xref: /linux/arch/parisc/mm/hugetlbpage.c (revision 4be5e8648b0c287aefc6ac3f3a0b12c696054f43)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PARISC64 Huge TLB page support.
4  *
5  * This parisc implementation is heavily based on the SPARC and x86 code.
6  *
7  * Copyright (C) 2015 Helge Deller <deller@gmx.de>
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/sched/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/sysctl.h>
16 
17 #include <asm/mman.h>
18 #include <asm/pgalloc.h>
19 #include <asm/tlb.h>
20 #include <asm/tlbflush.h>
21 #include <asm/cacheflush.h>
22 #include <asm/mmu_context.h>
23 
24 
25 unsigned long
26 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
27 		unsigned long len, unsigned long pgoff, unsigned long flags)
28 {
29 	struct hstate *h = hstate_file(file);
30 
31 	if (len & ~huge_page_mask(h))
32 		return -EINVAL;
33 	if (len > TASK_SIZE)
34 		return -ENOMEM;
35 
36 	if (flags & MAP_FIXED)
37 		if (prepare_hugepage_range(file, addr, len))
38 			return -EINVAL;
39 
40 	if (addr)
41 		addr = ALIGN(addr, huge_page_size(h));
42 
43 	/* we need to make sure the colouring is OK */
44 	return arch_get_unmapped_area(file, addr, len, pgoff, flags);
45 }
46 
47 
48 pte_t *huge_pte_alloc(struct mm_struct *mm,
49 			unsigned long addr, unsigned long sz)
50 {
51 	pgd_t *pgd;
52 	p4d_t *p4d;
53 	pud_t *pud;
54 	pmd_t *pmd;
55 	pte_t *pte = NULL;
56 
57 	/* We must align the address, because our caller will run
58 	 * set_huge_pte_at() on whatever we return, which writes out
59 	 * all of the sub-ptes for the hugepage range.  So we have
60 	 * to give it the first such sub-pte.
61 	 */
62 	addr &= HPAGE_MASK;
63 
64 	pgd = pgd_offset(mm, addr);
65 	p4d = p4d_offset(pgd, addr);
66 	pud = pud_alloc(mm, p4d, addr);
67 	if (pud) {
68 		pmd = pmd_alloc(mm, pud, addr);
69 		if (pmd)
70 			pte = pte_alloc_map(mm, pmd, addr);
71 	}
72 	return pte;
73 }
74 
75 pte_t *huge_pte_offset(struct mm_struct *mm,
76 		       unsigned long addr, unsigned long sz)
77 {
78 	pgd_t *pgd;
79 	p4d_t *p4d;
80 	pud_t *pud;
81 	pmd_t *pmd;
82 	pte_t *pte = NULL;
83 
84 	addr &= HPAGE_MASK;
85 
86 	pgd = pgd_offset(mm, addr);
87 	if (!pgd_none(*pgd)) {
88 		p4d = p4d_offset(pgd, addr);
89 		if (!p4d_none(*p4d)) {
90 			pud = pud_offset(p4d, addr);
91 			if (!pud_none(*pud)) {
92 				pmd = pmd_offset(pud, addr);
93 				if (!pmd_none(*pmd))
94 					pte = pte_offset_map(pmd, addr);
95 			}
96 		}
97 	}
98 	return pte;
99 }
100 
101 /* Purge data and instruction TLB entries.  Must be called holding
102  * the pa_tlb_lock.  The TLB purge instructions are slow on SMP
103  * machines since the purge must be broadcast to all CPUs.
104  */
105 static inline void purge_tlb_entries_huge(struct mm_struct *mm, unsigned long addr)
106 {
107 	int i;
108 
109 	/* We may use multiple physical huge pages (e.g. 2x1 MB) to emulate
110 	 * Linux standard huge pages (e.g. 2 MB) */
111 	BUILD_BUG_ON(REAL_HPAGE_SHIFT > HPAGE_SHIFT);
112 
113 	addr &= HPAGE_MASK;
114 	addr |= _HUGE_PAGE_SIZE_ENCODING_DEFAULT;
115 
116 	for (i = 0; i < (1 << (HPAGE_SHIFT-REAL_HPAGE_SHIFT)); i++) {
117 		purge_tlb_entries(mm, addr);
118 		addr += (1UL << REAL_HPAGE_SHIFT);
119 	}
120 }
121 
122 /* __set_huge_pte_at() must be called holding the pa_tlb_lock. */
123 static void __set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
124 		     pte_t *ptep, pte_t entry)
125 {
126 	unsigned long addr_start;
127 	int i;
128 
129 	addr &= HPAGE_MASK;
130 	addr_start = addr;
131 
132 	for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
133 		set_pte(ptep, entry);
134 		ptep++;
135 
136 		addr += PAGE_SIZE;
137 		pte_val(entry) += PAGE_SIZE;
138 	}
139 
140 	purge_tlb_entries_huge(mm, addr_start);
141 }
142 
143 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
144 		     pte_t *ptep, pte_t entry)
145 {
146 	unsigned long flags;
147 
148 	spin_lock_irqsave(pgd_spinlock((mm)->pgd), flags);
149 	__set_huge_pte_at(mm, addr, ptep, entry);
150 	spin_unlock_irqrestore(pgd_spinlock((mm)->pgd), flags);
151 }
152 
153 
154 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
155 			      pte_t *ptep)
156 {
157 	unsigned long flags;
158 	pte_t entry;
159 
160 	spin_lock_irqsave(pgd_spinlock((mm)->pgd), flags);
161 	entry = *ptep;
162 	__set_huge_pte_at(mm, addr, ptep, __pte(0));
163 	spin_unlock_irqrestore(pgd_spinlock((mm)->pgd), flags);
164 
165 	return entry;
166 }
167 
168 
169 void huge_ptep_set_wrprotect(struct mm_struct *mm,
170 				unsigned long addr, pte_t *ptep)
171 {
172 	unsigned long flags;
173 	pte_t old_pte;
174 
175 	spin_lock_irqsave(pgd_spinlock((mm)->pgd), flags);
176 	old_pte = *ptep;
177 	__set_huge_pte_at(mm, addr, ptep, pte_wrprotect(old_pte));
178 	spin_unlock_irqrestore(pgd_spinlock((mm)->pgd), flags);
179 }
180 
181 int huge_ptep_set_access_flags(struct vm_area_struct *vma,
182 				unsigned long addr, pte_t *ptep,
183 				pte_t pte, int dirty)
184 {
185 	unsigned long flags;
186 	int changed;
187 	struct mm_struct *mm = vma->vm_mm;
188 
189 	spin_lock_irqsave(pgd_spinlock((mm)->pgd), flags);
190 	changed = !pte_same(*ptep, pte);
191 	if (changed) {
192 		__set_huge_pte_at(mm, addr, ptep, pte);
193 	}
194 	spin_unlock_irqrestore(pgd_spinlock((mm)->pgd), flags);
195 	return changed;
196 }
197 
198 
199 int pmd_huge(pmd_t pmd)
200 {
201 	return 0;
202 }
203 
204 int pud_huge(pud_t pud)
205 {
206 	return 0;
207 }
208