DISCONTIGMEM 686 { 687 struct zonelist *zl; 688 int i, j; 689 690 for (i = 0; i < npmem_ranges; i++) { 691 zl = node_zonelist(i, 0); 692 for (j = 0; j < MAX_NR_ZONES; j++) { 693 struct zoneref *z; 694 struct zone *zone; 695 696 printk("Zone list for zone %d on node %d: ", j, i); 697 for_each_zone_zonelist(zone, z, zl, j) 698 printk("[%d/%s] ", zone_to_nid(zone), 699 zone->name); 700 printk("\n"); 701 } 702 } 703 } 704 #endif 705 } 706 707 /* 708 * pagetable_init() sets up the page tables 709 * 710 * Note that gateway_init() places the Linux gateway page at page 0. 711 * Since gateway pages cannot be dereferenced this has the desirable 712 * side effect of trapping those pesky NULL-reference errors in the 713 * kernel. 714 */ 715 static void __init pagetable_init(void) 716 { 717 int range; 718 719 /* Map each physical memory range to its kernel vaddr */ 720 721 for (range = 0; range < npmem_ranges; range++) { 722 unsigned long start_paddr; 723 unsigned long end_paddr; 724 unsigned long size; 725 726 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT; 727 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT); 728 size = pmem_ranges[range].pages << PAGE_SHIFT; 729 730 map_pages((unsigned long)__va(start_paddr), start_paddr, 731 size, PAGE_KERNEL, 0); 732 } 733 734 #ifdef CONFIG_BLK_DEV_INITRD 735 if (initrd_end && initrd_end > mem_limit) { 736 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end); 737 map_pages(initrd_start, __pa(initrd_start), 738 initrd_end - initrd_start, PAGE_KERNEL, 0); 739 } 740 #endif 741 742 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE); 743 memset(empty_zero_page, 0, PAGE_SIZE); 744 } 745 746 static void __init gateway_init(void) 747 { 748 unsigned long linux_gateway_page_addr; 749 /* FIXME: This is 'const' in order to trick the compiler 750 into not treating it as DP-relative data. */ 751 extern void * const linux_gateway_page; 752 753 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK; 754 755 /* 756 * Setup Linux Gateway page. 757 * 758 * The Linux gateway page will reside in kernel space (on virtual 759 * page 0), so it doesn't need to be aliased into user space. 760 */ 761 762 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page), 763 PAGE_SIZE, PAGE_GATEWAY, 1); 764 } 765 766 #ifdef CONFIG_HPUX 767 void 768 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm) 769 { 770 pgd_t *pg_dir; 771 pmd_t *pmd; 772 pte_t *pg_table; 773 unsigned long start_pmd; 774 unsigned long start_pte; 775 unsigned long address; 776 unsigned long hpux_gw_page_addr; 777 /* FIXME: This is 'const' in order to trick the compiler 778 into not treating it as DP-relative data. */ 779 extern void * const hpux_gateway_page; 780 781 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK; 782 783 /* 784 * Setup HP-UX Gateway page. 785 * 786 * The HP-UX gateway page resides in the user address space, 787 * so it needs to be aliased into each process. 788 */ 789 790 pg_dir = pgd_offset(mm,hpux_gw_page_addr); 791 792 #if PTRS_PER_PMD == 1 793 start_pmd = 0; 794 #else 795 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 796 #endif 797 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 798 799 address = __pa(&hpux_gateway_page); 800 #if PTRS_PER_PMD == 1 801 pmd = (pmd_t *)__pa(pg_dir); 802 #else 803 pmd = (pmd_t *) pgd_address(*pg_dir); 804 805 /* 806 * pmd is physical at this point 807 */ 808 809 if (!pmd) { 810 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL); 811 pmd = (pmd_t *) __pa(pmd); 812 } 813 814 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd); 815 #endif 816 /* now change pmd to kernel virtual addresses */ 817 818 pmd = (pmd_t *)__va(pmd) + start_pmd; 819 820 /* 821 * pg_table is physical at this point 822 */ 823 824 pg_table = (pte_t *) pmd_address(*pmd); 825 if (!pg_table) 826 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL)); 827 828 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table); 829 830 /* now change pg_table to kernel virtual addresses */ 831 832 pg_table = (pte_t *) __va(pg_table) + start_pte; 833 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY)); 834 } 835 EXPORT_SYMBOL(map_hpux_gateway_page); 836 #endif 837 838 void __init paging_init(void) 839 { 840 int i; 841 842 setup_bootmem(); 843 pagetable_init(); 844 gateway_init(); 845 flush_cache_all_local(); /* start with known state */ 846 flush_tlb_all_local(NULL); 847 848 for (i = 0; i < npmem_ranges; i++) { 849 unsigned long zones_size[MAX_NR_ZONES] = { 0, }; 850 851 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages; 852 853 #ifdef CONFIG_DISCONTIGMEM 854 /* Need to initialize the pfnnid_map before we can initialize 855 the zone */ 856 { 857 int j; 858 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT); 859 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT); 860 j++) { 861 pfnnid_map[j] = i; 862 } 863 } 864 #endif 865 866 free_area_init_node(i, zones_size, 867 pmem_ranges[i].start_pfn, NULL); 868 } 869 } 870 871 #ifdef CONFIG_PA20 872 873 /* 874 * Currently, all PA20 chips have 18 bit protection IDs, which is the 875 * limiting factor (space ids are 32 bits). 876 */ 877 878 #define NR_SPACE_IDS 262144 879 880 #else 881 882 /* 883 * Currently we have a one-to-one relationship between space IDs and 884 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only 885 * support 15 bit protection IDs, so that is the limiting factor. 886 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's 887 * probably not worth the effort for a special case here. 888 */ 889 890 #define NR_SPACE_IDS 32768 891 892 #endif /* !CONFIG_PA20 */ 893 894 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2) 895 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long))) 896 897 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */ 898 static unsigned long dirty_space_id[SID_ARRAY_SIZE]; 899 static unsigned long space_id_index; 900 static unsigned long free_space_ids = NR_SPACE_IDS - 1; 901 static unsigned long dirty_space_ids = 0; 902 903 static DEFINE_SPINLOCK(sid_lock); 904 905 unsigned long alloc_sid(void) 906 { 907 unsigned long index; 908 909 spin_lock(&sid_lock); 910 911 if (free_space_ids == 0) { 912 if (dirty_space_ids != 0) { 913 spin_unlock(&sid_lock); 914 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */ 915 spin_lock(&sid_lock); 916 } 917 BUG_ON(free_space_ids == 0); 918 } 919 920 free_space_ids--; 921 922 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index); 923 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1))); 924 space_id_index = index; 925 926 spin_unlock(&sid_lock); 927 928 return index << SPACEID_SHIFT; 929 } 930 931 void free_sid(unsigned long spaceid) 932 { 933 unsigned long index = spaceid >> SPACEID_SHIFT; 934 unsigned long *dirty_space_offset; 935 936 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG); 937 index &= (BITS_PER_LONG - 1); 938 939 spin_lock(&sid_lock); 940 941 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */ 942 943 *dirty_space_offset |= (1L << index); 944 dirty_space_ids++; 945 946 spin_unlock(&sid_lock); 947 } 948 949 950 #ifdef CONFIG_SMP 951 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array) 952 { 953 int i; 954 955 /* NOTE: sid_lock must be held upon entry */ 956 957 *ndirtyptr = dirty_space_ids; 958 if (dirty_space_ids != 0) { 959 for (i = 0; i < SID_ARRAY_SIZE; i++) { 960 dirty_array[i] = dirty_space_id[i]; 961 dirty_space_id[i] = 0; 962 } 963 dirty_space_ids = 0; 964 } 965 966 return; 967 } 968 969 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array) 970 { 971 int i; 972 973 /* NOTE: sid_lock must be held upon entry */ 974 975 if (ndirty != 0) { 976 for (i = 0; i < SID_ARRAY_SIZE; i++) { 977 space_id[i] ^= dirty_array[i]; 978 } 979 980 free_space_ids += ndirty; 981 space_id_index = 0; 982 } 983 } 984 985 #else /* CONFIG_SMP */ 986 987 static void recycle_sids(void) 988 { 989 int i; 990 991 /* NOTE: sid_lock must be held upon entry */ 992 993 if (dirty_space_ids != 0) { 994 for (i = 0; i < SID_ARRAY_SIZE; i++) { 995 space_id[i] ^= dirty_space_id[i]; 996 dirty_space_id[i] = 0; 997 } 998 999 free_space_ids += dirty_space_ids; 1000 dirty_space_ids = 0; 1001 space_id_index = 0; 1002 } 1003 } 1004 #endif 1005 1006 /* 1007 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is 1008 * purged, we can safely reuse the space ids that were released but 1009 * not flushed from the tlb. 1010 */ 1011 1012 #ifdef CONFIG_SMP 1013 1014 static unsigned long recycle_ndirty; 1015 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE]; 1016 static unsigned int recycle_inuse; 1017 1018 void flush_tlb_all(void) 1019 { 1020 int do_recycle; 1021 1022 __inc_irq_stat(irq_tlb_count); 1023 do_recycle = 0; 1024 spin_lock(&sid_lock); 1025 if (dirty_space_ids > RECYCLE_THRESHOLD) { 1026 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */ 1027 get_dirty_sids(&recycle_ndirty,recycle_dirty_array); 1028 recycle_inuse++; 1029 do_recycle++; 1030 } 1031 spin_unlock(&sid_lock); 1032 on_each_cpu(flush_tlb_all_local, NULL, 1); 1033 if (do_recycle) { 1034 spin_lock(&sid_lock); 1035 recycle_sids(recycle_ndirty,recycle_dirty_array); 1036 recycle_inuse = 0; 1037 spin_unlock(&sid_lock); 1038 } 1039 } 1040 #else 1041 void flush_tlb_all(void) 1042 { 1043 __inc_irq_stat(irq_tlb_count); 1044 spin_lock(&sid_lock); 1045 flush_tlb_all_local(NULL); 1046 recycle_sids(); 1047 spin_unlock(&sid_lock); 1048 } 1049 #endif 1050 1051 #ifdef CONFIG_BLK_DEV_INITRD 1052 void free_initrd_mem(unsigned long start, unsigned long end) 1053 { 1054 free_reserved_area((void *)start, (void *)end, -1, "initrd"); 1055 } 1056 #endif 1057