xref: /linux/arch/parisc/mm/fault.c (revision 8a405552fd3b1eefe186e724343e88790f6be832)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  *
7  * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
8  * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
9  * Copyright 1999 Hewlett Packard Co.
10  *
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/ptrace.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/interrupt.h>
18 #include <linux/extable.h>
19 #include <linux/uaccess.h>
20 #include <linux/hugetlb.h>
21 #include <linux/perf_event.h>
22 
23 #include <asm/traps.h>
24 
25 #define DEBUG_NATLB 0
26 
27 /* Various important other fields */
28 #define bit22set(x)		(x & 0x00000200)
29 #define bits23_25set(x)		(x & 0x000001c0)
30 #define isGraphicsFlushRead(x)	((x & 0xfc003fdf) == 0x04001a80)
31 				/* extended opcode is 0x6a */
32 
33 #define BITSSET		0x1c0	/* for identifying LDCW */
34 
35 
36 int show_unhandled_signals = 1;
37 
38 /*
39  * parisc_acctyp(unsigned int inst) --
40  *    Given a PA-RISC memory access instruction, determine if the
41  *    instruction would perform a memory read or memory write
42  *    operation.
43  *
44  *    This function assumes that the given instruction is a memory access
45  *    instruction (i.e. you should really only call it if you know that
46  *    the instruction has generated some sort of a memory access fault).
47  *
48  * Returns:
49  *   VM_READ  if read operation
50  *   VM_WRITE if write operation
51  *   VM_EXEC  if execute operation
52  */
53 unsigned long
54 parisc_acctyp(unsigned long code, unsigned int inst)
55 {
56 	if (code == 6 || code == 16)
57 	    return VM_EXEC;
58 
59 	switch (inst & 0xf0000000) {
60 	case 0x40000000: /* load */
61 	case 0x50000000: /* new load */
62 		return VM_READ;
63 
64 	case 0x60000000: /* store */
65 	case 0x70000000: /* new store */
66 		return VM_WRITE;
67 
68 	case 0x20000000: /* coproc */
69 	case 0x30000000: /* coproc2 */
70 		if (bit22set(inst))
71 			return VM_WRITE;
72 		fallthrough;
73 
74 	case 0x0: /* indexed/memory management */
75 		if (bit22set(inst)) {
76 			/*
77 			 * Check for the 'Graphics Flush Read' instruction.
78 			 * It resembles an FDC instruction, except for bits
79 			 * 20 and 21. Any combination other than zero will
80 			 * utilize the block mover functionality on some
81 			 * older PA-RISC platforms.  The case where a block
82 			 * move is performed from VM to graphics IO space
83 			 * should be treated as a READ.
84 			 *
85 			 * The significance of bits 20,21 in the FDC
86 			 * instruction is:
87 			 *
88 			 *   00  Flush data cache (normal instruction behavior)
89 			 *   01  Graphics flush write  (IO space -> VM)
90 			 *   10  Graphics flush read   (VM -> IO space)
91 			 *   11  Graphics flush read/write (VM <-> IO space)
92 			 */
93 			if (isGraphicsFlushRead(inst))
94 				return VM_READ;
95 			return VM_WRITE;
96 		} else {
97 			/*
98 			 * Check for LDCWX and LDCWS (semaphore instructions).
99 			 * If bits 23 through 25 are all 1's it is one of
100 			 * the above two instructions and is a write.
101 			 *
102 			 * Note: With the limited bits we are looking at,
103 			 * this will also catch PROBEW and PROBEWI. However,
104 			 * these should never get in here because they don't
105 			 * generate exceptions of the type:
106 			 *   Data TLB miss fault/data page fault
107 			 *   Data memory protection trap
108 			 */
109 			if (bits23_25set(inst) == BITSSET)
110 				return VM_WRITE;
111 		}
112 		return VM_READ; /* Default */
113 	}
114 	return VM_READ; /* Default */
115 }
116 
117 #undef bit22set
118 #undef bits23_25set
119 #undef isGraphicsFlushRead
120 #undef BITSSET
121 
122 
123 #if 0
124 /* This is the treewalk to find a vma which is the highest that has
125  * a start < addr.  We're using find_vma_prev instead right now, but
126  * we might want to use this at some point in the future.  Probably
127  * not, but I want it committed to CVS so I don't lose it :-)
128  */
129 			while (tree != vm_avl_empty) {
130 				if (tree->vm_start > addr) {
131 					tree = tree->vm_avl_left;
132 				} else {
133 					prev = tree;
134 					if (prev->vm_next == NULL)
135 						break;
136 					if (prev->vm_next->vm_start > addr)
137 						break;
138 					tree = tree->vm_avl_right;
139 				}
140 			}
141 #endif
142 
143 int fixup_exception(struct pt_regs *regs)
144 {
145 	const struct exception_table_entry *fix;
146 
147 	fix = search_exception_tables(regs->iaoq[0]);
148 	if (fix) {
149 		/*
150 		 * Fix up get_user() and put_user().
151 		 * ASM_EXCEPTIONTABLE_ENTRY_EFAULT() sets the least-significant
152 		 * bit in the relative address of the fixup routine to indicate
153 		 * that the register encoded in the "or %r0,%r0,register"
154 		 * opcode should be loaded with -EFAULT to report a userspace
155 		 * access error.
156 		 */
157 		if (fix->fixup & 1) {
158 			int fault_error_reg = fix->err_opcode & 0x1f;
159 			if (!WARN_ON(!fault_error_reg))
160 				regs->gr[fault_error_reg] = -EFAULT;
161 			pr_debug("Unalignment fixup of register %d at %pS\n",
162 				fault_error_reg, (void*)regs->iaoq[0]);
163 
164 			/* zero target register for get_user() */
165 			if (parisc_acctyp(0, regs->iir) == VM_READ) {
166 				int treg = regs->iir & 0x1f;
167 				BUG_ON(treg == 0);
168 				regs->gr[treg] = 0;
169 			}
170 		}
171 
172 		regs->iaoq[0] = (unsigned long)&fix->fixup + fix->fixup;
173 		regs->iaoq[0] &= ~3;
174 		/*
175 		 * NOTE: In some cases the faulting instruction
176 		 * may be in the delay slot of a branch. We
177 		 * don't want to take the branch, so we don't
178 		 * increment iaoq[1], instead we set it to be
179 		 * iaoq[0]+4, and clear the B bit in the PSW
180 		 */
181 		regs->iaoq[1] = regs->iaoq[0] + 4;
182 		regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */
183 
184 		return 1;
185 	}
186 
187 	return 0;
188 }
189 
190 /*
191  * parisc hardware trap list
192  *
193  * Documented in section 3 "Addressing and Access Control" of the
194  * "PA-RISC 1.1 Architecture and Instruction Set Reference Manual"
195  * https://parisc.wiki.kernel.org/index.php/File:Pa11_acd.pdf
196  *
197  * For implementation see handle_interruption() in traps.c
198  */
199 static const char * const trap_description[] = {
200 	[1] =	"High-priority machine check (HPMC)",
201 	[2] =	"Power failure interrupt",
202 	[3] =	"Recovery counter trap",
203 	[5] =	"Low-priority machine check",
204 	[6] =	"Instruction TLB miss fault",
205 	[7] =	"Instruction access rights / protection trap",
206 	[8] =	"Illegal instruction trap",
207 	[9] =	"Break instruction trap",
208 	[10] =	"Privileged operation trap",
209 	[11] =	"Privileged register trap",
210 	[12] =	"Overflow trap",
211 	[13] =	"Conditional trap",
212 	[14] =	"FP Assist Exception trap",
213 	[15] =	"Data TLB miss fault",
214 	[16] =	"Non-access ITLB miss fault",
215 	[17] =	"Non-access DTLB miss fault",
216 	[18] =	"Data memory protection/unaligned access trap",
217 	[19] =	"Data memory break trap",
218 	[20] =	"TLB dirty bit trap",
219 	[21] =	"Page reference trap",
220 	[22] =	"Assist emulation trap",
221 	[25] =	"Taken branch trap",
222 	[26] =	"Data memory access rights trap",
223 	[27] =	"Data memory protection ID trap",
224 	[28] =	"Unaligned data reference trap",
225 };
226 
227 const char *trap_name(unsigned long code)
228 {
229 	const char *t = NULL;
230 
231 	if (code < ARRAY_SIZE(trap_description))
232 		t = trap_description[code];
233 
234 	return t ? t : "Unknown trap";
235 }
236 
237 /*
238  * Print out info about fatal segfaults, if the show_unhandled_signals
239  * sysctl is set:
240  */
241 static inline void
242 show_signal_msg(struct pt_regs *regs, unsigned long code,
243 		unsigned long address, struct task_struct *tsk,
244 		struct vm_area_struct *vma)
245 {
246 	if (!unhandled_signal(tsk, SIGSEGV))
247 		return;
248 
249 	if (!printk_ratelimit())
250 		return;
251 
252 	pr_warn("\n");
253 	pr_warn("do_page_fault() command='%s' type=%lu address=0x%08lx",
254 	    tsk->comm, code, address);
255 	print_vma_addr(KERN_CONT " in ", regs->iaoq[0]);
256 
257 	pr_cont("\ntrap #%lu: %s%c", code, trap_name(code),
258 		vma ? ',':'\n');
259 
260 	if (vma)
261 		pr_cont(" vm_start = 0x%08lx, vm_end = 0x%08lx\n",
262 			vma->vm_start, vma->vm_end);
263 
264 	show_regs(regs);
265 }
266 
267 void do_page_fault(struct pt_regs *regs, unsigned long code,
268 			      unsigned long address)
269 {
270 	struct vm_area_struct *vma, *prev_vma;
271 	struct task_struct *tsk;
272 	struct mm_struct *mm;
273 	unsigned long acc_type;
274 	vm_fault_t fault = 0;
275 	unsigned int flags;
276 	char *msg;
277 
278 	tsk = current;
279 	mm = tsk->mm;
280 	if (!mm) {
281 		msg = "Page fault: no context";
282 		goto no_context;
283 	}
284 
285 	flags = FAULT_FLAG_DEFAULT;
286 	if (user_mode(regs))
287 		flags |= FAULT_FLAG_USER;
288 
289 	acc_type = parisc_acctyp(code, regs->iir);
290 	if (acc_type & VM_WRITE)
291 		flags |= FAULT_FLAG_WRITE;
292 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
293 retry:
294 	mmap_read_lock(mm);
295 	vma = find_vma_prev(mm, address, &prev_vma);
296 	if (!vma || address < vma->vm_start) {
297 		if (!prev_vma || !(prev_vma->vm_flags & VM_GROWSUP))
298 			goto bad_area;
299 		vma = expand_stack(mm, address);
300 		if (!vma)
301 			goto bad_area_nosemaphore;
302 	}
303 
304 /*
305  * Ok, we have a good vm_area for this memory access. We still need to
306  * check the access permissions.
307  */
308 
309 	if ((vma->vm_flags & acc_type) != acc_type)
310 		goto bad_area;
311 
312 	/*
313 	 * If for any reason at all we couldn't handle the fault, make
314 	 * sure we exit gracefully rather than endlessly redo the
315 	 * fault.
316 	 */
317 
318 	fault = handle_mm_fault(vma, address, flags, regs);
319 
320 	if (fault_signal_pending(fault, regs)) {
321 		if (!user_mode(regs)) {
322 			msg = "Page fault: fault signal on kernel memory";
323 			goto no_context;
324 		}
325 		return;
326 	}
327 
328 	/* The fault is fully completed (including releasing mmap lock) */
329 	if (fault & VM_FAULT_COMPLETED)
330 		return;
331 
332 	if (unlikely(fault & VM_FAULT_ERROR)) {
333 		/*
334 		 * We hit a shared mapping outside of the file, or some
335 		 * other thing happened to us that made us unable to
336 		 * handle the page fault gracefully.
337 		 */
338 		if (fault & VM_FAULT_OOM)
339 			goto out_of_memory;
340 		else if (fault & VM_FAULT_SIGSEGV)
341 			goto bad_area;
342 		else if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
343 				  VM_FAULT_HWPOISON_LARGE))
344 			goto bad_area;
345 		BUG();
346 	}
347 	if (fault & VM_FAULT_RETRY) {
348 		/*
349 		 * No need to mmap_read_unlock(mm) as we would
350 		 * have already released it in __lock_page_or_retry
351 		 * in mm/filemap.c.
352 		 */
353 		flags |= FAULT_FLAG_TRIED;
354 		goto retry;
355 	}
356 	mmap_read_unlock(mm);
357 	return;
358 
359 /*
360  * Something tried to access memory that isn't in our memory map..
361  */
362 bad_area:
363 	mmap_read_unlock(mm);
364 
365 bad_area_nosemaphore:
366 	if (user_mode(regs)) {
367 		int signo, si_code;
368 
369 		switch (code) {
370 		case 15:	/* Data TLB miss fault/Data page fault */
371 			/* send SIGSEGV when outside of vma */
372 			if (!vma ||
373 			    address < vma->vm_start || address >= vma->vm_end) {
374 				signo = SIGSEGV;
375 				si_code = SEGV_MAPERR;
376 				break;
377 			}
378 
379 			/* send SIGSEGV for wrong permissions */
380 			if ((vma->vm_flags & acc_type) != acc_type) {
381 				signo = SIGSEGV;
382 				si_code = SEGV_ACCERR;
383 				break;
384 			}
385 
386 			/* probably address is outside of mapped file */
387 			fallthrough;
388 		case 17:	/* NA data TLB miss / page fault */
389 		case 18:	/* Unaligned access - PCXS only */
390 			signo = SIGBUS;
391 			si_code = (code == 18) ? BUS_ADRALN : BUS_ADRERR;
392 			break;
393 		case 16:	/* Non-access instruction TLB miss fault */
394 		case 26:	/* PCXL: Data memory access rights trap */
395 		default:
396 			signo = SIGSEGV;
397 			si_code = (code == 26) ? SEGV_ACCERR : SEGV_MAPERR;
398 			break;
399 		}
400 #ifdef CONFIG_MEMORY_FAILURE
401 		if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
402 			unsigned int lsb = 0;
403 			printk(KERN_ERR
404 	"MCE: Killing %s:%d due to hardware memory corruption fault at %08lx\n",
405 			tsk->comm, tsk->pid, address);
406 			/*
407 			 * Either small page or large page may be poisoned.
408 			 * In other words, VM_FAULT_HWPOISON_LARGE and
409 			 * VM_FAULT_HWPOISON are mutually exclusive.
410 			 */
411 			if (fault & VM_FAULT_HWPOISON_LARGE)
412 				lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
413 			else if (fault & VM_FAULT_HWPOISON)
414 				lsb = PAGE_SHIFT;
415 
416 			force_sig_mceerr(BUS_MCEERR_AR, (void __user *) address,
417 					 lsb);
418 			return;
419 		}
420 #endif
421 		show_signal_msg(regs, code, address, tsk, vma);
422 
423 		force_sig_fault(signo, si_code, (void __user *) address);
424 		return;
425 	}
426 	msg = "Page fault: bad address";
427 
428 no_context:
429 
430 	if (!user_mode(regs) && fixup_exception(regs)) {
431 		return;
432 	}
433 
434 	parisc_terminate(msg, regs, code, address);
435 
436 out_of_memory:
437 	mmap_read_unlock(mm);
438 	if (!user_mode(regs)) {
439 		msg = "Page fault: out of memory";
440 		goto no_context;
441 	}
442 	pagefault_out_of_memory();
443 }
444 
445 /* Handle non-access data TLB miss faults.
446  *
447  * For probe instructions, accesses to userspace are considered allowed
448  * if they lie in a valid VMA and the access type matches. We are not
449  * allowed to handle MM faults here so there may be situations where an
450  * actual access would fail even though a probe was successful.
451  */
452 int
453 handle_nadtlb_fault(struct pt_regs *regs)
454 {
455 	unsigned long insn = regs->iir;
456 	int breg, treg, xreg, val = 0;
457 	struct vm_area_struct *vma;
458 	struct task_struct *tsk;
459 	struct mm_struct *mm;
460 	unsigned long address;
461 	unsigned long acc_type;
462 
463 	switch (insn & 0x380) {
464 	case 0x280:
465 		/* FDC instruction */
466 		fallthrough;
467 	case 0x380:
468 		/* PDC and FIC instructions */
469 		if (DEBUG_NATLB && printk_ratelimit()) {
470 			pr_warn("WARNING: nullifying cache flush/purge instruction\n");
471 			show_regs(regs);
472 		}
473 		if (insn & 0x20) {
474 			/* Base modification */
475 			breg = (insn >> 21) & 0x1f;
476 			xreg = (insn >> 16) & 0x1f;
477 			if (breg && xreg)
478 				regs->gr[breg] += regs->gr[xreg];
479 		}
480 		regs->gr[0] |= PSW_N;
481 		return 1;
482 
483 	case 0x180:
484 		/* PROBE instruction */
485 		treg = insn & 0x1f;
486 		if (regs->isr) {
487 			tsk = current;
488 			mm = tsk->mm;
489 			if (mm) {
490 				/* Search for VMA */
491 				address = regs->ior;
492 				mmap_read_lock(mm);
493 				vma = vma_lookup(mm, address);
494 				mmap_read_unlock(mm);
495 
496 				/*
497 				 * Check if access to the VMA is okay.
498 				 * We don't allow for stack expansion.
499 				 */
500 				acc_type = (insn & 0x40) ? VM_WRITE : VM_READ;
501 				if (vma
502 				    && (vma->vm_flags & acc_type) == acc_type)
503 					val = 1;
504 			}
505 		}
506 		if (treg)
507 			regs->gr[treg] = val;
508 		regs->gr[0] |= PSW_N;
509 		return 1;
510 
511 	case 0x300:
512 		/* LPA instruction */
513 		if (insn & 0x20) {
514 			/* Base modification */
515 			breg = (insn >> 21) & 0x1f;
516 			xreg = (insn >> 16) & 0x1f;
517 			if (breg && xreg)
518 				regs->gr[breg] += regs->gr[xreg];
519 		}
520 		treg = insn & 0x1f;
521 		if (treg)
522 			regs->gr[treg] = 0;
523 		regs->gr[0] |= PSW_N;
524 		return 1;
525 
526 	default:
527 		break;
528 	}
529 
530 	return 0;
531 }
532