xref: /linux/arch/parisc/mm/fault.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  *
7  * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
8  * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
9  * Copyright 1999 Hewlett Packard Co.
10  *
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/ptrace.h>
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 
19 #include <asm/uaccess.h>
20 #include <asm/traps.h>
21 
22 #define PRINT_USER_FAULTS /* (turn this on if you want user faults to be */
23 			 /*  dumped to the console via printk)          */
24 
25 
26 /* Various important other fields */
27 #define bit22set(x)		(x & 0x00000200)
28 #define bits23_25set(x)		(x & 0x000001c0)
29 #define isGraphicsFlushRead(x)	((x & 0xfc003fdf) == 0x04001a80)
30 				/* extended opcode is 0x6a */
31 
32 #define BITSSET		0x1c0	/* for identifying LDCW */
33 
34 
35 DEFINE_PER_CPU(struct exception_data, exception_data);
36 
37 /*
38  * parisc_acctyp(unsigned int inst) --
39  *    Given a PA-RISC memory access instruction, determine if the
40  *    the instruction would perform a memory read or memory write
41  *    operation.
42  *
43  *    This function assumes that the given instruction is a memory access
44  *    instruction (i.e. you should really only call it if you know that
45  *    the instruction has generated some sort of a memory access fault).
46  *
47  * Returns:
48  *   VM_READ  if read operation
49  *   VM_WRITE if write operation
50  *   VM_EXEC  if execute operation
51  */
52 static unsigned long
53 parisc_acctyp(unsigned long code, unsigned int inst)
54 {
55 	if (code == 6 || code == 16)
56 	    return VM_EXEC;
57 
58 	switch (inst & 0xf0000000) {
59 	case 0x40000000: /* load */
60 	case 0x50000000: /* new load */
61 		return VM_READ;
62 
63 	case 0x60000000: /* store */
64 	case 0x70000000: /* new store */
65 		return VM_WRITE;
66 
67 	case 0x20000000: /* coproc */
68 	case 0x30000000: /* coproc2 */
69 		if (bit22set(inst))
70 			return VM_WRITE;
71 
72 	case 0x0: /* indexed/memory management */
73 		if (bit22set(inst)) {
74 			/*
75 			 * Check for the 'Graphics Flush Read' instruction.
76 			 * It resembles an FDC instruction, except for bits
77 			 * 20 and 21. Any combination other than zero will
78 			 * utilize the block mover functionality on some
79 			 * older PA-RISC platforms.  The case where a block
80 			 * move is performed from VM to graphics IO space
81 			 * should be treated as a READ.
82 			 *
83 			 * The significance of bits 20,21 in the FDC
84 			 * instruction is:
85 			 *
86 			 *   00  Flush data cache (normal instruction behavior)
87 			 *   01  Graphics flush write  (IO space -> VM)
88 			 *   10  Graphics flush read   (VM -> IO space)
89 			 *   11  Graphics flush read/write (VM <-> IO space)
90 			 */
91 			if (isGraphicsFlushRead(inst))
92 				return VM_READ;
93 			return VM_WRITE;
94 		} else {
95 			/*
96 			 * Check for LDCWX and LDCWS (semaphore instructions).
97 			 * If bits 23 through 25 are all 1's it is one of
98 			 * the above two instructions and is a write.
99 			 *
100 			 * Note: With the limited bits we are looking at,
101 			 * this will also catch PROBEW and PROBEWI. However,
102 			 * these should never get in here because they don't
103 			 * generate exceptions of the type:
104 			 *   Data TLB miss fault/data page fault
105 			 *   Data memory protection trap
106 			 */
107 			if (bits23_25set(inst) == BITSSET)
108 				return VM_WRITE;
109 		}
110 		return VM_READ; /* Default */
111 	}
112 	return VM_READ; /* Default */
113 }
114 
115 #undef bit22set
116 #undef bits23_25set
117 #undef isGraphicsFlushRead
118 #undef BITSSET
119 
120 
121 #if 0
122 /* This is the treewalk to find a vma which is the highest that has
123  * a start < addr.  We're using find_vma_prev instead right now, but
124  * we might want to use this at some point in the future.  Probably
125  * not, but I want it committed to CVS so I don't lose it :-)
126  */
127 			while (tree != vm_avl_empty) {
128 				if (tree->vm_start > addr) {
129 					tree = tree->vm_avl_left;
130 				} else {
131 					prev = tree;
132 					if (prev->vm_next == NULL)
133 						break;
134 					if (prev->vm_next->vm_start > addr)
135 						break;
136 					tree = tree->vm_avl_right;
137 				}
138 			}
139 #endif
140 
141 int fixup_exception(struct pt_regs *regs)
142 {
143 	const struct exception_table_entry *fix;
144 
145 	fix = search_exception_tables(regs->iaoq[0]);
146 	if (fix) {
147 		struct exception_data *d;
148 		d = &__get_cpu_var(exception_data);
149 		d->fault_ip = regs->iaoq[0];
150 		d->fault_space = regs->isr;
151 		d->fault_addr = regs->ior;
152 
153 		regs->iaoq[0] = ((fix->fixup) & ~3);
154 		/*
155 		 * NOTE: In some cases the faulting instruction
156 		 * may be in the delay slot of a branch. We
157 		 * don't want to take the branch, so we don't
158 		 * increment iaoq[1], instead we set it to be
159 		 * iaoq[0]+4, and clear the B bit in the PSW
160 		 */
161 		regs->iaoq[1] = regs->iaoq[0] + 4;
162 		regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */
163 
164 		return 1;
165 	}
166 
167 	return 0;
168 }
169 
170 void do_page_fault(struct pt_regs *regs, unsigned long code,
171 			      unsigned long address)
172 {
173 	struct vm_area_struct *vma, *prev_vma;
174 	struct task_struct *tsk = current;
175 	struct mm_struct *mm = tsk->mm;
176 	unsigned long acc_type;
177 	int fault;
178 
179 	if (in_atomic() || !mm)
180 		goto no_context;
181 
182 	down_read(&mm->mmap_sem);
183 	vma = find_vma_prev(mm, address, &prev_vma);
184 	if (!vma || address < vma->vm_start)
185 		goto check_expansion;
186 /*
187  * Ok, we have a good vm_area for this memory access. We still need to
188  * check the access permissions.
189  */
190 
191 good_area:
192 
193 	acc_type = parisc_acctyp(code,regs->iir);
194 
195 	if ((vma->vm_flags & acc_type) != acc_type)
196 		goto bad_area;
197 
198 	/*
199 	 * If for any reason at all we couldn't handle the fault, make
200 	 * sure we exit gracefully rather than endlessly redo the
201 	 * fault.
202 	 */
203 
204 	fault = handle_mm_fault(mm, vma, address, (acc_type & VM_WRITE) ? FAULT_FLAG_WRITE : 0);
205 	if (unlikely(fault & VM_FAULT_ERROR)) {
206 		/*
207 		 * We hit a shared mapping outside of the file, or some
208 		 * other thing happened to us that made us unable to
209 		 * handle the page fault gracefully.
210 		 */
211 		if (fault & VM_FAULT_OOM)
212 			goto out_of_memory;
213 		else if (fault & VM_FAULT_SIGBUS)
214 			goto bad_area;
215 		BUG();
216 	}
217 	if (fault & VM_FAULT_MAJOR)
218 		current->maj_flt++;
219 	else
220 		current->min_flt++;
221 	up_read(&mm->mmap_sem);
222 	return;
223 
224 check_expansion:
225 	vma = prev_vma;
226 	if (vma && (expand_stack(vma, address) == 0))
227 		goto good_area;
228 
229 /*
230  * Something tried to access memory that isn't in our memory map..
231  */
232 bad_area:
233 	up_read(&mm->mmap_sem);
234 
235 	if (user_mode(regs)) {
236 		struct siginfo si;
237 
238 #ifdef PRINT_USER_FAULTS
239 		printk(KERN_DEBUG "\n");
240 		printk(KERN_DEBUG "do_page_fault() pid=%d command='%s' type=%lu address=0x%08lx\n",
241 		    task_pid_nr(tsk), tsk->comm, code, address);
242 		if (vma) {
243 			printk(KERN_DEBUG "vm_start = 0x%08lx, vm_end = 0x%08lx\n",
244 					vma->vm_start, vma->vm_end);
245 		}
246 		show_regs(regs);
247 #endif
248 		/* FIXME: actually we need to get the signo and code correct */
249 		si.si_signo = SIGSEGV;
250 		si.si_errno = 0;
251 		si.si_code = SEGV_MAPERR;
252 		si.si_addr = (void __user *) address;
253 		force_sig_info(SIGSEGV, &si, current);
254 		return;
255 	}
256 
257 no_context:
258 
259 	if (!user_mode(regs) && fixup_exception(regs)) {
260 		return;
261 	}
262 
263 	parisc_terminate("Bad Address (null pointer deref?)", regs, code, address);
264 
265   out_of_memory:
266 	up_read(&mm->mmap_sem);
267 	if (!user_mode(regs))
268 		goto no_context;
269 	pagefault_out_of_memory();
270 }
271