1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/arch/parisc/mm/init.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Copyright 1999 SuSE GmbH 7 * changed by Philipp Rumpf 8 * Copyright 1999 Philipp Rumpf (prumpf@tux.org) 9 * Copyright 2004 Randolph Chung (tausq@debian.org) 10 * Copyright 2006-2007 Helge Deller (deller@gmx.de) 11 * 12 */ 13 14 15 #include <linux/module.h> 16 #include <linux/mm.h> 17 #include <linux/memblock.h> 18 #include <linux/gfp.h> 19 #include <linux/delay.h> 20 #include <linux/init.h> 21 #include <linux/initrd.h> 22 #include <linux/swap.h> 23 #include <linux/unistd.h> 24 #include <linux/nodemask.h> /* for node_online_map */ 25 #include <linux/pagemap.h> /* for release_pages */ 26 #include <linux/compat.h> 27 28 #include <asm/pgalloc.h> 29 #include <asm/tlb.h> 30 #include <asm/pdc_chassis.h> 31 #include <asm/mmzone.h> 32 #include <asm/sections.h> 33 #include <asm/msgbuf.h> 34 #include <asm/sparsemem.h> 35 #include <asm/asm-offsets.h> 36 #include <asm/shmbuf.h> 37 38 extern int data_start; 39 extern void parisc_kernel_start(void); /* Kernel entry point in head.S */ 40 41 #if CONFIG_PGTABLE_LEVELS == 3 42 pmd_t pmd0[PTRS_PER_PMD] __section(".data..vm0.pmd") __attribute__ ((aligned(PAGE_SIZE))); 43 #endif 44 45 pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".data..vm0.pgd") __attribute__ ((aligned(PAGE_SIZE))); 46 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __section(".data..vm0.pte") __attribute__ ((aligned(PAGE_SIZE))); 47 48 static struct resource data_resource = { 49 .name = "Kernel data", 50 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, 51 }; 52 53 static struct resource code_resource = { 54 .name = "Kernel code", 55 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, 56 }; 57 58 static struct resource pdcdata_resource = { 59 .name = "PDC data (Page Zero)", 60 .start = 0, 61 .end = 0x9ff, 62 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 63 }; 64 65 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __ro_after_init; 66 67 /* The following array is initialized from the firmware specific 68 * information retrieved in kernel/inventory.c. 69 */ 70 71 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __initdata; 72 int npmem_ranges __initdata; 73 74 #ifdef CONFIG_64BIT 75 #define MAX_MEM (1UL << MAX_PHYSMEM_BITS) 76 #else /* !CONFIG_64BIT */ 77 #define MAX_MEM (3584U*1024U*1024U) 78 #endif /* !CONFIG_64BIT */ 79 80 static unsigned long mem_limit __read_mostly = MAX_MEM; 81 82 static void __init mem_limit_func(void) 83 { 84 char *cp, *end; 85 unsigned long limit; 86 87 /* We need this before __setup() functions are called */ 88 89 limit = MAX_MEM; 90 for (cp = boot_command_line; *cp; ) { 91 if (memcmp(cp, "mem=", 4) == 0) { 92 cp += 4; 93 limit = memparse(cp, &end); 94 if (end != cp) 95 break; 96 cp = end; 97 } else { 98 while (*cp != ' ' && *cp) 99 ++cp; 100 while (*cp == ' ') 101 ++cp; 102 } 103 } 104 105 if (limit < mem_limit) 106 mem_limit = limit; 107 } 108 109 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT) 110 111 static void __init setup_bootmem(void) 112 { 113 unsigned long mem_max; 114 #ifndef CONFIG_SPARSEMEM 115 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1]; 116 int npmem_holes; 117 #endif 118 int i, sysram_resource_count; 119 120 disable_sr_hashing(); /* Turn off space register hashing */ 121 122 /* 123 * Sort the ranges. Since the number of ranges is typically 124 * small, and performance is not an issue here, just do 125 * a simple insertion sort. 126 */ 127 128 for (i = 1; i < npmem_ranges; i++) { 129 int j; 130 131 for (j = i; j > 0; j--) { 132 if (pmem_ranges[j-1].start_pfn < 133 pmem_ranges[j].start_pfn) { 134 135 break; 136 } 137 swap(pmem_ranges[j-1], pmem_ranges[j]); 138 } 139 } 140 141 #ifndef CONFIG_SPARSEMEM 142 /* 143 * Throw out ranges that are too far apart (controlled by 144 * MAX_GAP). 145 */ 146 147 for (i = 1; i < npmem_ranges; i++) { 148 if (pmem_ranges[i].start_pfn - 149 (pmem_ranges[i-1].start_pfn + 150 pmem_ranges[i-1].pages) > MAX_GAP) { 151 npmem_ranges = i; 152 printk("Large gap in memory detected (%ld pages). " 153 "Consider turning on CONFIG_SPARSEMEM\n", 154 pmem_ranges[i].start_pfn - 155 (pmem_ranges[i-1].start_pfn + 156 pmem_ranges[i-1].pages)); 157 break; 158 } 159 } 160 #endif 161 162 /* Print the memory ranges */ 163 pr_info("Memory Ranges:\n"); 164 165 for (i = 0; i < npmem_ranges; i++) { 166 struct resource *res = &sysram_resources[i]; 167 unsigned long start; 168 unsigned long size; 169 170 size = (pmem_ranges[i].pages << PAGE_SHIFT); 171 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT); 172 pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n", 173 i, start, start + (size - 1), size >> 20); 174 175 /* request memory resource */ 176 res->name = "System RAM"; 177 res->start = start; 178 res->end = start + size - 1; 179 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 180 request_resource(&iomem_resource, res); 181 } 182 183 sysram_resource_count = npmem_ranges; 184 185 /* 186 * For 32 bit kernels we limit the amount of memory we can 187 * support, in order to preserve enough kernel address space 188 * for other purposes. For 64 bit kernels we don't normally 189 * limit the memory, but this mechanism can be used to 190 * artificially limit the amount of memory (and it is written 191 * to work with multiple memory ranges). 192 */ 193 194 mem_limit_func(); /* check for "mem=" argument */ 195 196 mem_max = 0; 197 for (i = 0; i < npmem_ranges; i++) { 198 unsigned long rsize; 199 200 rsize = pmem_ranges[i].pages << PAGE_SHIFT; 201 if ((mem_max + rsize) > mem_limit) { 202 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20); 203 if (mem_max == mem_limit) 204 npmem_ranges = i; 205 else { 206 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT) 207 - (mem_max >> PAGE_SHIFT); 208 npmem_ranges = i + 1; 209 mem_max = mem_limit; 210 } 211 break; 212 } 213 mem_max += rsize; 214 } 215 216 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20); 217 218 #ifndef CONFIG_SPARSEMEM 219 /* Merge the ranges, keeping track of the holes */ 220 { 221 unsigned long end_pfn; 222 unsigned long hole_pages; 223 224 npmem_holes = 0; 225 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages; 226 for (i = 1; i < npmem_ranges; i++) { 227 228 hole_pages = pmem_ranges[i].start_pfn - end_pfn; 229 if (hole_pages) { 230 pmem_holes[npmem_holes].start_pfn = end_pfn; 231 pmem_holes[npmem_holes++].pages = hole_pages; 232 end_pfn += hole_pages; 233 } 234 end_pfn += pmem_ranges[i].pages; 235 } 236 237 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn; 238 npmem_ranges = 1; 239 } 240 #endif 241 242 /* 243 * Initialize and free the full range of memory in each range. 244 */ 245 246 max_pfn = 0; 247 for (i = 0; i < npmem_ranges; i++) { 248 unsigned long start_pfn; 249 unsigned long npages; 250 unsigned long start; 251 unsigned long size; 252 253 start_pfn = pmem_ranges[i].start_pfn; 254 npages = pmem_ranges[i].pages; 255 256 start = start_pfn << PAGE_SHIFT; 257 size = npages << PAGE_SHIFT; 258 259 /* add system RAM memblock */ 260 memblock_add(start, size); 261 262 if ((start_pfn + npages) > max_pfn) 263 max_pfn = start_pfn + npages; 264 } 265 266 /* 267 * We can't use memblock top-down allocations because we only 268 * created the initial mapping up to KERNEL_INITIAL_SIZE in 269 * the assembly bootup code. 270 */ 271 memblock_set_bottom_up(true); 272 273 /* IOMMU is always used to access "high mem" on those boxes 274 * that can support enough mem that a PCI device couldn't 275 * directly DMA to any physical addresses. 276 * ISA DMA support will need to revisit this. 277 */ 278 max_low_pfn = max_pfn; 279 280 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */ 281 282 #define PDC_CONSOLE_IO_IODC_SIZE 32768 283 284 memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free + 285 PDC_CONSOLE_IO_IODC_SIZE)); 286 memblock_reserve(__pa(KERNEL_BINARY_TEXT_START), 287 (unsigned long)(_end - KERNEL_BINARY_TEXT_START)); 288 289 #ifndef CONFIG_SPARSEMEM 290 291 /* reserve the holes */ 292 293 for (i = 0; i < npmem_holes; i++) { 294 memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT), 295 (pmem_holes[i].pages << PAGE_SHIFT)); 296 } 297 #endif 298 299 #ifdef CONFIG_BLK_DEV_INITRD 300 if (initrd_start) { 301 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end); 302 if (__pa(initrd_start) < mem_max) { 303 unsigned long initrd_reserve; 304 305 if (__pa(initrd_end) > mem_max) { 306 initrd_reserve = mem_max - __pa(initrd_start); 307 } else { 308 initrd_reserve = initrd_end - initrd_start; 309 } 310 initrd_below_start_ok = 1; 311 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max); 312 313 memblock_reserve(__pa(initrd_start), initrd_reserve); 314 } 315 } 316 #endif 317 318 data_resource.start = virt_to_phys(&data_start); 319 data_resource.end = virt_to_phys(_end) - 1; 320 code_resource.start = virt_to_phys(_text); 321 code_resource.end = virt_to_phys(&data_start)-1; 322 323 /* We don't know which region the kernel will be in, so try 324 * all of them. 325 */ 326 for (i = 0; i < sysram_resource_count; i++) { 327 struct resource *res = &sysram_resources[i]; 328 request_resource(res, &code_resource); 329 request_resource(res, &data_resource); 330 } 331 request_resource(&sysram_resources[0], &pdcdata_resource); 332 333 /* Initialize Page Deallocation Table (PDT) and check for bad memory. */ 334 pdc_pdt_init(); 335 336 memblock_allow_resize(); 337 memblock_dump_all(); 338 } 339 340 static bool kernel_set_to_readonly; 341 342 static void __ref map_pages(unsigned long start_vaddr, 343 unsigned long start_paddr, unsigned long size, 344 pgprot_t pgprot, int force) 345 { 346 pmd_t *pmd; 347 pte_t *pg_table; 348 unsigned long end_paddr; 349 unsigned long start_pmd; 350 unsigned long start_pte; 351 unsigned long tmp1; 352 unsigned long tmp2; 353 unsigned long address; 354 unsigned long vaddr; 355 unsigned long ro_start; 356 unsigned long ro_end; 357 unsigned long kernel_start, kernel_end; 358 359 ro_start = __pa((unsigned long)_text); 360 ro_end = __pa((unsigned long)&data_start); 361 kernel_start = __pa((unsigned long)&__init_begin); 362 kernel_end = __pa((unsigned long)&_end); 363 364 end_paddr = start_paddr + size; 365 366 /* for 2-level configuration PTRS_PER_PMD is 0 so start_pmd will be 0 */ 367 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 368 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 369 370 address = start_paddr; 371 vaddr = start_vaddr; 372 while (address < end_paddr) { 373 pgd_t *pgd = pgd_offset_k(vaddr); 374 p4d_t *p4d = p4d_offset(pgd, vaddr); 375 pud_t *pud = pud_offset(p4d, vaddr); 376 377 #if CONFIG_PGTABLE_LEVELS == 3 378 if (pud_none(*pud)) { 379 pmd = memblock_alloc(PAGE_SIZE << PMD_TABLE_ORDER, 380 PAGE_SIZE << PMD_TABLE_ORDER); 381 if (!pmd) 382 panic("pmd allocation failed.\n"); 383 pud_populate(NULL, pud, pmd); 384 } 385 #endif 386 387 pmd = pmd_offset(pud, vaddr); 388 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) { 389 if (pmd_none(*pmd)) { 390 pg_table = memblock_alloc(PAGE_SIZE, PAGE_SIZE); 391 if (!pg_table) 392 panic("page table allocation failed\n"); 393 pmd_populate_kernel(NULL, pmd, pg_table); 394 } 395 396 pg_table = pte_offset_kernel(pmd, vaddr); 397 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) { 398 pte_t pte; 399 pgprot_t prot; 400 bool huge = false; 401 402 if (force) { 403 prot = pgprot; 404 } else if (address < kernel_start || address >= kernel_end) { 405 /* outside kernel memory */ 406 prot = PAGE_KERNEL; 407 } else if (!kernel_set_to_readonly) { 408 /* still initializing, allow writing to RO memory */ 409 prot = PAGE_KERNEL_RWX; 410 huge = true; 411 } else if (address >= ro_start) { 412 /* Code (ro) and Data areas */ 413 prot = (address < ro_end) ? 414 PAGE_KERNEL_EXEC : PAGE_KERNEL; 415 huge = true; 416 } else { 417 prot = PAGE_KERNEL; 418 } 419 420 pte = __mk_pte(address, prot); 421 if (huge) 422 pte = pte_mkhuge(pte); 423 424 if (address >= end_paddr) 425 break; 426 427 set_pte(pg_table, pte); 428 429 address += PAGE_SIZE; 430 vaddr += PAGE_SIZE; 431 } 432 start_pte = 0; 433 434 if (address >= end_paddr) 435 break; 436 } 437 start_pmd = 0; 438 } 439 } 440 441 void __init set_kernel_text_rw(int enable_read_write) 442 { 443 unsigned long start = (unsigned long) __init_begin; 444 unsigned long end = (unsigned long) &data_start; 445 446 map_pages(start, __pa(start), end-start, 447 PAGE_KERNEL_RWX, enable_read_write ? 1:0); 448 449 /* force the kernel to see the new page table entries */ 450 flush_cache_all(); 451 flush_tlb_all(); 452 } 453 454 void free_initmem(void) 455 { 456 unsigned long init_begin = (unsigned long)__init_begin; 457 unsigned long init_end = (unsigned long)__init_end; 458 unsigned long kernel_end = (unsigned long)&_end; 459 460 /* Remap kernel text and data, but do not touch init section yet. */ 461 kernel_set_to_readonly = true; 462 map_pages(init_end, __pa(init_end), kernel_end - init_end, 463 PAGE_KERNEL, 0); 464 465 /* The init text pages are marked R-X. We have to 466 * flush the icache and mark them RW- 467 * 468 * Do a dummy remap of the data section first (the data 469 * section is already PAGE_KERNEL) to pull in the TLB entries 470 * for map_kernel */ 471 map_pages(init_begin, __pa(init_begin), init_end - init_begin, 472 PAGE_KERNEL_RWX, 1); 473 /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute 474 * map_pages */ 475 map_pages(init_begin, __pa(init_begin), init_end - init_begin, 476 PAGE_KERNEL, 1); 477 478 /* force the kernel to see the new TLB entries */ 479 __flush_tlb_range(0, init_begin, kernel_end); 480 481 /* finally dump all the instructions which were cached, since the 482 * pages are no-longer executable */ 483 flush_icache_range(init_begin, init_end); 484 485 free_initmem_default(POISON_FREE_INITMEM); 486 487 /* set up a new led state on systems shipped LED State panel */ 488 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE); 489 } 490 491 492 #ifdef CONFIG_STRICT_KERNEL_RWX 493 void mark_rodata_ro(void) 494 { 495 /* rodata memory was already mapped with KERNEL_RO access rights by 496 pagetable_init() and map_pages(). No need to do additional stuff here */ 497 unsigned long roai_size = __end_ro_after_init - __start_ro_after_init; 498 499 pr_info("Write protected read-only-after-init data: %luk\n", roai_size >> 10); 500 } 501 #endif 502 503 504 /* 505 * Just an arbitrary offset to serve as a "hole" between mapping areas 506 * (between top of physical memory and a potential pcxl dma mapping 507 * area, and below the vmalloc mapping area). 508 * 509 * The current 32K value just means that there will be a 32K "hole" 510 * between mapping areas. That means that any out-of-bounds memory 511 * accesses will hopefully be caught. The vmalloc() routines leaves 512 * a hole of 4kB between each vmalloced area for the same reason. 513 */ 514 515 /* Leave room for gateway page expansion */ 516 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE 517 #error KERNEL_MAP_START is in gateway reserved region 518 #endif 519 #define MAP_START (KERNEL_MAP_START) 520 521 #define VM_MAP_OFFSET (32*1024) 522 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \ 523 & ~(VM_MAP_OFFSET-1))) 524 525 void *parisc_vmalloc_start __ro_after_init; 526 EXPORT_SYMBOL(parisc_vmalloc_start); 527 528 void __init mem_init(void) 529 { 530 /* Do sanity checks on IPC (compat) structures */ 531 BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48); 532 #ifndef CONFIG_64BIT 533 BUILD_BUG_ON(sizeof(struct semid64_ds) != 80); 534 BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104); 535 BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104); 536 #endif 537 #ifdef CONFIG_COMPAT 538 BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm)); 539 BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80); 540 BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104); 541 BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104); 542 #endif 543 544 /* Do sanity checks on page table constants */ 545 BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t)); 546 BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t)); 547 BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t)); 548 BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD 549 > BITS_PER_LONG); 550 #if CONFIG_PGTABLE_LEVELS == 3 551 BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PMD); 552 #else 553 BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PGD); 554 #endif 555 556 #ifdef CONFIG_64BIT 557 /* avoid ldil_%L() asm statements to sign-extend into upper 32-bits */ 558 BUILD_BUG_ON(__PAGE_OFFSET >= 0x80000000); 559 BUILD_BUG_ON(TMPALIAS_MAP_START >= 0x80000000); 560 #endif 561 562 high_memory = __va((max_pfn << PAGE_SHIFT)); 563 set_max_mapnr(max_low_pfn); 564 memblock_free_all(); 565 566 #ifdef CONFIG_PA11 567 if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) { 568 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START); 569 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start 570 + PCXL_DMA_MAP_SIZE); 571 } else 572 #endif 573 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START); 574 575 #if 0 576 /* 577 * Do not expose the virtual kernel memory layout to userspace. 578 * But keep code for debugging purposes. 579 */ 580 printk("virtual kernel memory layout:\n" 581 " vmalloc : 0x%px - 0x%px (%4ld MB)\n" 582 " fixmap : 0x%px - 0x%px (%4ld kB)\n" 583 " memory : 0x%px - 0x%px (%4ld MB)\n" 584 " .init : 0x%px - 0x%px (%4ld kB)\n" 585 " .data : 0x%px - 0x%px (%4ld kB)\n" 586 " .text : 0x%px - 0x%px (%4ld kB)\n", 587 588 (void*)VMALLOC_START, (void*)VMALLOC_END, 589 (VMALLOC_END - VMALLOC_START) >> 20, 590 591 (void *)FIXMAP_START, (void *)(FIXMAP_START + FIXMAP_SIZE), 592 (unsigned long)(FIXMAP_SIZE / 1024), 593 594 __va(0), high_memory, 595 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20, 596 597 __init_begin, __init_end, 598 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10, 599 600 _etext, _edata, 601 ((unsigned long)_edata - (unsigned long)_etext) >> 10, 602 603 _text, _etext, 604 ((unsigned long)_etext - (unsigned long)_text) >> 10); 605 #endif 606 } 607 608 unsigned long *empty_zero_page __ro_after_init; 609 EXPORT_SYMBOL(empty_zero_page); 610 611 /* 612 * pagetable_init() sets up the page tables 613 * 614 * Note that gateway_init() places the Linux gateway page at page 0. 615 * Since gateway pages cannot be dereferenced this has the desirable 616 * side effect of trapping those pesky NULL-reference errors in the 617 * kernel. 618 */ 619 static void __init pagetable_init(void) 620 { 621 int range; 622 623 /* Map each physical memory range to its kernel vaddr */ 624 625 for (range = 0; range < npmem_ranges; range++) { 626 unsigned long start_paddr; 627 unsigned long size; 628 629 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT; 630 size = pmem_ranges[range].pages << PAGE_SHIFT; 631 632 map_pages((unsigned long)__va(start_paddr), start_paddr, 633 size, PAGE_KERNEL, 0); 634 } 635 636 #ifdef CONFIG_BLK_DEV_INITRD 637 if (initrd_end && initrd_end > mem_limit) { 638 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end); 639 map_pages(initrd_start, __pa(initrd_start), 640 initrd_end - initrd_start, PAGE_KERNEL, 0); 641 } 642 #endif 643 644 empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE); 645 if (!empty_zero_page) 646 panic("zero page allocation failed.\n"); 647 648 } 649 650 static void __init gateway_init(void) 651 { 652 unsigned long linux_gateway_page_addr; 653 /* FIXME: This is 'const' in order to trick the compiler 654 into not treating it as DP-relative data. */ 655 extern void * const linux_gateway_page; 656 657 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK; 658 659 /* 660 * Setup Linux Gateway page. 661 * 662 * The Linux gateway page will reside in kernel space (on virtual 663 * page 0), so it doesn't need to be aliased into user space. 664 */ 665 666 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page), 667 PAGE_SIZE, PAGE_GATEWAY, 1); 668 } 669 670 static void __init fixmap_init(void) 671 { 672 unsigned long addr = FIXMAP_START; 673 unsigned long end = FIXMAP_START + FIXMAP_SIZE; 674 pgd_t *pgd = pgd_offset_k(addr); 675 p4d_t *p4d = p4d_offset(pgd, addr); 676 pud_t *pud = pud_offset(p4d, addr); 677 pmd_t *pmd; 678 679 BUILD_BUG_ON(FIXMAP_SIZE > PMD_SIZE); 680 681 #if CONFIG_PGTABLE_LEVELS == 3 682 if (pud_none(*pud)) { 683 pmd = memblock_alloc(PAGE_SIZE << PMD_TABLE_ORDER, 684 PAGE_SIZE << PMD_TABLE_ORDER); 685 if (!pmd) 686 panic("fixmap: pmd allocation failed.\n"); 687 pud_populate(NULL, pud, pmd); 688 } 689 #endif 690 691 pmd = pmd_offset(pud, addr); 692 do { 693 pte_t *pte = memblock_alloc(PAGE_SIZE, PAGE_SIZE); 694 if (!pte) 695 panic("fixmap: pte allocation failed.\n"); 696 697 pmd_populate_kernel(&init_mm, pmd, pte); 698 699 addr += PAGE_SIZE; 700 } while (addr < end); 701 } 702 703 static void __init parisc_bootmem_free(void) 704 { 705 unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0, }; 706 707 max_zone_pfn[0] = memblock_end_of_DRAM(); 708 709 free_area_init(max_zone_pfn); 710 } 711 712 void __init paging_init(void) 713 { 714 setup_bootmem(); 715 pagetable_init(); 716 gateway_init(); 717 fixmap_init(); 718 flush_cache_all_local(); /* start with known state */ 719 flush_tlb_all_local(NULL); 720 721 sparse_init(); 722 parisc_bootmem_free(); 723 } 724 725 static void alloc_btlb(unsigned long start, unsigned long end, int *slot, 726 unsigned long entry_info) 727 { 728 const int slot_max = btlb_info.fixed_range_info.num_comb; 729 int min_num_pages = btlb_info.min_size; 730 unsigned long size; 731 732 /* map at minimum 4 pages */ 733 if (min_num_pages < 4) 734 min_num_pages = 4; 735 736 size = HUGEPAGE_SIZE; 737 while (start < end && *slot < slot_max && size >= PAGE_SIZE) { 738 /* starting address must have same alignment as size! */ 739 /* if correctly aligned and fits in double size, increase */ 740 if (((start & (2 * size - 1)) == 0) && 741 (end - start) >= (2 * size)) { 742 size <<= 1; 743 continue; 744 } 745 /* if current size alignment is too big, try smaller size */ 746 if ((start & (size - 1)) != 0) { 747 size >>= 1; 748 continue; 749 } 750 if ((end - start) >= size) { 751 if ((size >> PAGE_SHIFT) >= min_num_pages) 752 pdc_btlb_insert(start >> PAGE_SHIFT, __pa(start) >> PAGE_SHIFT, 753 size >> PAGE_SHIFT, entry_info, *slot); 754 (*slot)++; 755 start += size; 756 continue; 757 } 758 size /= 2; 759 continue; 760 } 761 } 762 763 void btlb_init_per_cpu(void) 764 { 765 unsigned long s, t, e; 766 int slot; 767 768 /* BTLBs are not available on 64-bit CPUs */ 769 if (IS_ENABLED(CONFIG_PA20)) 770 return; 771 else if (pdc_btlb_info(&btlb_info) < 0) { 772 memset(&btlb_info, 0, sizeof btlb_info); 773 } 774 775 /* insert BLTLBs for code and data segments */ 776 s = (uintptr_t) dereference_function_descriptor(&_stext); 777 e = (uintptr_t) dereference_function_descriptor(&_etext); 778 t = (uintptr_t) dereference_function_descriptor(&_sdata); 779 BUG_ON(t != e); 780 781 /* code segments */ 782 slot = 0; 783 alloc_btlb(s, e, &slot, 0x13800000); 784 785 /* sanity check */ 786 t = (uintptr_t) dereference_function_descriptor(&_edata); 787 e = (uintptr_t) dereference_function_descriptor(&__bss_start); 788 BUG_ON(t != e); 789 790 /* data segments */ 791 s = (uintptr_t) dereference_function_descriptor(&_sdata); 792 e = (uintptr_t) dereference_function_descriptor(&__bss_stop); 793 alloc_btlb(s, e, &slot, 0x11800000); 794 } 795 796 #ifdef CONFIG_PA20 797 798 /* 799 * Currently, all PA20 chips have 18 bit protection IDs, which is the 800 * limiting factor (space ids are 32 bits). 801 */ 802 803 #define NR_SPACE_IDS 262144 804 805 #else 806 807 /* 808 * Currently we have a one-to-one relationship between space IDs and 809 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only 810 * support 15 bit protection IDs, so that is the limiting factor. 811 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's 812 * probably not worth the effort for a special case here. 813 */ 814 815 #define NR_SPACE_IDS 32768 816 817 #endif /* !CONFIG_PA20 */ 818 819 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2) 820 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long))) 821 822 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */ 823 static unsigned long dirty_space_id[SID_ARRAY_SIZE]; 824 static unsigned long space_id_index; 825 static unsigned long free_space_ids = NR_SPACE_IDS - 1; 826 static unsigned long dirty_space_ids; 827 828 static DEFINE_SPINLOCK(sid_lock); 829 830 unsigned long alloc_sid(void) 831 { 832 unsigned long index; 833 834 spin_lock(&sid_lock); 835 836 if (free_space_ids == 0) { 837 if (dirty_space_ids != 0) { 838 spin_unlock(&sid_lock); 839 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */ 840 spin_lock(&sid_lock); 841 } 842 BUG_ON(free_space_ids == 0); 843 } 844 845 free_space_ids--; 846 847 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index); 848 space_id[BIT_WORD(index)] |= BIT_MASK(index); 849 space_id_index = index; 850 851 spin_unlock(&sid_lock); 852 853 return index << SPACEID_SHIFT; 854 } 855 856 void free_sid(unsigned long spaceid) 857 { 858 unsigned long index = spaceid >> SPACEID_SHIFT; 859 unsigned long *dirty_space_offset, mask; 860 861 dirty_space_offset = &dirty_space_id[BIT_WORD(index)]; 862 mask = BIT_MASK(index); 863 864 spin_lock(&sid_lock); 865 866 BUG_ON(*dirty_space_offset & mask); /* attempt to free space id twice */ 867 868 *dirty_space_offset |= mask; 869 dirty_space_ids++; 870 871 spin_unlock(&sid_lock); 872 } 873 874 875 #ifdef CONFIG_SMP 876 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array) 877 { 878 int i; 879 880 /* NOTE: sid_lock must be held upon entry */ 881 882 *ndirtyptr = dirty_space_ids; 883 if (dirty_space_ids != 0) { 884 for (i = 0; i < SID_ARRAY_SIZE; i++) { 885 dirty_array[i] = dirty_space_id[i]; 886 dirty_space_id[i] = 0; 887 } 888 dirty_space_ids = 0; 889 } 890 891 return; 892 } 893 894 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array) 895 { 896 int i; 897 898 /* NOTE: sid_lock must be held upon entry */ 899 900 if (ndirty != 0) { 901 for (i = 0; i < SID_ARRAY_SIZE; i++) { 902 space_id[i] ^= dirty_array[i]; 903 } 904 905 free_space_ids += ndirty; 906 space_id_index = 0; 907 } 908 } 909 910 #else /* CONFIG_SMP */ 911 912 static void recycle_sids(void) 913 { 914 int i; 915 916 /* NOTE: sid_lock must be held upon entry */ 917 918 if (dirty_space_ids != 0) { 919 for (i = 0; i < SID_ARRAY_SIZE; i++) { 920 space_id[i] ^= dirty_space_id[i]; 921 dirty_space_id[i] = 0; 922 } 923 924 free_space_ids += dirty_space_ids; 925 dirty_space_ids = 0; 926 space_id_index = 0; 927 } 928 } 929 #endif 930 931 /* 932 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is 933 * purged, we can safely reuse the space ids that were released but 934 * not flushed from the tlb. 935 */ 936 937 #ifdef CONFIG_SMP 938 939 static unsigned long recycle_ndirty; 940 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE]; 941 static unsigned int recycle_inuse; 942 943 void flush_tlb_all(void) 944 { 945 int do_recycle; 946 947 do_recycle = 0; 948 spin_lock(&sid_lock); 949 __inc_irq_stat(irq_tlb_count); 950 if (dirty_space_ids > RECYCLE_THRESHOLD) { 951 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */ 952 get_dirty_sids(&recycle_ndirty,recycle_dirty_array); 953 recycle_inuse++; 954 do_recycle++; 955 } 956 spin_unlock(&sid_lock); 957 on_each_cpu(flush_tlb_all_local, NULL, 1); 958 if (do_recycle) { 959 spin_lock(&sid_lock); 960 recycle_sids(recycle_ndirty,recycle_dirty_array); 961 recycle_inuse = 0; 962 spin_unlock(&sid_lock); 963 } 964 } 965 #else 966 void flush_tlb_all(void) 967 { 968 spin_lock(&sid_lock); 969 __inc_irq_stat(irq_tlb_count); 970 flush_tlb_all_local(NULL); 971 recycle_sids(); 972 spin_unlock(&sid_lock); 973 } 974 #endif 975 976 static const pgprot_t protection_map[16] = { 977 [VM_NONE] = PAGE_NONE, 978 [VM_READ] = PAGE_READONLY, 979 [VM_WRITE] = PAGE_NONE, 980 [VM_WRITE | VM_READ] = PAGE_READONLY, 981 [VM_EXEC] = PAGE_EXECREAD, 982 [VM_EXEC | VM_READ] = PAGE_EXECREAD, 983 [VM_EXEC | VM_WRITE] = PAGE_EXECREAD, 984 [VM_EXEC | VM_WRITE | VM_READ] = PAGE_EXECREAD, 985 [VM_SHARED] = PAGE_NONE, 986 [VM_SHARED | VM_READ] = PAGE_READONLY, 987 [VM_SHARED | VM_WRITE] = PAGE_WRITEONLY, 988 [VM_SHARED | VM_WRITE | VM_READ] = PAGE_SHARED, 989 [VM_SHARED | VM_EXEC] = PAGE_EXECREAD, 990 [VM_SHARED | VM_EXEC | VM_READ] = PAGE_EXECREAD, 991 [VM_SHARED | VM_EXEC | VM_WRITE] = PAGE_RWX, 992 [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = PAGE_RWX 993 }; 994 DECLARE_VM_GET_PAGE_PROT 995