1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/arch/parisc/mm/init.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Copyright 1999 SuSE GmbH 7 * changed by Philipp Rumpf 8 * Copyright 1999 Philipp Rumpf (prumpf@tux.org) 9 * Copyright 2004 Randolph Chung (tausq@debian.org) 10 * Copyright 2006-2007 Helge Deller (deller@gmx.de) 11 * 12 */ 13 14 15 #include <linux/module.h> 16 #include <linux/mm.h> 17 #include <linux/memblock.h> 18 #include <linux/gfp.h> 19 #include <linux/delay.h> 20 #include <linux/init.h> 21 #include <linux/initrd.h> 22 #include <linux/swap.h> 23 #include <linux/unistd.h> 24 #include <linux/nodemask.h> /* for node_online_map */ 25 #include <linux/pagemap.h> /* for release_pages */ 26 #include <linux/compat.h> 27 #include <linux/execmem.h> 28 29 #include <asm/pgalloc.h> 30 #include <asm/tlb.h> 31 #include <asm/pdc_chassis.h> 32 #include <asm/mmzone.h> 33 #include <asm/sections.h> 34 #include <asm/msgbuf.h> 35 #include <asm/sparsemem.h> 36 #include <asm/asm-offsets.h> 37 #include <asm/shmbuf.h> 38 39 extern int data_start; 40 extern void parisc_kernel_start(void); /* Kernel entry point in head.S */ 41 42 #if CONFIG_PGTABLE_LEVELS == 3 43 pmd_t pmd0[PTRS_PER_PMD] __section(".data..vm0.pmd") __attribute__ ((aligned(PAGE_SIZE))); 44 #endif 45 46 pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".data..vm0.pgd") __attribute__ ((aligned(PAGE_SIZE))); 47 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __section(".data..vm0.pte") __attribute__ ((aligned(PAGE_SIZE))); 48 49 static struct resource data_resource = { 50 .name = "Kernel data", 51 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, 52 }; 53 54 static struct resource code_resource = { 55 .name = "Kernel code", 56 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, 57 }; 58 59 static struct resource pdcdata_resource = { 60 .name = "PDC data (Page Zero)", 61 .start = 0, 62 .end = 0x9ff, 63 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 64 }; 65 66 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __ro_after_init; 67 68 /* The following array is initialized from the firmware specific 69 * information retrieved in kernel/inventory.c. 70 */ 71 72 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __initdata; 73 int npmem_ranges __initdata; 74 75 #ifdef CONFIG_64BIT 76 #define MAX_MEM (1UL << MAX_PHYSMEM_BITS) 77 #else /* !CONFIG_64BIT */ 78 #define MAX_MEM (3584U*1024U*1024U) 79 #endif /* !CONFIG_64BIT */ 80 81 static unsigned long mem_limit __read_mostly = MAX_MEM; 82 83 static void __init mem_limit_func(void) 84 { 85 char *cp, *end; 86 unsigned long limit; 87 88 /* We need this before __setup() functions are called */ 89 90 limit = MAX_MEM; 91 for (cp = boot_command_line; *cp; ) { 92 if (memcmp(cp, "mem=", 4) == 0) { 93 cp += 4; 94 limit = memparse(cp, &end); 95 if (end != cp) 96 break; 97 cp = end; 98 } else { 99 while (*cp != ' ' && *cp) 100 ++cp; 101 while (*cp == ' ') 102 ++cp; 103 } 104 } 105 106 if (limit < mem_limit) 107 mem_limit = limit; 108 } 109 110 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT) 111 112 static void __init setup_bootmem(void) 113 { 114 unsigned long mem_max; 115 #ifndef CONFIG_SPARSEMEM 116 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1]; 117 int npmem_holes; 118 #endif 119 int i, sysram_resource_count; 120 121 disable_sr_hashing(); /* Turn off space register hashing */ 122 123 /* 124 * Sort the ranges. Since the number of ranges is typically 125 * small, and performance is not an issue here, just do 126 * a simple insertion sort. 127 */ 128 129 for (i = 1; i < npmem_ranges; i++) { 130 int j; 131 132 for (j = i; j > 0; j--) { 133 if (pmem_ranges[j-1].start_pfn < 134 pmem_ranges[j].start_pfn) { 135 136 break; 137 } 138 swap(pmem_ranges[j-1], pmem_ranges[j]); 139 } 140 } 141 142 #ifndef CONFIG_SPARSEMEM 143 /* 144 * Throw out ranges that are too far apart (controlled by 145 * MAX_GAP). 146 */ 147 148 for (i = 1; i < npmem_ranges; i++) { 149 if (pmem_ranges[i].start_pfn - 150 (pmem_ranges[i-1].start_pfn + 151 pmem_ranges[i-1].pages) > MAX_GAP) { 152 npmem_ranges = i; 153 printk("Large gap in memory detected (%ld pages). " 154 "Consider turning on CONFIG_SPARSEMEM\n", 155 pmem_ranges[i].start_pfn - 156 (pmem_ranges[i-1].start_pfn + 157 pmem_ranges[i-1].pages)); 158 break; 159 } 160 } 161 #endif 162 163 /* Print the memory ranges */ 164 pr_info("Memory Ranges:\n"); 165 166 for (i = 0; i < npmem_ranges; i++) { 167 struct resource *res = &sysram_resources[i]; 168 unsigned long start; 169 unsigned long size; 170 171 size = (pmem_ranges[i].pages << PAGE_SHIFT); 172 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT); 173 pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n", 174 i, start, start + (size - 1), size >> 20); 175 176 /* request memory resource */ 177 res->name = "System RAM"; 178 res->start = start; 179 res->end = start + size - 1; 180 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 181 request_resource(&iomem_resource, res); 182 } 183 184 sysram_resource_count = npmem_ranges; 185 186 /* 187 * For 32 bit kernels we limit the amount of memory we can 188 * support, in order to preserve enough kernel address space 189 * for other purposes. For 64 bit kernels we don't normally 190 * limit the memory, but this mechanism can be used to 191 * artificially limit the amount of memory (and it is written 192 * to work with multiple memory ranges). 193 */ 194 195 mem_limit_func(); /* check for "mem=" argument */ 196 197 mem_max = 0; 198 for (i = 0; i < npmem_ranges; i++) { 199 unsigned long rsize; 200 201 rsize = pmem_ranges[i].pages << PAGE_SHIFT; 202 if ((mem_max + rsize) > mem_limit) { 203 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20); 204 if (mem_max == mem_limit) 205 npmem_ranges = i; 206 else { 207 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT) 208 - (mem_max >> PAGE_SHIFT); 209 npmem_ranges = i + 1; 210 mem_max = mem_limit; 211 } 212 break; 213 } 214 mem_max += rsize; 215 } 216 217 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20); 218 219 #ifndef CONFIG_SPARSEMEM 220 /* Merge the ranges, keeping track of the holes */ 221 { 222 unsigned long end_pfn; 223 unsigned long hole_pages; 224 225 npmem_holes = 0; 226 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages; 227 for (i = 1; i < npmem_ranges; i++) { 228 229 hole_pages = pmem_ranges[i].start_pfn - end_pfn; 230 if (hole_pages) { 231 pmem_holes[npmem_holes].start_pfn = end_pfn; 232 pmem_holes[npmem_holes++].pages = hole_pages; 233 end_pfn += hole_pages; 234 } 235 end_pfn += pmem_ranges[i].pages; 236 } 237 238 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn; 239 npmem_ranges = 1; 240 } 241 #endif 242 243 /* 244 * Initialize and free the full range of memory in each range. 245 */ 246 247 max_pfn = 0; 248 for (i = 0; i < npmem_ranges; i++) { 249 unsigned long start_pfn; 250 unsigned long npages; 251 unsigned long start; 252 unsigned long size; 253 254 start_pfn = pmem_ranges[i].start_pfn; 255 npages = pmem_ranges[i].pages; 256 257 start = start_pfn << PAGE_SHIFT; 258 size = npages << PAGE_SHIFT; 259 260 /* add system RAM memblock */ 261 memblock_add(start, size); 262 263 if ((start_pfn + npages) > max_pfn) 264 max_pfn = start_pfn + npages; 265 } 266 267 /* 268 * We can't use memblock top-down allocations because we only 269 * created the initial mapping up to KERNEL_INITIAL_SIZE in 270 * the assembly bootup code. 271 */ 272 memblock_set_bottom_up(true); 273 274 /* IOMMU is always used to access "high mem" on those boxes 275 * that can support enough mem that a PCI device couldn't 276 * directly DMA to any physical addresses. 277 * ISA DMA support will need to revisit this. 278 */ 279 max_low_pfn = max_pfn; 280 281 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */ 282 283 #define PDC_CONSOLE_IO_IODC_SIZE 32768 284 285 memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free + 286 PDC_CONSOLE_IO_IODC_SIZE)); 287 memblock_reserve(__pa(KERNEL_BINARY_TEXT_START), 288 (unsigned long)(_end - KERNEL_BINARY_TEXT_START)); 289 290 #ifndef CONFIG_SPARSEMEM 291 292 /* reserve the holes */ 293 294 for (i = 0; i < npmem_holes; i++) { 295 memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT), 296 (pmem_holes[i].pages << PAGE_SHIFT)); 297 } 298 #endif 299 300 #ifdef CONFIG_BLK_DEV_INITRD 301 if (initrd_start) { 302 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end); 303 if (__pa(initrd_start) < mem_max) { 304 unsigned long initrd_reserve; 305 306 if (__pa(initrd_end) > mem_max) { 307 initrd_reserve = mem_max - __pa(initrd_start); 308 } else { 309 initrd_reserve = initrd_end - initrd_start; 310 } 311 initrd_below_start_ok = 1; 312 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max); 313 314 memblock_reserve(__pa(initrd_start), initrd_reserve); 315 } 316 } 317 #endif 318 319 data_resource.start = virt_to_phys(&data_start); 320 data_resource.end = virt_to_phys(_end) - 1; 321 code_resource.start = virt_to_phys(_text); 322 code_resource.end = virt_to_phys(&data_start)-1; 323 324 /* We don't know which region the kernel will be in, so try 325 * all of them. 326 */ 327 for (i = 0; i < sysram_resource_count; i++) { 328 struct resource *res = &sysram_resources[i]; 329 request_resource(res, &code_resource); 330 request_resource(res, &data_resource); 331 } 332 request_resource(&sysram_resources[0], &pdcdata_resource); 333 334 /* Initialize Page Deallocation Table (PDT) and check for bad memory. */ 335 pdc_pdt_init(); 336 337 memblock_allow_resize(); 338 memblock_dump_all(); 339 } 340 341 static bool kernel_set_to_readonly; 342 343 static void __ref map_pages(unsigned long start_vaddr, 344 unsigned long start_paddr, unsigned long size, 345 pgprot_t pgprot, int force) 346 { 347 pmd_t *pmd; 348 pte_t *pg_table; 349 unsigned long end_paddr; 350 unsigned long start_pmd; 351 unsigned long start_pte; 352 unsigned long tmp1; 353 unsigned long tmp2; 354 unsigned long address; 355 unsigned long vaddr; 356 unsigned long ro_start; 357 unsigned long ro_end; 358 unsigned long kernel_start, kernel_end; 359 360 ro_start = __pa((unsigned long)_text); 361 ro_end = __pa((unsigned long)&data_start); 362 kernel_start = __pa((unsigned long)&__init_begin); 363 kernel_end = __pa((unsigned long)&_end); 364 365 end_paddr = start_paddr + size; 366 367 /* for 2-level configuration PTRS_PER_PMD is 0 so start_pmd will be 0 */ 368 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 369 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 370 371 address = start_paddr; 372 vaddr = start_vaddr; 373 while (address < end_paddr) { 374 pgd_t *pgd = pgd_offset_k(vaddr); 375 p4d_t *p4d = p4d_offset(pgd, vaddr); 376 pud_t *pud = pud_offset(p4d, vaddr); 377 378 #if CONFIG_PGTABLE_LEVELS == 3 379 if (pud_none(*pud)) { 380 pmd = memblock_alloc(PAGE_SIZE << PMD_TABLE_ORDER, 381 PAGE_SIZE << PMD_TABLE_ORDER); 382 if (!pmd) 383 panic("pmd allocation failed.\n"); 384 pud_populate(NULL, pud, pmd); 385 } 386 #endif 387 388 pmd = pmd_offset(pud, vaddr); 389 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) { 390 if (pmd_none(*pmd)) { 391 pg_table = memblock_alloc(PAGE_SIZE, PAGE_SIZE); 392 if (!pg_table) 393 panic("page table allocation failed\n"); 394 pmd_populate_kernel(NULL, pmd, pg_table); 395 } 396 397 pg_table = pte_offset_kernel(pmd, vaddr); 398 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) { 399 pte_t pte; 400 pgprot_t prot; 401 bool huge = false; 402 403 if (force) { 404 prot = pgprot; 405 } else if (address < kernel_start || address >= kernel_end) { 406 /* outside kernel memory */ 407 prot = PAGE_KERNEL; 408 } else if (!kernel_set_to_readonly) { 409 /* still initializing, allow writing to RO memory */ 410 prot = PAGE_KERNEL_RWX; 411 huge = true; 412 } else if (address >= ro_start) { 413 /* Code (ro) and Data areas */ 414 prot = (address < ro_end) ? 415 PAGE_KERNEL_EXEC : PAGE_KERNEL; 416 huge = true; 417 } else { 418 prot = PAGE_KERNEL; 419 } 420 421 pte = __mk_pte(address, prot); 422 if (huge) 423 pte = pte_mkhuge(pte); 424 425 if (address >= end_paddr) 426 break; 427 428 set_pte(pg_table, pte); 429 430 address += PAGE_SIZE; 431 vaddr += PAGE_SIZE; 432 } 433 start_pte = 0; 434 435 if (address >= end_paddr) 436 break; 437 } 438 start_pmd = 0; 439 } 440 } 441 442 void __init set_kernel_text_rw(int enable_read_write) 443 { 444 unsigned long start = (unsigned long) __init_begin; 445 unsigned long end = (unsigned long) &data_start; 446 447 map_pages(start, __pa(start), end-start, 448 PAGE_KERNEL_RWX, enable_read_write ? 1:0); 449 450 /* force the kernel to see the new page table entries */ 451 flush_cache_all(); 452 flush_tlb_all(); 453 } 454 455 void free_initmem(void) 456 { 457 unsigned long init_begin = (unsigned long)__init_begin; 458 unsigned long init_end = (unsigned long)__init_end; 459 unsigned long kernel_end = (unsigned long)&_end; 460 461 /* Remap kernel text and data, but do not touch init section yet. */ 462 map_pages(init_end, __pa(init_end), kernel_end - init_end, 463 PAGE_KERNEL, 0); 464 465 /* The init text pages are marked R-X. We have to 466 * flush the icache and mark them RW- 467 * 468 * Do a dummy remap of the data section first (the data 469 * section is already PAGE_KERNEL) to pull in the TLB entries 470 * for map_kernel */ 471 map_pages(init_begin, __pa(init_begin), init_end - init_begin, 472 PAGE_KERNEL_RWX, 1); 473 /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute 474 * map_pages */ 475 map_pages(init_begin, __pa(init_begin), init_end - init_begin, 476 PAGE_KERNEL, 1); 477 478 /* force the kernel to see the new TLB entries */ 479 __flush_tlb_range(0, init_begin, kernel_end); 480 481 /* finally dump all the instructions which were cached, since the 482 * pages are no-longer executable */ 483 flush_icache_range(init_begin, init_end); 484 485 free_initmem_default(POISON_FREE_INITMEM); 486 487 /* set up a new led state on systems shipped LED State panel */ 488 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE); 489 } 490 491 492 #ifdef CONFIG_STRICT_KERNEL_RWX 493 void mark_rodata_ro(void) 494 { 495 unsigned long start = (unsigned long) &__start_rodata; 496 unsigned long end = (unsigned long) &__end_rodata; 497 498 pr_info("Write protecting the kernel read-only data: %luk\n", 499 (end - start) >> 10); 500 501 kernel_set_to_readonly = true; 502 map_pages(start, __pa(start), end - start, PAGE_KERNEL, 0); 503 504 /* force the kernel to see the new page table entries */ 505 flush_cache_all(); 506 flush_tlb_all(); 507 } 508 #endif 509 510 511 /* 512 * Just an arbitrary offset to serve as a "hole" between mapping areas 513 * (between top of physical memory and a potential pcxl dma mapping 514 * area, and below the vmalloc mapping area). 515 * 516 * The current 32K value just means that there will be a 32K "hole" 517 * between mapping areas. That means that any out-of-bounds memory 518 * accesses will hopefully be caught. The vmalloc() routines leaves 519 * a hole of 4kB between each vmalloced area for the same reason. 520 */ 521 522 /* Leave room for gateway page expansion */ 523 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE 524 #error KERNEL_MAP_START is in gateway reserved region 525 #endif 526 #define MAP_START (KERNEL_MAP_START) 527 528 #define VM_MAP_OFFSET (32*1024) 529 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \ 530 & ~(VM_MAP_OFFSET-1))) 531 532 void *parisc_vmalloc_start __ro_after_init; 533 EXPORT_SYMBOL(parisc_vmalloc_start); 534 535 void __init mem_init(void) 536 { 537 /* Do sanity checks on IPC (compat) structures */ 538 BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48); 539 #ifndef CONFIG_64BIT 540 BUILD_BUG_ON(sizeof(struct semid64_ds) != 80); 541 BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104); 542 BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104); 543 #endif 544 #ifdef CONFIG_COMPAT 545 BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm)); 546 BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80); 547 BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104); 548 BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104); 549 #endif 550 551 /* Do sanity checks on page table constants */ 552 BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t)); 553 BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t)); 554 BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t)); 555 BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD 556 > BITS_PER_LONG); 557 #if CONFIG_PGTABLE_LEVELS == 3 558 BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PMD); 559 #else 560 BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PGD); 561 #endif 562 563 #ifdef CONFIG_64BIT 564 /* avoid ldil_%L() asm statements to sign-extend into upper 32-bits */ 565 BUILD_BUG_ON(__PAGE_OFFSET >= 0x80000000); 566 BUILD_BUG_ON(TMPALIAS_MAP_START >= 0x80000000); 567 #endif 568 569 high_memory = __va((max_pfn << PAGE_SHIFT)); 570 set_max_mapnr(max_low_pfn); 571 memblock_free_all(); 572 573 #ifdef CONFIG_PA11 574 if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) { 575 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START); 576 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start 577 + PCXL_DMA_MAP_SIZE); 578 } else 579 #endif 580 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START); 581 582 #if 0 583 /* 584 * Do not expose the virtual kernel memory layout to userspace. 585 * But keep code for debugging purposes. 586 */ 587 printk("virtual kernel memory layout:\n" 588 " vmalloc : 0x%px - 0x%px (%4ld MB)\n" 589 " fixmap : 0x%px - 0x%px (%4ld kB)\n" 590 " memory : 0x%px - 0x%px (%4ld MB)\n" 591 " .init : 0x%px - 0x%px (%4ld kB)\n" 592 " .data : 0x%px - 0x%px (%4ld kB)\n" 593 " .text : 0x%px - 0x%px (%4ld kB)\n", 594 595 (void*)VMALLOC_START, (void*)VMALLOC_END, 596 (VMALLOC_END - VMALLOC_START) >> 20, 597 598 (void *)FIXMAP_START, (void *)(FIXMAP_START + FIXMAP_SIZE), 599 (unsigned long)(FIXMAP_SIZE / 1024), 600 601 __va(0), high_memory, 602 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20, 603 604 __init_begin, __init_end, 605 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10, 606 607 _etext, _edata, 608 ((unsigned long)_edata - (unsigned long)_etext) >> 10, 609 610 _text, _etext, 611 ((unsigned long)_etext - (unsigned long)_text) >> 10); 612 #endif 613 } 614 615 unsigned long *empty_zero_page __ro_after_init; 616 EXPORT_SYMBOL(empty_zero_page); 617 618 /* 619 * pagetable_init() sets up the page tables 620 * 621 * Note that gateway_init() places the Linux gateway page at page 0. 622 * Since gateway pages cannot be dereferenced this has the desirable 623 * side effect of trapping those pesky NULL-reference errors in the 624 * kernel. 625 */ 626 static void __init pagetable_init(void) 627 { 628 int range; 629 630 /* Map each physical memory range to its kernel vaddr */ 631 632 for (range = 0; range < npmem_ranges; range++) { 633 unsigned long start_paddr; 634 unsigned long size; 635 636 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT; 637 size = pmem_ranges[range].pages << PAGE_SHIFT; 638 639 map_pages((unsigned long)__va(start_paddr), start_paddr, 640 size, PAGE_KERNEL, 0); 641 } 642 643 #ifdef CONFIG_BLK_DEV_INITRD 644 if (initrd_end && initrd_end > mem_limit) { 645 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end); 646 map_pages(initrd_start, __pa(initrd_start), 647 initrd_end - initrd_start, PAGE_KERNEL, 0); 648 } 649 #endif 650 651 empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE); 652 if (!empty_zero_page) 653 panic("zero page allocation failed.\n"); 654 655 } 656 657 static void __init gateway_init(void) 658 { 659 unsigned long linux_gateway_page_addr; 660 /* FIXME: This is 'const' in order to trick the compiler 661 into not treating it as DP-relative data. */ 662 extern void * const linux_gateway_page; 663 664 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK; 665 666 /* 667 * Setup Linux Gateway page. 668 * 669 * The Linux gateway page will reside in kernel space (on virtual 670 * page 0), so it doesn't need to be aliased into user space. 671 */ 672 673 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page), 674 PAGE_SIZE, PAGE_GATEWAY, 1); 675 } 676 677 static void __init fixmap_init(void) 678 { 679 unsigned long addr = FIXMAP_START; 680 unsigned long end = FIXMAP_START + FIXMAP_SIZE; 681 pgd_t *pgd = pgd_offset_k(addr); 682 p4d_t *p4d = p4d_offset(pgd, addr); 683 pud_t *pud = pud_offset(p4d, addr); 684 pmd_t *pmd; 685 686 BUILD_BUG_ON(FIXMAP_SIZE > PMD_SIZE); 687 688 #if CONFIG_PGTABLE_LEVELS == 3 689 if (pud_none(*pud)) { 690 pmd = memblock_alloc(PAGE_SIZE << PMD_TABLE_ORDER, 691 PAGE_SIZE << PMD_TABLE_ORDER); 692 if (!pmd) 693 panic("fixmap: pmd allocation failed.\n"); 694 pud_populate(NULL, pud, pmd); 695 } 696 #endif 697 698 pmd = pmd_offset(pud, addr); 699 do { 700 pte_t *pte = memblock_alloc(PAGE_SIZE, PAGE_SIZE); 701 if (!pte) 702 panic("fixmap: pte allocation failed.\n"); 703 704 pmd_populate_kernel(&init_mm, pmd, pte); 705 706 addr += PAGE_SIZE; 707 } while (addr < end); 708 } 709 710 static void __init parisc_bootmem_free(void) 711 { 712 unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0, }; 713 714 max_zone_pfn[0] = memblock_end_of_DRAM(); 715 716 free_area_init(max_zone_pfn); 717 } 718 719 void __init paging_init(void) 720 { 721 setup_bootmem(); 722 pagetable_init(); 723 gateway_init(); 724 fixmap_init(); 725 flush_cache_all_local(); /* start with known state */ 726 flush_tlb_all_local(NULL); 727 728 sparse_init(); 729 parisc_bootmem_free(); 730 } 731 732 static void alloc_btlb(unsigned long start, unsigned long end, int *slot, 733 unsigned long entry_info) 734 { 735 const int slot_max = btlb_info.fixed_range_info.num_comb; 736 int min_num_pages = btlb_info.min_size; 737 unsigned long size; 738 739 /* map at minimum 4 pages */ 740 if (min_num_pages < 4) 741 min_num_pages = 4; 742 743 size = HUGEPAGE_SIZE; 744 while (start < end && *slot < slot_max && size >= PAGE_SIZE) { 745 /* starting address must have same alignment as size! */ 746 /* if correctly aligned and fits in double size, increase */ 747 if (((start & (2 * size - 1)) == 0) && 748 (end - start) >= (2 * size)) { 749 size <<= 1; 750 continue; 751 } 752 /* if current size alignment is too big, try smaller size */ 753 if ((start & (size - 1)) != 0) { 754 size >>= 1; 755 continue; 756 } 757 if ((end - start) >= size) { 758 if ((size >> PAGE_SHIFT) >= min_num_pages) 759 pdc_btlb_insert(start >> PAGE_SHIFT, __pa(start) >> PAGE_SHIFT, 760 size >> PAGE_SHIFT, entry_info, *slot); 761 (*slot)++; 762 start += size; 763 continue; 764 } 765 size /= 2; 766 continue; 767 } 768 } 769 770 void btlb_init_per_cpu(void) 771 { 772 unsigned long s, t, e; 773 int slot; 774 775 /* BTLBs are not available on 64-bit CPUs */ 776 if (IS_ENABLED(CONFIG_PA20)) 777 return; 778 else if (pdc_btlb_info(&btlb_info) < 0) { 779 memset(&btlb_info, 0, sizeof btlb_info); 780 } 781 782 /* insert BLTLBs for code and data segments */ 783 s = (uintptr_t) dereference_function_descriptor(&_stext); 784 e = (uintptr_t) dereference_function_descriptor(&_etext); 785 t = (uintptr_t) dereference_function_descriptor(&_sdata); 786 BUG_ON(t != e); 787 788 /* code segments */ 789 slot = 0; 790 alloc_btlb(s, e, &slot, 0x13800000); 791 792 /* sanity check */ 793 t = (uintptr_t) dereference_function_descriptor(&_edata); 794 e = (uintptr_t) dereference_function_descriptor(&__bss_start); 795 BUG_ON(t != e); 796 797 /* data segments */ 798 s = (uintptr_t) dereference_function_descriptor(&_sdata); 799 e = (uintptr_t) dereference_function_descriptor(&__bss_stop); 800 alloc_btlb(s, e, &slot, 0x11800000); 801 } 802 803 #ifdef CONFIG_PA20 804 805 /* 806 * Currently, all PA20 chips have 18 bit protection IDs, which is the 807 * limiting factor (space ids are 32 bits). 808 */ 809 810 #define NR_SPACE_IDS 262144 811 812 #else 813 814 /* 815 * Currently we have a one-to-one relationship between space IDs and 816 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only 817 * support 15 bit protection IDs, so that is the limiting factor. 818 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's 819 * probably not worth the effort for a special case here. 820 */ 821 822 #define NR_SPACE_IDS 32768 823 824 #endif /* !CONFIG_PA20 */ 825 826 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2) 827 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long))) 828 829 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */ 830 static unsigned long dirty_space_id[SID_ARRAY_SIZE]; 831 static unsigned long space_id_index; 832 static unsigned long free_space_ids = NR_SPACE_IDS - 1; 833 static unsigned long dirty_space_ids; 834 835 static DEFINE_SPINLOCK(sid_lock); 836 837 unsigned long alloc_sid(void) 838 { 839 unsigned long index; 840 841 spin_lock(&sid_lock); 842 843 if (free_space_ids == 0) { 844 if (dirty_space_ids != 0) { 845 spin_unlock(&sid_lock); 846 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */ 847 spin_lock(&sid_lock); 848 } 849 BUG_ON(free_space_ids == 0); 850 } 851 852 free_space_ids--; 853 854 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index); 855 space_id[BIT_WORD(index)] |= BIT_MASK(index); 856 space_id_index = index; 857 858 spin_unlock(&sid_lock); 859 860 return index << SPACEID_SHIFT; 861 } 862 863 void free_sid(unsigned long spaceid) 864 { 865 unsigned long index = spaceid >> SPACEID_SHIFT; 866 unsigned long *dirty_space_offset, mask; 867 868 dirty_space_offset = &dirty_space_id[BIT_WORD(index)]; 869 mask = BIT_MASK(index); 870 871 spin_lock(&sid_lock); 872 873 BUG_ON(*dirty_space_offset & mask); /* attempt to free space id twice */ 874 875 *dirty_space_offset |= mask; 876 dirty_space_ids++; 877 878 spin_unlock(&sid_lock); 879 } 880 881 882 #ifdef CONFIG_SMP 883 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array) 884 { 885 int i; 886 887 /* NOTE: sid_lock must be held upon entry */ 888 889 *ndirtyptr = dirty_space_ids; 890 if (dirty_space_ids != 0) { 891 for (i = 0; i < SID_ARRAY_SIZE; i++) { 892 dirty_array[i] = dirty_space_id[i]; 893 dirty_space_id[i] = 0; 894 } 895 dirty_space_ids = 0; 896 } 897 898 return; 899 } 900 901 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array) 902 { 903 int i; 904 905 /* NOTE: sid_lock must be held upon entry */ 906 907 if (ndirty != 0) { 908 for (i = 0; i < SID_ARRAY_SIZE; i++) { 909 space_id[i] ^= dirty_array[i]; 910 } 911 912 free_space_ids += ndirty; 913 space_id_index = 0; 914 } 915 } 916 917 #else /* CONFIG_SMP */ 918 919 static void recycle_sids(void) 920 { 921 int i; 922 923 /* NOTE: sid_lock must be held upon entry */ 924 925 if (dirty_space_ids != 0) { 926 for (i = 0; i < SID_ARRAY_SIZE; i++) { 927 space_id[i] ^= dirty_space_id[i]; 928 dirty_space_id[i] = 0; 929 } 930 931 free_space_ids += dirty_space_ids; 932 dirty_space_ids = 0; 933 space_id_index = 0; 934 } 935 } 936 #endif 937 938 /* 939 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is 940 * purged, we can safely reuse the space ids that were released but 941 * not flushed from the tlb. 942 */ 943 944 #ifdef CONFIG_SMP 945 946 static unsigned long recycle_ndirty; 947 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE]; 948 static unsigned int recycle_inuse; 949 950 void flush_tlb_all(void) 951 { 952 int do_recycle; 953 954 do_recycle = 0; 955 spin_lock(&sid_lock); 956 __inc_irq_stat(irq_tlb_count); 957 if (dirty_space_ids > RECYCLE_THRESHOLD) { 958 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */ 959 get_dirty_sids(&recycle_ndirty,recycle_dirty_array); 960 recycle_inuse++; 961 do_recycle++; 962 } 963 spin_unlock(&sid_lock); 964 on_each_cpu(flush_tlb_all_local, NULL, 1); 965 if (do_recycle) { 966 spin_lock(&sid_lock); 967 recycle_sids(recycle_ndirty,recycle_dirty_array); 968 recycle_inuse = 0; 969 spin_unlock(&sid_lock); 970 } 971 } 972 #else 973 void flush_tlb_all(void) 974 { 975 spin_lock(&sid_lock); 976 __inc_irq_stat(irq_tlb_count); 977 flush_tlb_all_local(NULL); 978 recycle_sids(); 979 spin_unlock(&sid_lock); 980 } 981 #endif 982 983 static const pgprot_t protection_map[16] = { 984 [VM_NONE] = PAGE_NONE, 985 [VM_READ] = PAGE_READONLY, 986 [VM_WRITE] = PAGE_NONE, 987 [VM_WRITE | VM_READ] = PAGE_READONLY, 988 [VM_EXEC] = PAGE_EXECREAD, 989 [VM_EXEC | VM_READ] = PAGE_EXECREAD, 990 [VM_EXEC | VM_WRITE] = PAGE_EXECREAD, 991 [VM_EXEC | VM_WRITE | VM_READ] = PAGE_EXECREAD, 992 [VM_SHARED] = PAGE_NONE, 993 [VM_SHARED | VM_READ] = PAGE_READONLY, 994 [VM_SHARED | VM_WRITE] = PAGE_WRITEONLY, 995 [VM_SHARED | VM_WRITE | VM_READ] = PAGE_SHARED, 996 [VM_SHARED | VM_EXEC] = PAGE_EXECREAD, 997 [VM_SHARED | VM_EXEC | VM_READ] = PAGE_EXECREAD, 998 [VM_SHARED | VM_EXEC | VM_WRITE] = PAGE_RWX, 999 [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = PAGE_RWX 1000 }; 1001 DECLARE_VM_GET_PAGE_PROT 1002 1003 #ifdef CONFIG_EXECMEM 1004 static struct execmem_info execmem_info __ro_after_init; 1005 1006 struct execmem_info __init *execmem_arch_setup(void) 1007 { 1008 execmem_info = (struct execmem_info){ 1009 .ranges = { 1010 [EXECMEM_DEFAULT] = { 1011 .start = VMALLOC_START, 1012 .end = VMALLOC_END, 1013 .pgprot = PAGE_KERNEL_RWX, 1014 .alignment = 1, 1015 }, 1016 }, 1017 }; 1018 1019 return &execmem_info; 1020 } 1021 #endif /* CONFIG_EXECMEM */ 1022