xref: /linux/arch/parisc/mm/init.c (revision 02680c23d7b3febe45ea3d4f9818c2b2dc89020a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/arch/parisc/mm/init.c
4  *
5  *  Copyright (C) 1995	Linus Torvalds
6  *  Copyright 1999 SuSE GmbH
7  *    changed by Philipp Rumpf
8  *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
9  *  Copyright 2004 Randolph Chung (tausq@debian.org)
10  *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
11  *
12  */
13 
14 
15 #include <linux/module.h>
16 #include <linux/mm.h>
17 #include <linux/memblock.h>
18 #include <linux/gfp.h>
19 #include <linux/delay.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h>	/* for node_online_map */
25 #include <linux/pagemap.h>	/* for release_pages */
26 #include <linux/compat.h>
27 
28 #include <asm/pgalloc.h>
29 #include <asm/tlb.h>
30 #include <asm/pdc_chassis.h>
31 #include <asm/mmzone.h>
32 #include <asm/sections.h>
33 #include <asm/msgbuf.h>
34 #include <asm/sparsemem.h>
35 
36 extern int  data_start;
37 extern void parisc_kernel_start(void);	/* Kernel entry point in head.S */
38 
39 #if CONFIG_PGTABLE_LEVELS == 3
40 pmd_t pmd0[PTRS_PER_PMD] __section(".data..vm0.pmd") __attribute__ ((aligned(PAGE_SIZE)));
41 #endif
42 
43 pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".data..vm0.pgd") __attribute__ ((aligned(PAGE_SIZE)));
44 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __section(".data..vm0.pte") __attribute__ ((aligned(PAGE_SIZE)));
45 
46 static struct resource data_resource = {
47 	.name	= "Kernel data",
48 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
49 };
50 
51 static struct resource code_resource = {
52 	.name	= "Kernel code",
53 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
54 };
55 
56 static struct resource pdcdata_resource = {
57 	.name	= "PDC data (Page Zero)",
58 	.start	= 0,
59 	.end	= 0x9ff,
60 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
61 };
62 
63 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __ro_after_init;
64 
65 /* The following array is initialized from the firmware specific
66  * information retrieved in kernel/inventory.c.
67  */
68 
69 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __initdata;
70 int npmem_ranges __initdata;
71 
72 #ifdef CONFIG_64BIT
73 #define MAX_MEM         (1UL << MAX_PHYSMEM_BITS)
74 #else /* !CONFIG_64BIT */
75 #define MAX_MEM         (3584U*1024U*1024U)
76 #endif /* !CONFIG_64BIT */
77 
78 static unsigned long mem_limit __read_mostly = MAX_MEM;
79 
80 static void __init mem_limit_func(void)
81 {
82 	char *cp, *end;
83 	unsigned long limit;
84 
85 	/* We need this before __setup() functions are called */
86 
87 	limit = MAX_MEM;
88 	for (cp = boot_command_line; *cp; ) {
89 		if (memcmp(cp, "mem=", 4) == 0) {
90 			cp += 4;
91 			limit = memparse(cp, &end);
92 			if (end != cp)
93 				break;
94 			cp = end;
95 		} else {
96 			while (*cp != ' ' && *cp)
97 				++cp;
98 			while (*cp == ' ')
99 				++cp;
100 		}
101 	}
102 
103 	if (limit < mem_limit)
104 		mem_limit = limit;
105 }
106 
107 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
108 
109 static void __init setup_bootmem(void)
110 {
111 	unsigned long mem_max;
112 #ifndef CONFIG_SPARSEMEM
113 	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
114 	int npmem_holes;
115 #endif
116 	int i, sysram_resource_count;
117 
118 	disable_sr_hashing(); /* Turn off space register hashing */
119 
120 	/*
121 	 * Sort the ranges. Since the number of ranges is typically
122 	 * small, and performance is not an issue here, just do
123 	 * a simple insertion sort.
124 	 */
125 
126 	for (i = 1; i < npmem_ranges; i++) {
127 		int j;
128 
129 		for (j = i; j > 0; j--) {
130 			physmem_range_t tmp;
131 
132 			if (pmem_ranges[j-1].start_pfn <
133 			    pmem_ranges[j].start_pfn) {
134 
135 				break;
136 			}
137 			tmp = pmem_ranges[j-1];
138 			pmem_ranges[j-1] = pmem_ranges[j];
139 			pmem_ranges[j] = tmp;
140 		}
141 	}
142 
143 #ifndef CONFIG_SPARSEMEM
144 	/*
145 	 * Throw out ranges that are too far apart (controlled by
146 	 * MAX_GAP).
147 	 */
148 
149 	for (i = 1; i < npmem_ranges; i++) {
150 		if (pmem_ranges[i].start_pfn -
151 			(pmem_ranges[i-1].start_pfn +
152 			 pmem_ranges[i-1].pages) > MAX_GAP) {
153 			npmem_ranges = i;
154 			printk("Large gap in memory detected (%ld pages). "
155 			       "Consider turning on CONFIG_SPARSEMEM\n",
156 			       pmem_ranges[i].start_pfn -
157 			       (pmem_ranges[i-1].start_pfn +
158 			        pmem_ranges[i-1].pages));
159 			break;
160 		}
161 	}
162 #endif
163 
164 	/* Print the memory ranges */
165 	pr_info("Memory Ranges:\n");
166 
167 	for (i = 0; i < npmem_ranges; i++) {
168 		struct resource *res = &sysram_resources[i];
169 		unsigned long start;
170 		unsigned long size;
171 
172 		size = (pmem_ranges[i].pages << PAGE_SHIFT);
173 		start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
174 		pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
175 			i, start, start + (size - 1), size >> 20);
176 
177 		/* request memory resource */
178 		res->name = "System RAM";
179 		res->start = start;
180 		res->end = start + size - 1;
181 		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
182 		request_resource(&iomem_resource, res);
183 	}
184 
185 	sysram_resource_count = npmem_ranges;
186 
187 	/*
188 	 * For 32 bit kernels we limit the amount of memory we can
189 	 * support, in order to preserve enough kernel address space
190 	 * for other purposes. For 64 bit kernels we don't normally
191 	 * limit the memory, but this mechanism can be used to
192 	 * artificially limit the amount of memory (and it is written
193 	 * to work with multiple memory ranges).
194 	 */
195 
196 	mem_limit_func();       /* check for "mem=" argument */
197 
198 	mem_max = 0;
199 	for (i = 0; i < npmem_ranges; i++) {
200 		unsigned long rsize;
201 
202 		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
203 		if ((mem_max + rsize) > mem_limit) {
204 			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
205 			if (mem_max == mem_limit)
206 				npmem_ranges = i;
207 			else {
208 				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
209 						       - (mem_max >> PAGE_SHIFT);
210 				npmem_ranges = i + 1;
211 				mem_max = mem_limit;
212 			}
213 			break;
214 		}
215 		mem_max += rsize;
216 	}
217 
218 	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
219 
220 #ifndef CONFIG_SPARSEMEM
221 	/* Merge the ranges, keeping track of the holes */
222 	{
223 		unsigned long end_pfn;
224 		unsigned long hole_pages;
225 
226 		npmem_holes = 0;
227 		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
228 		for (i = 1; i < npmem_ranges; i++) {
229 
230 			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
231 			if (hole_pages) {
232 				pmem_holes[npmem_holes].start_pfn = end_pfn;
233 				pmem_holes[npmem_holes++].pages = hole_pages;
234 				end_pfn += hole_pages;
235 			}
236 			end_pfn += pmem_ranges[i].pages;
237 		}
238 
239 		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
240 		npmem_ranges = 1;
241 	}
242 #endif
243 
244 	/*
245 	 * Initialize and free the full range of memory in each range.
246 	 */
247 
248 	max_pfn = 0;
249 	for (i = 0; i < npmem_ranges; i++) {
250 		unsigned long start_pfn;
251 		unsigned long npages;
252 		unsigned long start;
253 		unsigned long size;
254 
255 		start_pfn = pmem_ranges[i].start_pfn;
256 		npages = pmem_ranges[i].pages;
257 
258 		start = start_pfn << PAGE_SHIFT;
259 		size = npages << PAGE_SHIFT;
260 
261 		/* add system RAM memblock */
262 		memblock_add(start, size);
263 
264 		if ((start_pfn + npages) > max_pfn)
265 			max_pfn = start_pfn + npages;
266 	}
267 
268 	/*
269 	 * We can't use memblock top-down allocations because we only
270 	 * created the initial mapping up to KERNEL_INITIAL_SIZE in
271 	 * the assembly bootup code.
272 	 */
273 	memblock_set_bottom_up(true);
274 
275 	/* IOMMU is always used to access "high mem" on those boxes
276 	 * that can support enough mem that a PCI device couldn't
277 	 * directly DMA to any physical addresses.
278 	 * ISA DMA support will need to revisit this.
279 	 */
280 	max_low_pfn = max_pfn;
281 
282 	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
283 
284 #define PDC_CONSOLE_IO_IODC_SIZE 32768
285 
286 	memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free +
287 				PDC_CONSOLE_IO_IODC_SIZE));
288 	memblock_reserve(__pa(KERNEL_BINARY_TEXT_START),
289 			(unsigned long)(_end - KERNEL_BINARY_TEXT_START));
290 
291 #ifndef CONFIG_SPARSEMEM
292 
293 	/* reserve the holes */
294 
295 	for (i = 0; i < npmem_holes; i++) {
296 		memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT),
297 				(pmem_holes[i].pages << PAGE_SHIFT));
298 	}
299 #endif
300 
301 #ifdef CONFIG_BLK_DEV_INITRD
302 	if (initrd_start) {
303 		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
304 		if (__pa(initrd_start) < mem_max) {
305 			unsigned long initrd_reserve;
306 
307 			if (__pa(initrd_end) > mem_max) {
308 				initrd_reserve = mem_max - __pa(initrd_start);
309 			} else {
310 				initrd_reserve = initrd_end - initrd_start;
311 			}
312 			initrd_below_start_ok = 1;
313 			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
314 
315 			memblock_reserve(__pa(initrd_start), initrd_reserve);
316 		}
317 	}
318 #endif
319 
320 	data_resource.start =  virt_to_phys(&data_start);
321 	data_resource.end = virt_to_phys(_end) - 1;
322 	code_resource.start = virt_to_phys(_text);
323 	code_resource.end = virt_to_phys(&data_start)-1;
324 
325 	/* We don't know which region the kernel will be in, so try
326 	 * all of them.
327 	 */
328 	for (i = 0; i < sysram_resource_count; i++) {
329 		struct resource *res = &sysram_resources[i];
330 		request_resource(res, &code_resource);
331 		request_resource(res, &data_resource);
332 	}
333 	request_resource(&sysram_resources[0], &pdcdata_resource);
334 
335 	/* Initialize Page Deallocation Table (PDT) and check for bad memory. */
336 	pdc_pdt_init();
337 
338 	memblock_allow_resize();
339 	memblock_dump_all();
340 }
341 
342 static bool kernel_set_to_readonly;
343 
344 static void __init map_pages(unsigned long start_vaddr,
345 			     unsigned long start_paddr, unsigned long size,
346 			     pgprot_t pgprot, int force)
347 {
348 	pmd_t *pmd;
349 	pte_t *pg_table;
350 	unsigned long end_paddr;
351 	unsigned long start_pmd;
352 	unsigned long start_pte;
353 	unsigned long tmp1;
354 	unsigned long tmp2;
355 	unsigned long address;
356 	unsigned long vaddr;
357 	unsigned long ro_start;
358 	unsigned long ro_end;
359 	unsigned long kernel_start, kernel_end;
360 
361 	ro_start = __pa((unsigned long)_text);
362 	ro_end   = __pa((unsigned long)&data_start);
363 	kernel_start = __pa((unsigned long)&__init_begin);
364 	kernel_end  = __pa((unsigned long)&_end);
365 
366 	end_paddr = start_paddr + size;
367 
368 	/* for 2-level configuration PTRS_PER_PMD is 0 so start_pmd will be 0 */
369 	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
370 	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
371 
372 	address = start_paddr;
373 	vaddr = start_vaddr;
374 	while (address < end_paddr) {
375 		pgd_t *pgd = pgd_offset_k(vaddr);
376 		p4d_t *p4d = p4d_offset(pgd, vaddr);
377 		pud_t *pud = pud_offset(p4d, vaddr);
378 
379 #if CONFIG_PGTABLE_LEVELS == 3
380 		if (pud_none(*pud)) {
381 			pmd = memblock_alloc(PAGE_SIZE << PMD_ORDER,
382 					     PAGE_SIZE << PMD_ORDER);
383 			if (!pmd)
384 				panic("pmd allocation failed.\n");
385 			pud_populate(NULL, pud, pmd);
386 		}
387 #endif
388 
389 		pmd = pmd_offset(pud, vaddr);
390 		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
391 			if (pmd_none(*pmd)) {
392 				pg_table = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
393 				if (!pg_table)
394 					panic("page table allocation failed\n");
395 				pmd_populate_kernel(NULL, pmd, pg_table);
396 			}
397 
398 			pg_table = pte_offset_kernel(pmd, vaddr);
399 			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
400 				pte_t pte;
401 				pgprot_t prot;
402 				bool huge = false;
403 
404 				if (force) {
405 					prot = pgprot;
406 				} else if (address < kernel_start || address >= kernel_end) {
407 					/* outside kernel memory */
408 					prot = PAGE_KERNEL;
409 				} else if (!kernel_set_to_readonly) {
410 					/* still initializing, allow writing to RO memory */
411 					prot = PAGE_KERNEL_RWX;
412 					huge = true;
413 				} else if (address >= ro_start) {
414 					/* Code (ro) and Data areas */
415 					prot = (address < ro_end) ?
416 						PAGE_KERNEL_EXEC : PAGE_KERNEL;
417 					huge = true;
418 				} else {
419 					prot = PAGE_KERNEL;
420 				}
421 
422 				pte = __mk_pte(address, prot);
423 				if (huge)
424 					pte = pte_mkhuge(pte);
425 
426 				if (address >= end_paddr)
427 					break;
428 
429 				set_pte(pg_table, pte);
430 
431 				address += PAGE_SIZE;
432 				vaddr += PAGE_SIZE;
433 			}
434 			start_pte = 0;
435 
436 			if (address >= end_paddr)
437 			    break;
438 		}
439 		start_pmd = 0;
440 	}
441 }
442 
443 void __init set_kernel_text_rw(int enable_read_write)
444 {
445 	unsigned long start = (unsigned long) __init_begin;
446 	unsigned long end   = (unsigned long) &data_start;
447 
448 	map_pages(start, __pa(start), end-start,
449 		PAGE_KERNEL_RWX, enable_read_write ? 1:0);
450 
451 	/* force the kernel to see the new page table entries */
452 	flush_cache_all();
453 	flush_tlb_all();
454 }
455 
456 void __ref free_initmem(void)
457 {
458 	unsigned long init_begin = (unsigned long)__init_begin;
459 	unsigned long init_end = (unsigned long)__init_end;
460 	unsigned long kernel_end  = (unsigned long)&_end;
461 
462 	/* Remap kernel text and data, but do not touch init section yet. */
463 	kernel_set_to_readonly = true;
464 	map_pages(init_end, __pa(init_end), kernel_end - init_end,
465 		  PAGE_KERNEL, 0);
466 
467 	/* The init text pages are marked R-X.  We have to
468 	 * flush the icache and mark them RW-
469 	 *
470 	 * This is tricky, because map_pages is in the init section.
471 	 * Do a dummy remap of the data section first (the data
472 	 * section is already PAGE_KERNEL) to pull in the TLB entries
473 	 * for map_kernel */
474 	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
475 		  PAGE_KERNEL_RWX, 1);
476 	/* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
477 	 * map_pages */
478 	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
479 		  PAGE_KERNEL, 1);
480 
481 	/* force the kernel to see the new TLB entries */
482 	__flush_tlb_range(0, init_begin, kernel_end);
483 
484 	/* finally dump all the instructions which were cached, since the
485 	 * pages are no-longer executable */
486 	flush_icache_range(init_begin, init_end);
487 
488 	free_initmem_default(POISON_FREE_INITMEM);
489 
490 	/* set up a new led state on systems shipped LED State panel */
491 	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
492 }
493 
494 
495 #ifdef CONFIG_STRICT_KERNEL_RWX
496 void mark_rodata_ro(void)
497 {
498 	/* rodata memory was already mapped with KERNEL_RO access rights by
499            pagetable_init() and map_pages(). No need to do additional stuff here */
500 	unsigned long roai_size = __end_ro_after_init - __start_ro_after_init;
501 
502 	pr_info("Write protected read-only-after-init data: %luk\n", roai_size >> 10);
503 }
504 #endif
505 
506 
507 /*
508  * Just an arbitrary offset to serve as a "hole" between mapping areas
509  * (between top of physical memory and a potential pcxl dma mapping
510  * area, and below the vmalloc mapping area).
511  *
512  * The current 32K value just means that there will be a 32K "hole"
513  * between mapping areas. That means that  any out-of-bounds memory
514  * accesses will hopefully be caught. The vmalloc() routines leaves
515  * a hole of 4kB between each vmalloced area for the same reason.
516  */
517 
518  /* Leave room for gateway page expansion */
519 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
520 #error KERNEL_MAP_START is in gateway reserved region
521 #endif
522 #define MAP_START (KERNEL_MAP_START)
523 
524 #define VM_MAP_OFFSET  (32*1024)
525 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
526 				     & ~(VM_MAP_OFFSET-1)))
527 
528 void *parisc_vmalloc_start __ro_after_init;
529 EXPORT_SYMBOL(parisc_vmalloc_start);
530 
531 #ifdef CONFIG_PA11
532 unsigned long pcxl_dma_start __ro_after_init;
533 #endif
534 
535 void __init mem_init(void)
536 {
537 	/* Do sanity checks on IPC (compat) structures */
538 	BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
539 #ifndef CONFIG_64BIT
540 	BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
541 	BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
542 	BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
543 #endif
544 #ifdef CONFIG_COMPAT
545 	BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
546 	BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
547 	BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
548 	BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
549 #endif
550 
551 	/* Do sanity checks on page table constants */
552 	BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
553 	BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
554 	BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
555 	BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
556 			> BITS_PER_LONG);
557 #if CONFIG_PGTABLE_LEVELS == 3
558 	BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PMD);
559 #else
560 	BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PGD);
561 #endif
562 
563 	high_memory = __va((max_pfn << PAGE_SHIFT));
564 	set_max_mapnr(max_low_pfn);
565 	memblock_free_all();
566 
567 #ifdef CONFIG_PA11
568 	if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) {
569 		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
570 		parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
571 						+ PCXL_DMA_MAP_SIZE);
572 	} else
573 #endif
574 		parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
575 
576 #if 0
577 	/*
578 	 * Do not expose the virtual kernel memory layout to userspace.
579 	 * But keep code for debugging purposes.
580 	 */
581 	printk("virtual kernel memory layout:\n"
582 	       "     vmalloc : 0x%px - 0x%px   (%4ld MB)\n"
583 	       "     fixmap  : 0x%px - 0x%px   (%4ld kB)\n"
584 	       "     memory  : 0x%px - 0x%px   (%4ld MB)\n"
585 	       "       .init : 0x%px - 0x%px   (%4ld kB)\n"
586 	       "       .data : 0x%px - 0x%px   (%4ld kB)\n"
587 	       "       .text : 0x%px - 0x%px   (%4ld kB)\n",
588 
589 	       (void*)VMALLOC_START, (void*)VMALLOC_END,
590 	       (VMALLOC_END - VMALLOC_START) >> 20,
591 
592 	       (void *)FIXMAP_START, (void *)(FIXMAP_START + FIXMAP_SIZE),
593 	       (unsigned long)(FIXMAP_SIZE / 1024),
594 
595 	       __va(0), high_memory,
596 	       ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
597 
598 	       __init_begin, __init_end,
599 	       ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
600 
601 	       _etext, _edata,
602 	       ((unsigned long)_edata - (unsigned long)_etext) >> 10,
603 
604 	       _text, _etext,
605 	       ((unsigned long)_etext - (unsigned long)_text) >> 10);
606 #endif
607 }
608 
609 unsigned long *empty_zero_page __ro_after_init;
610 EXPORT_SYMBOL(empty_zero_page);
611 
612 /*
613  * pagetable_init() sets up the page tables
614  *
615  * Note that gateway_init() places the Linux gateway page at page 0.
616  * Since gateway pages cannot be dereferenced this has the desirable
617  * side effect of trapping those pesky NULL-reference errors in the
618  * kernel.
619  */
620 static void __init pagetable_init(void)
621 {
622 	int range;
623 
624 	/* Map each physical memory range to its kernel vaddr */
625 
626 	for (range = 0; range < npmem_ranges; range++) {
627 		unsigned long start_paddr;
628 		unsigned long end_paddr;
629 		unsigned long size;
630 
631 		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
632 		size = pmem_ranges[range].pages << PAGE_SHIFT;
633 		end_paddr = start_paddr + size;
634 
635 		map_pages((unsigned long)__va(start_paddr), start_paddr,
636 			  size, PAGE_KERNEL, 0);
637 	}
638 
639 #ifdef CONFIG_BLK_DEV_INITRD
640 	if (initrd_end && initrd_end > mem_limit) {
641 		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
642 		map_pages(initrd_start, __pa(initrd_start),
643 			  initrd_end - initrd_start, PAGE_KERNEL, 0);
644 	}
645 #endif
646 
647 	empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
648 	if (!empty_zero_page)
649 		panic("zero page allocation failed.\n");
650 
651 }
652 
653 static void __init gateway_init(void)
654 {
655 	unsigned long linux_gateway_page_addr;
656 	/* FIXME: This is 'const' in order to trick the compiler
657 	   into not treating it as DP-relative data. */
658 	extern void * const linux_gateway_page;
659 
660 	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
661 
662 	/*
663 	 * Setup Linux Gateway page.
664 	 *
665 	 * The Linux gateway page will reside in kernel space (on virtual
666 	 * page 0), so it doesn't need to be aliased into user space.
667 	 */
668 
669 	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
670 		  PAGE_SIZE, PAGE_GATEWAY, 1);
671 }
672 
673 static void __init parisc_bootmem_free(void)
674 {
675 	unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0, };
676 
677 	max_zone_pfn[0] = memblock_end_of_DRAM();
678 
679 	free_area_init(max_zone_pfn);
680 }
681 
682 void __init paging_init(void)
683 {
684 	setup_bootmem();
685 	pagetable_init();
686 	gateway_init();
687 	flush_cache_all_local(); /* start with known state */
688 	flush_tlb_all_local(NULL);
689 
690 	sparse_init();
691 	parisc_bootmem_free();
692 }
693 
694 #ifdef CONFIG_PA20
695 
696 /*
697  * Currently, all PA20 chips have 18 bit protection IDs, which is the
698  * limiting factor (space ids are 32 bits).
699  */
700 
701 #define NR_SPACE_IDS 262144
702 
703 #else
704 
705 /*
706  * Currently we have a one-to-one relationship between space IDs and
707  * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
708  * support 15 bit protection IDs, so that is the limiting factor.
709  * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
710  * probably not worth the effort for a special case here.
711  */
712 
713 #define NR_SPACE_IDS 32768
714 
715 #endif  /* !CONFIG_PA20 */
716 
717 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
718 #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
719 
720 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
721 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
722 static unsigned long space_id_index;
723 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
724 static unsigned long dirty_space_ids = 0;
725 
726 static DEFINE_SPINLOCK(sid_lock);
727 
728 unsigned long alloc_sid(void)
729 {
730 	unsigned long index;
731 
732 	spin_lock(&sid_lock);
733 
734 	if (free_space_ids == 0) {
735 		if (dirty_space_ids != 0) {
736 			spin_unlock(&sid_lock);
737 			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
738 			spin_lock(&sid_lock);
739 		}
740 		BUG_ON(free_space_ids == 0);
741 	}
742 
743 	free_space_ids--;
744 
745 	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
746 	space_id[BIT_WORD(index)] |= BIT_MASK(index);
747 	space_id_index = index;
748 
749 	spin_unlock(&sid_lock);
750 
751 	return index << SPACEID_SHIFT;
752 }
753 
754 void free_sid(unsigned long spaceid)
755 {
756 	unsigned long index = spaceid >> SPACEID_SHIFT;
757 	unsigned long *dirty_space_offset, mask;
758 
759 	dirty_space_offset = &dirty_space_id[BIT_WORD(index)];
760 	mask = BIT_MASK(index);
761 
762 	spin_lock(&sid_lock);
763 
764 	BUG_ON(*dirty_space_offset & mask); /* attempt to free space id twice */
765 
766 	*dirty_space_offset |= mask;
767 	dirty_space_ids++;
768 
769 	spin_unlock(&sid_lock);
770 }
771 
772 
773 #ifdef CONFIG_SMP
774 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
775 {
776 	int i;
777 
778 	/* NOTE: sid_lock must be held upon entry */
779 
780 	*ndirtyptr = dirty_space_ids;
781 	if (dirty_space_ids != 0) {
782 	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
783 		dirty_array[i] = dirty_space_id[i];
784 		dirty_space_id[i] = 0;
785 	    }
786 	    dirty_space_ids = 0;
787 	}
788 
789 	return;
790 }
791 
792 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
793 {
794 	int i;
795 
796 	/* NOTE: sid_lock must be held upon entry */
797 
798 	if (ndirty != 0) {
799 		for (i = 0; i < SID_ARRAY_SIZE; i++) {
800 			space_id[i] ^= dirty_array[i];
801 		}
802 
803 		free_space_ids += ndirty;
804 		space_id_index = 0;
805 	}
806 }
807 
808 #else /* CONFIG_SMP */
809 
810 static void recycle_sids(void)
811 {
812 	int i;
813 
814 	/* NOTE: sid_lock must be held upon entry */
815 
816 	if (dirty_space_ids != 0) {
817 		for (i = 0; i < SID_ARRAY_SIZE; i++) {
818 			space_id[i] ^= dirty_space_id[i];
819 			dirty_space_id[i] = 0;
820 		}
821 
822 		free_space_ids += dirty_space_ids;
823 		dirty_space_ids = 0;
824 		space_id_index = 0;
825 	}
826 }
827 #endif
828 
829 /*
830  * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
831  * purged, we can safely reuse the space ids that were released but
832  * not flushed from the tlb.
833  */
834 
835 #ifdef CONFIG_SMP
836 
837 static unsigned long recycle_ndirty;
838 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
839 static unsigned int recycle_inuse;
840 
841 void flush_tlb_all(void)
842 {
843 	int do_recycle;
844 
845 	__inc_irq_stat(irq_tlb_count);
846 	do_recycle = 0;
847 	spin_lock(&sid_lock);
848 	if (dirty_space_ids > RECYCLE_THRESHOLD) {
849 	    BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
850 	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
851 	    recycle_inuse++;
852 	    do_recycle++;
853 	}
854 	spin_unlock(&sid_lock);
855 	on_each_cpu(flush_tlb_all_local, NULL, 1);
856 	if (do_recycle) {
857 	    spin_lock(&sid_lock);
858 	    recycle_sids(recycle_ndirty,recycle_dirty_array);
859 	    recycle_inuse = 0;
860 	    spin_unlock(&sid_lock);
861 	}
862 }
863 #else
864 void flush_tlb_all(void)
865 {
866 	__inc_irq_stat(irq_tlb_count);
867 	spin_lock(&sid_lock);
868 	flush_tlb_all_local(NULL);
869 	recycle_sids();
870 	spin_unlock(&sid_lock);
871 }
872 #endif
873