xref: /linux/arch/parisc/math-emu/dbl_float.h (revision c8bfe3fad4f86a029da7157bae9699c816f0c309)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Linux/PA-RISC Project (http://www.parisc-linux.org/)
4  *
5  * Floating-point emulation code
6  *  Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org>
7  */
8 #ifdef __NO_PA_HDRS
9     PA header file -- do not include this header file for non-PA builds.
10 #endif
11 
12 /* 32-bit word grabbing functions */
13 #define Dbl_firstword(value) Dallp1(value)
14 #define Dbl_secondword(value) Dallp2(value)
15 #define Dbl_thirdword(value) dummy_location
16 #define Dbl_fourthword(value) dummy_location
17 
18 #define Dbl_sign(object) Dsign(object)
19 #define Dbl_exponent(object) Dexponent(object)
20 #define Dbl_signexponent(object) Dsignexponent(object)
21 #define Dbl_mantissap1(object) Dmantissap1(object)
22 #define Dbl_mantissap2(object) Dmantissap2(object)
23 #define Dbl_exponentmantissap1(object) Dexponentmantissap1(object)
24 #define Dbl_allp1(object) Dallp1(object)
25 #define Dbl_allp2(object) Dallp2(object)
26 
27 /* dbl_and_signs ANDs the sign bits of each argument and puts the result
28  * into the first argument. dbl_or_signs ors those same sign bits */
29 #define Dbl_and_signs( src1dst, src2)		\
30     Dallp1(src1dst) = (Dallp1(src2)|~((unsigned int)1<<31)) & Dallp1(src1dst)
31 #define Dbl_or_signs( src1dst, src2)		\
32     Dallp1(src1dst) = (Dallp1(src2)&((unsigned int)1<<31)) | Dallp1(src1dst)
33 
34 /* The hidden bit is always the low bit of the exponent */
35 #define Dbl_clear_exponent_set_hidden(srcdst) Deposit_dexponent(srcdst,1)
36 #define Dbl_clear_signexponent_set_hidden(srcdst) \
37     Deposit_dsignexponent(srcdst,1)
38 #define Dbl_clear_sign(srcdst) Dallp1(srcdst) &= ~((unsigned int)1<<31)
39 #define Dbl_clear_signexponent(srcdst) \
40     Dallp1(srcdst) &= Dmantissap1((unsigned int)-1)
41 
42 /* Exponent field for doubles has already been cleared and may be
43  * included in the shift.  Here we need to generate two double width
44  * variable shifts.  The insignificant bits can be ignored.
45  *      MTSAR f(varamount)
46  *      VSHD	srcdst.high,srcdst.low => srcdst.low
47  *	VSHD	0,srcdst.high => srcdst.high
48  * This is very difficult to model with C expressions since the shift amount
49  * could exceed 32.  */
50 /* varamount must be less than 64 */
51 #define Dbl_rightshift(srcdstA, srcdstB, varamount)			\
52     {if((varamount) >= 32) {						\
53         Dallp2(srcdstB) = Dallp1(srcdstA) >> (varamount-32);		\
54         Dallp1(srcdstA)=0;						\
55     }									\
56     else if(varamount > 0) {						\
57 	Variable_shift_double(Dallp1(srcdstA), Dallp2(srcdstB), 	\
58 	  (varamount), Dallp2(srcdstB));				\
59 	Dallp1(srcdstA) >>= varamount;					\
60     } }
61 /* varamount must be less than 64 */
62 #define Dbl_rightshift_exponentmantissa(srcdstA, srcdstB, varamount)	\
63     {if((varamount) >= 32) {						\
64         Dallp2(srcdstB) = Dexponentmantissap1(srcdstA) >> (varamount-32); \
65 	Dallp1(srcdstA) &= ((unsigned int)1<<31);  /* clear expmant field */ \
66     }									\
67     else if(varamount > 0) {						\
68 	Variable_shift_double(Dexponentmantissap1(srcdstA), Dallp2(srcdstB), \
69 	(varamount), Dallp2(srcdstB));					\
70 	Deposit_dexponentmantissap1(srcdstA,				\
71 	    (Dexponentmantissap1(srcdstA)>>varamount));			\
72     } }
73 /* varamount must be less than 64 */
74 #define Dbl_leftshift(srcdstA, srcdstB, varamount)			\
75     {if((varamount) >= 32) {						\
76 	Dallp1(srcdstA) = Dallp2(srcdstB) << (varamount-32);		\
77 	Dallp2(srcdstB)=0;						\
78     }									\
79     else {								\
80 	if ((varamount) > 0) {						\
81 	    Dallp1(srcdstA) = (Dallp1(srcdstA) << (varamount)) |	\
82 		(Dallp2(srcdstB) >> (32-(varamount)));			\
83 	    Dallp2(srcdstB) <<= varamount;				\
84 	}								\
85     } }
86 #define Dbl_leftshiftby1_withextent(lefta,leftb,right,resulta,resultb)	\
87     Shiftdouble(Dallp1(lefta), Dallp2(leftb), 31, Dallp1(resulta));	\
88     Shiftdouble(Dallp2(leftb), Extall(right), 31, Dallp2(resultb))
89 
90 #define Dbl_rightshiftby1_withextent(leftb,right,dst)		\
91     Extall(dst) = (Dallp2(leftb) << 31) | ((unsigned int)Extall(right) >> 1) | \
92 		  Extlow(right)
93 
94 #define Dbl_arithrightshiftby1(srcdstA,srcdstB)			\
95     Shiftdouble(Dallp1(srcdstA),Dallp2(srcdstB),1,Dallp2(srcdstB));\
96     Dallp1(srcdstA) = (int)Dallp1(srcdstA) >> 1
97 
98 /* Sign extend the sign bit with an integer destination */
99 #define Dbl_signextendedsign(value)  Dsignedsign(value)
100 
101 #define Dbl_isone_hidden(dbl_value) (Is_dhidden(dbl_value)!=0)
102 /* Singles and doubles may include the sign and exponent fields.  The
103  * hidden bit and the hidden overflow must be included. */
104 #define Dbl_increment(dbl_valueA,dbl_valueB) \
105     if( (Dallp2(dbl_valueB) += 1) == 0 )  Dallp1(dbl_valueA) += 1
106 #define Dbl_increment_mantissa(dbl_valueA,dbl_valueB) \
107     if( (Dmantissap2(dbl_valueB) += 1) == 0 )  \
108     Deposit_dmantissap1(dbl_valueA,dbl_valueA+1)
109 #define Dbl_decrement(dbl_valueA,dbl_valueB) \
110     if( Dallp2(dbl_valueB) == 0 )  Dallp1(dbl_valueA) -= 1; \
111     Dallp2(dbl_valueB) -= 1
112 
113 #define Dbl_isone_sign(dbl_value) (Is_dsign(dbl_value)!=0)
114 #define Dbl_isone_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)!=0)
115 #define Dbl_isone_lowmantissap1(dbl_valueA) (Is_dlowp1(dbl_valueA)!=0)
116 #define Dbl_isone_lowmantissap2(dbl_valueB) (Is_dlowp2(dbl_valueB)!=0)
117 #define Dbl_isone_signaling(dbl_value) (Is_dsignaling(dbl_value)!=0)
118 #define Dbl_is_signalingnan(dbl_value) (Dsignalingnan(dbl_value)==0xfff)
119 #define Dbl_isnotzero(dbl_valueA,dbl_valueB) \
120     (Dallp1(dbl_valueA) || Dallp2(dbl_valueB))
121 #define Dbl_isnotzero_hiddenhigh7mantissa(dbl_value) \
122     (Dhiddenhigh7mantissa(dbl_value)!=0)
123 #define Dbl_isnotzero_exponent(dbl_value) (Dexponent(dbl_value)!=0)
124 #define Dbl_isnotzero_mantissa(dbl_valueA,dbl_valueB) \
125     (Dmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))
126 #define Dbl_isnotzero_mantissap1(dbl_valueA) (Dmantissap1(dbl_valueA)!=0)
127 #define Dbl_isnotzero_mantissap2(dbl_valueB) (Dmantissap2(dbl_valueB)!=0)
128 #define Dbl_isnotzero_exponentmantissa(dbl_valueA,dbl_valueB) \
129     (Dexponentmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))
130 #define Dbl_isnotzero_low4p2(dbl_value) (Dlow4p2(dbl_value)!=0)
131 #define Dbl_iszero(dbl_valueA,dbl_valueB) (Dallp1(dbl_valueA)==0 && \
132     Dallp2(dbl_valueB)==0)
133 #define Dbl_iszero_allp1(dbl_value) (Dallp1(dbl_value)==0)
134 #define Dbl_iszero_allp2(dbl_value) (Dallp2(dbl_value)==0)
135 #define Dbl_iszero_hidden(dbl_value) (Is_dhidden(dbl_value)==0)
136 #define Dbl_iszero_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)==0)
137 #define Dbl_iszero_hiddenhigh3mantissa(dbl_value) \
138     (Dhiddenhigh3mantissa(dbl_value)==0)
139 #define Dbl_iszero_hiddenhigh7mantissa(dbl_value) \
140     (Dhiddenhigh7mantissa(dbl_value)==0)
141 #define Dbl_iszero_sign(dbl_value) (Is_dsign(dbl_value)==0)
142 #define Dbl_iszero_exponent(dbl_value) (Dexponent(dbl_value)==0)
143 #define Dbl_iszero_mantissa(dbl_valueA,dbl_valueB) \
144     (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
145 #define Dbl_iszero_exponentmantissa(dbl_valueA,dbl_valueB) \
146     (Dexponentmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
147 #define Dbl_isinfinity_exponent(dbl_value)		\
148     (Dexponent(dbl_value)==DBL_INFINITY_EXPONENT)
149 #define Dbl_isnotinfinity_exponent(dbl_value)		\
150     (Dexponent(dbl_value)!=DBL_INFINITY_EXPONENT)
151 #define Dbl_isinfinity(dbl_valueA,dbl_valueB)			\
152     (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT &&	\
153     Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
154 #define Dbl_isnan(dbl_valueA,dbl_valueB)		\
155     (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT &&	\
156     (Dmantissap1(dbl_valueA)!=0 || Dmantissap2(dbl_valueB)!=0))
157 #define Dbl_isnotnan(dbl_valueA,dbl_valueB)		\
158     (Dexponent(dbl_valueA)!=DBL_INFINITY_EXPONENT ||	\
159     (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0))
160 
161 #define Dbl_islessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
162     (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) ||			\
163      (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
164       Dallp2(dbl_op1b) < Dallp2(dbl_op2b)))
165 #define Dbl_isgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
166     (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) ||			\
167      (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
168       Dallp2(dbl_op1b) > Dallp2(dbl_op2b)))
169 #define Dbl_isnotlessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
170     (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) ||			\
171      (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
172       Dallp2(dbl_op1b) >= Dallp2(dbl_op2b)))
173 #define Dbl_isnotgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
174     (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) ||			\
175      (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
176       Dallp2(dbl_op1b) <= Dallp2(dbl_op2b)))
177 #define Dbl_isequal(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
178      ((Dallp1(dbl_op1a) == Dallp1(dbl_op2a)) &&			\
179       (Dallp2(dbl_op1b) == Dallp2(dbl_op2b)))
180 
181 #define Dbl_leftshiftby8(dbl_valueA,dbl_valueB) \
182     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),24,Dallp1(dbl_valueA)); \
183     Dallp2(dbl_valueB) <<= 8
184 #define Dbl_leftshiftby7(dbl_valueA,dbl_valueB) \
185     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),25,Dallp1(dbl_valueA)); \
186     Dallp2(dbl_valueB) <<= 7
187 #define Dbl_leftshiftby4(dbl_valueA,dbl_valueB) \
188     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),28,Dallp1(dbl_valueA)); \
189     Dallp2(dbl_valueB) <<= 4
190 #define Dbl_leftshiftby3(dbl_valueA,dbl_valueB) \
191     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),29,Dallp1(dbl_valueA)); \
192     Dallp2(dbl_valueB) <<= 3
193 #define Dbl_leftshiftby2(dbl_valueA,dbl_valueB) \
194     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),30,Dallp1(dbl_valueA)); \
195     Dallp2(dbl_valueB) <<= 2
196 #define Dbl_leftshiftby1(dbl_valueA,dbl_valueB) \
197     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),31,Dallp1(dbl_valueA)); \
198     Dallp2(dbl_valueB) <<= 1
199 
200 #define Dbl_rightshiftby8(dbl_valueA,dbl_valueB) \
201     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),8,Dallp2(dbl_valueB)); \
202     Dallp1(dbl_valueA) >>= 8
203 #define Dbl_rightshiftby4(dbl_valueA,dbl_valueB) \
204     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),4,Dallp2(dbl_valueB)); \
205     Dallp1(dbl_valueA) >>= 4
206 #define Dbl_rightshiftby2(dbl_valueA,dbl_valueB) \
207     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),2,Dallp2(dbl_valueB)); \
208     Dallp1(dbl_valueA) >>= 2
209 #define Dbl_rightshiftby1(dbl_valueA,dbl_valueB) \
210     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),1,Dallp2(dbl_valueB)); \
211     Dallp1(dbl_valueA) >>= 1
212 
213 /* This magnitude comparison uses the signless first words and
214  * the regular part2 words.  The comparison is graphically:
215  *
216  *       1st greater?  -------------
217  *                                 |
218  *       1st less?-----------------+---------
219  *                                 |        |
220  *       2nd greater or equal----->|        |
221  *                               False     True
222  */
223 #define Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright)	\
224       ((signlessleft <= signlessright) &&				\
225        ( (signlessleft < signlessright) || (Dallp2(leftB)<Dallp2(rightB)) ))
226 
227 #define Dbl_copytoint_exponentmantissap1(src,dest) \
228     dest = Dexponentmantissap1(src)
229 
230 /* A quiet NaN has the high mantissa bit clear and at least on other (in this
231  * case the adjacent bit) bit set. */
232 #define Dbl_set_quiet(dbl_value) Deposit_dhigh2mantissa(dbl_value,1)
233 #define Dbl_set_exponent(dbl_value, exp) Deposit_dexponent(dbl_value,exp)
234 
235 #define Dbl_set_mantissa(desta,destb,valuea,valueb)	\
236     Deposit_dmantissap1(desta,valuea);			\
237     Dmantissap2(destb) = Dmantissap2(valueb)
238 #define Dbl_set_mantissap1(desta,valuea)		\
239     Deposit_dmantissap1(desta,valuea)
240 #define Dbl_set_mantissap2(destb,valueb)		\
241     Dmantissap2(destb) = Dmantissap2(valueb)
242 
243 #define Dbl_set_exponentmantissa(desta,destb,valuea,valueb)	\
244     Deposit_dexponentmantissap1(desta,valuea);			\
245     Dmantissap2(destb) = Dmantissap2(valueb)
246 #define Dbl_set_exponentmantissap1(dest,value)			\
247     Deposit_dexponentmantissap1(dest,value)
248 
249 #define Dbl_copyfromptr(src,desta,destb) \
250     Dallp1(desta) = src->wd0;		\
251     Dallp2(destb) = src->wd1
252 #define Dbl_copytoptr(srca,srcb,dest)	\
253     dest->wd0 = Dallp1(srca);		\
254     dest->wd1 = Dallp2(srcb)
255 
256 /*  An infinity is represented with the max exponent and a zero mantissa */
257 #define Dbl_setinfinity_exponent(dbl_value) \
258     Deposit_dexponent(dbl_value,DBL_INFINITY_EXPONENT)
259 #define Dbl_setinfinity_exponentmantissa(dbl_valueA,dbl_valueB)	\
260     Deposit_dexponentmantissap1(dbl_valueA, 			\
261     (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))));	\
262     Dmantissap2(dbl_valueB) = 0
263 #define Dbl_setinfinitypositive(dbl_valueA,dbl_valueB)		\
264     Dallp1(dbl_valueA) 						\
265         = (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\
266     Dmantissap2(dbl_valueB) = 0
267 #define Dbl_setinfinitynegative(dbl_valueA,dbl_valueB)		\
268     Dallp1(dbl_valueA) = ((unsigned int)1<<31) |		\
269          (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\
270     Dmantissap2(dbl_valueB) = 0
271 #define Dbl_setinfinity(dbl_valueA,dbl_valueB,sign)		\
272     Dallp1(dbl_valueA) = ((unsigned int)sign << 31) | 		\
273 	(DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\
274     Dmantissap2(dbl_valueB) = 0
275 
276 #define Dbl_sethigh4bits(dbl_value, extsign) Deposit_dhigh4p1(dbl_value,extsign)
277 #define Dbl_set_sign(dbl_value,sign) Deposit_dsign(dbl_value,sign)
278 #define Dbl_invert_sign(dbl_value) Deposit_dsign(dbl_value,~Dsign(dbl_value))
279 #define Dbl_setone_sign(dbl_value) Deposit_dsign(dbl_value,1)
280 #define Dbl_setone_lowmantissap2(dbl_value) Deposit_dlowp2(dbl_value,1)
281 #define Dbl_setzero_sign(dbl_value) Dallp1(dbl_value) &= 0x7fffffff
282 #define Dbl_setzero_exponent(dbl_value) 		\
283     Dallp1(dbl_value) &= 0x800fffff
284 #define Dbl_setzero_mantissa(dbl_valueA,dbl_valueB)	\
285     Dallp1(dbl_valueA) &= 0xfff00000; 			\
286     Dallp2(dbl_valueB) = 0
287 #define Dbl_setzero_mantissap1(dbl_value) Dallp1(dbl_value) &= 0xfff00000
288 #define Dbl_setzero_mantissap2(dbl_value) Dallp2(dbl_value) = 0
289 #define Dbl_setzero_exponentmantissa(dbl_valueA,dbl_valueB)	\
290     Dallp1(dbl_valueA) &= 0x80000000;		\
291     Dallp2(dbl_valueB) = 0
292 #define Dbl_setzero_exponentmantissap1(dbl_valueA)	\
293     Dallp1(dbl_valueA) &= 0x80000000
294 #define Dbl_setzero(dbl_valueA,dbl_valueB) \
295     Dallp1(dbl_valueA) = 0; Dallp2(dbl_valueB) = 0
296 #define Dbl_setzerop1(dbl_value) Dallp1(dbl_value) = 0
297 #define Dbl_setzerop2(dbl_value) Dallp2(dbl_value) = 0
298 #define Dbl_setnegativezero(dbl_value) \
299     Dallp1(dbl_value) = (unsigned int)1 << 31; Dallp2(dbl_value) = 0
300 #define Dbl_setnegativezerop1(dbl_value) Dallp1(dbl_value) = (unsigned int)1<<31
301 
302 /* Use the following macro for both overflow & underflow conditions */
303 #define ovfl -
304 #define unfl +
305 #define Dbl_setwrapped_exponent(dbl_value,exponent,op) \
306     Deposit_dexponent(dbl_value,(exponent op DBL_WRAP))
307 
308 #define Dbl_setlargestpositive(dbl_valueA,dbl_valueB) 			\
309     Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
310 			| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 );		\
311     Dallp2(dbl_valueB) = 0xFFFFFFFF
312 #define Dbl_setlargestnegative(dbl_valueA,dbl_valueB) 			\
313     Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
314 			| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 )		\
315 			| ((unsigned int)1<<31);			\
316     Dallp2(dbl_valueB) = 0xFFFFFFFF
317 #define Dbl_setlargest_exponentmantissa(dbl_valueA,dbl_valueB)		\
318     Deposit_dexponentmantissap1(dbl_valueA,				\
319 	(((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH)))		\
320 			| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 )));	\
321     Dallp2(dbl_valueB) = 0xFFFFFFFF
322 
323 #define Dbl_setnegativeinfinity(dbl_valueA,dbl_valueB) 			\
324     Dallp1(dbl_valueA) = ((1<<DBL_EXP_LENGTH) | DBL_INFINITY_EXPONENT) 	\
325 			 << (32-(1+DBL_EXP_LENGTH)) ; 			\
326     Dallp2(dbl_valueB) = 0
327 #define Dbl_setlargest(dbl_valueA,dbl_valueB,sign)			\
328     Dallp1(dbl_valueA) = ((unsigned int)sign << 31) |			\
329          ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) |	 	\
330 	 ((1 << (32-(1+DBL_EXP_LENGTH))) - 1 );				\
331     Dallp2(dbl_valueB) = 0xFFFFFFFF
332 
333 
334 /* The high bit is always zero so arithmetic or logical shifts will work. */
335 #define Dbl_right_align(srcdstA,srcdstB,shift,extent)			\
336     if( shift >= 32 ) 							\
337 	{								\
338 	/* Big shift requires examining the portion shift off 		\
339 	the end to properly set inexact.  */				\
340 	if(shift < 64)							\
341 	    {								\
342 	    if(shift > 32)						\
343 		{							\
344 	        Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),	\
345 		 shift-32, Extall(extent));				\
346 	        if(Dallp2(srcdstB) << 64 - (shift)) Ext_setone_low(extent); \
347 	        }							\
348 	    else Extall(extent) = Dallp2(srcdstB);			\
349 	    Dallp2(srcdstB) = Dallp1(srcdstA) >> (shift - 32);		\
350 	    }								\
351 	else								\
352 	    {								\
353 	    Extall(extent) = Dallp1(srcdstA);				\
354 	    if(Dallp2(srcdstB)) Ext_setone_low(extent);			\
355 	    Dallp2(srcdstB) = 0;					\
356 	    }								\
357 	Dallp1(srcdstA) = 0;						\
358 	}								\
359     else								\
360 	{								\
361 	/* Small alignment is simpler.  Extension is easily set. */	\
362 	if (shift > 0)							\
363 	    {								\
364 	    Extall(extent) = Dallp2(srcdstB) << 32 - (shift);		\
365 	    Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),shift, \
366 	     Dallp2(srcdstB));						\
367 	    Dallp1(srcdstA) >>= shift;					\
368 	    }								\
369 	else Extall(extent) = 0;					\
370 	}
371 
372 /*
373  * Here we need to shift the result right to correct for an overshift
374  * (due to the exponent becoming negative) during normalization.
375  */
376 #define Dbl_fix_overshift(srcdstA,srcdstB,shift,extent)			\
377 	    Extall(extent) = Dallp2(srcdstB) << 32 - (shift);		\
378 	    Dallp2(srcdstB) = (Dallp1(srcdstA) << 32 - (shift)) |	\
379 		(Dallp2(srcdstB) >> (shift));				\
380 	    Dallp1(srcdstA) = Dallp1(srcdstA) >> shift
381 
382 #define Dbl_hiddenhigh3mantissa(dbl_value) Dhiddenhigh3mantissa(dbl_value)
383 #define Dbl_hidden(dbl_value) Dhidden(dbl_value)
384 #define Dbl_lowmantissap2(dbl_value) Dlowp2(dbl_value)
385 
386 /* The left argument is never smaller than the right argument */
387 #define Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb)			\
388     if( Dallp2(rightb) > Dallp2(leftb) ) Dallp1(lefta)--;	\
389     Dallp2(resultb) = Dallp2(leftb) - Dallp2(rightb);		\
390     Dallp1(resulta) = Dallp1(lefta) - Dallp1(righta)
391 
392 /* Subtract right augmented with extension from left augmented with zeros and
393  * store into result and extension. */
394 #define Dbl_subtract_withextension(lefta,leftb,righta,rightb,extent,resulta,resultb)	\
395     Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb);		\
396     if( (Extall(extent) = 0-Extall(extent)) )				\
397         {								\
398         if((Dallp2(resultb)--) == 0) Dallp1(resulta)--;			\
399         }
400 
401 #define Dbl_addition(lefta,leftb,righta,rightb,resulta,resultb)		\
402     /* If the sum of the low words is less than either source, then	\
403      * an overflow into the next word occurred. */			\
404     Dallp1(resulta) = Dallp1(lefta) + Dallp1(righta);			\
405     if((Dallp2(resultb) = Dallp2(leftb) + Dallp2(rightb)) < Dallp2(rightb)) \
406 	Dallp1(resulta)++
407 
408 #define Dbl_xortointp1(left,right,result)			\
409     result = Dallp1(left) XOR Dallp1(right)
410 
411 #define Dbl_xorfromintp1(left,right,result)			\
412     Dallp1(result) = left XOR Dallp1(right)
413 
414 #define Dbl_swap_lower(left,right)				\
415     Dallp2(left)  = Dallp2(left) XOR Dallp2(right);		\
416     Dallp2(right) = Dallp2(left) XOR Dallp2(right);		\
417     Dallp2(left)  = Dallp2(left) XOR Dallp2(right)
418 
419 /* Need to Initialize */
420 #define Dbl_makequietnan(desta,destb)					\
421     Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH))	\
422                  | (1<<(32-(1+DBL_EXP_LENGTH+2)));			\
423     Dallp2(destb) = 0
424 #define Dbl_makesignalingnan(desta,destb)				\
425     Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH))	\
426                  | (1<<(32-(1+DBL_EXP_LENGTH+1)));			\
427     Dallp2(destb) = 0
428 
429 #define Dbl_normalize(dbl_opndA,dbl_opndB,exponent)			\
430 	while(Dbl_iszero_hiddenhigh7mantissa(dbl_opndA)) {		\
431 		Dbl_leftshiftby8(dbl_opndA,dbl_opndB);			\
432 		exponent -= 8;						\
433 	}								\
434 	if(Dbl_iszero_hiddenhigh3mantissa(dbl_opndA)) {			\
435 		Dbl_leftshiftby4(dbl_opndA,dbl_opndB);			\
436 		exponent -= 4;						\
437 	}								\
438 	while(Dbl_iszero_hidden(dbl_opndA)) {				\
439 		Dbl_leftshiftby1(dbl_opndA,dbl_opndB);			\
440 		exponent -= 1;						\
441 	}
442 
443 #define Twoword_add(src1dstA,src1dstB,src2A,src2B)		\
444 	/* 							\
445 	 * want this macro to generate:				\
446 	 *	ADD	src1dstB,src2B,src1dstB;		\
447 	 *	ADDC	src1dstA,src2A,src1dstA;		\
448 	 */							\
449 	if ((src1dstB) + (src2B) < (src1dstB)) Dallp1(src1dstA)++; \
450 	Dallp1(src1dstA) += (src2A);				\
451 	Dallp2(src1dstB) += (src2B)
452 
453 #define Twoword_subtract(src1dstA,src1dstB,src2A,src2B)		\
454 	/* 							\
455 	 * want this macro to generate:				\
456 	 *	SUB	src1dstB,src2B,src1dstB;		\
457 	 *	SUBB	src1dstA,src2A,src1dstA;		\
458 	 */							\
459 	if ((src1dstB) < (src2B)) Dallp1(src1dstA)--;		\
460 	Dallp1(src1dstA) -= (src2A);				\
461 	Dallp2(src1dstB) -= (src2B)
462 
463 #define Dbl_setoverflow(resultA,resultB)				\
464 	/* set result to infinity or largest number */			\
465 	switch (Rounding_mode()) {					\
466 		case ROUNDPLUS:						\
467 			if (Dbl_isone_sign(resultA)) {			\
468 				Dbl_setlargestnegative(resultA,resultB); \
469 			}						\
470 			else {						\
471 				Dbl_setinfinitypositive(resultA,resultB); \
472 			}						\
473 			break;						\
474 		case ROUNDMINUS:					\
475 			if (Dbl_iszero_sign(resultA)) {			\
476 				Dbl_setlargestpositive(resultA,resultB); \
477 			}						\
478 			else {						\
479 				Dbl_setinfinitynegative(resultA,resultB); \
480 			}						\
481 			break;						\
482 		case ROUNDNEAREST:					\
483 			Dbl_setinfinity_exponentmantissa(resultA,resultB); \
484 			break;						\
485 		case ROUNDZERO:						\
486 			Dbl_setlargest_exponentmantissa(resultA,resultB); \
487 	}
488 
489 #define Dbl_denormalize(opndp1,opndp2,exponent,guard,sticky,inexact)	\
490     Dbl_clear_signexponent_set_hidden(opndp1);				\
491     if (exponent >= (1-DBL_P)) {					\
492 	if (exponent >= -31) {						\
493 	    guard = (Dallp2(opndp2) >> -exponent) & 1;			\
494 	    if (exponent < 0) sticky |= Dallp2(opndp2) << (32+exponent); \
495 	    if (exponent > -31) {					\
496 		Variable_shift_double(opndp1,opndp2,1-exponent,opndp2);	\
497 		Dallp1(opndp1) >>= 1-exponent;				\
498 	    }								\
499 	    else {							\
500 		Dallp2(opndp2) = Dallp1(opndp1);			\
501 		Dbl_setzerop1(opndp1);					\
502 	    }								\
503 	}								\
504 	else {								\
505 	    guard = (Dallp1(opndp1) >> -32-exponent) & 1;		\
506 	    if (exponent == -32) sticky |= Dallp2(opndp2);		\
507 	    else sticky |= (Dallp2(opndp2) | Dallp1(opndp1) << 64+exponent); \
508 	    Dallp2(opndp2) = Dallp1(opndp1) >> -31-exponent;		\
509 	    Dbl_setzerop1(opndp1);					\
510 	}								\
511 	inexact = guard | sticky;					\
512     }									\
513     else {								\
514 	guard = 0;							\
515 	sticky |= (Dallp1(opndp1) | Dallp2(opndp2));			\
516 	Dbl_setzero(opndp1,opndp2);					\
517 	inexact = sticky;						\
518     }
519 
520 /*
521  * The fused multiply add instructions requires a double extended format,
522  * with 106 bits of mantissa.
523  */
524 #define DBLEXT_THRESHOLD 106
525 
526 #define Dblext_setzero(valA,valB,valC,valD)	\
527     Dextallp1(valA) = 0; Dextallp2(valB) = 0;	\
528     Dextallp3(valC) = 0; Dextallp4(valD) = 0
529 
530 
531 #define Dblext_isnotzero_mantissap3(valC) (Dextallp3(valC)!=0)
532 #define Dblext_isnotzero_mantissap4(valD) (Dextallp3(valD)!=0)
533 #define Dblext_isone_lowp2(val) (Dextlowp2(val)!=0)
534 #define Dblext_isone_highp3(val) (Dexthighp3(val)!=0)
535 #define Dblext_isnotzero_low31p3(val) (Dextlow31p3(val)!=0)
536 #define Dblext_iszero(valA,valB,valC,valD) (Dextallp1(valA)==0 && \
537     Dextallp2(valB)==0 && Dextallp3(valC)==0 && Dextallp4(valD)==0)
538 
539 #define Dblext_copy(srca,srcb,srcc,srcd,desta,destb,destc,destd) \
540     Dextallp1(desta) = Dextallp4(srca);	\
541     Dextallp2(destb) = Dextallp4(srcb);	\
542     Dextallp3(destc) = Dextallp4(srcc);	\
543     Dextallp4(destd) = Dextallp4(srcd)
544 
545 #define Dblext_swap_lower(leftp2,leftp3,leftp4,rightp2,rightp3,rightp4)  \
546     Dextallp2(leftp2)  = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \
547     Dextallp2(rightp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \
548     Dextallp2(leftp2)  = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \
549     Dextallp3(leftp3)  = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \
550     Dextallp3(rightp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \
551     Dextallp3(leftp3)  = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \
552     Dextallp4(leftp4)  = Dextallp4(leftp4) XOR Dextallp4(rightp4);  \
553     Dextallp4(rightp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4);  \
554     Dextallp4(leftp4)  = Dextallp4(leftp4) XOR Dextallp4(rightp4)
555 
556 #define Dblext_setone_lowmantissap4(dbl_value) Deposit_dextlowp4(dbl_value,1)
557 
558 /* The high bit is always zero so arithmetic or logical shifts will work. */
559 #define Dblext_right_align(srcdstA,srcdstB,srcdstC,srcdstD,shift) \
560   {int shiftamt, sticky;						\
561     shiftamt = shift % 32;						\
562     sticky = 0;								\
563     switch (shift/32) {							\
564      case 0: if (shiftamt > 0) {					\
565 	        sticky = Dextallp4(srcdstD) << 32 - (shiftamt); 	\
566                 Variable_shift_double(Dextallp3(srcdstC),		\
567 		 Dextallp4(srcdstD),shiftamt,Dextallp4(srcdstD));	\
568                 Variable_shift_double(Dextallp2(srcdstB),		\
569 		 Dextallp3(srcdstC),shiftamt,Dextallp3(srcdstC));	\
570                 Variable_shift_double(Dextallp1(srcdstA),		\
571 		 Dextallp2(srcdstB),shiftamt,Dextallp2(srcdstB));	\
572 	        Dextallp1(srcdstA) >>= shiftamt;			\
573 	     }								\
574 	     break;							\
575      case 1: if (shiftamt > 0) {					\
576                 sticky = (Dextallp3(srcdstC) << 31 - shiftamt) |	\
577 			 Dextallp4(srcdstD);				\
578                 Variable_shift_double(Dextallp2(srcdstB),		\
579 		 Dextallp3(srcdstC),shiftamt,Dextallp4(srcdstD));	\
580                 Variable_shift_double(Dextallp1(srcdstA),		\
581 		 Dextallp2(srcdstB),shiftamt,Dextallp3(srcdstC));	\
582 	     }								\
583 	     else {							\
584 		sticky = Dextallp4(srcdstD);				\
585 		Dextallp4(srcdstD) = Dextallp3(srcdstC);		\
586 		Dextallp3(srcdstC) = Dextallp2(srcdstB);		\
587 	     }								\
588 	     Dextallp2(srcdstB) = Dextallp1(srcdstA) >> shiftamt;	\
589 	     Dextallp1(srcdstA) = 0;					\
590 	     break;							\
591      case 2: if (shiftamt > 0) {					\
592                 sticky = (Dextallp2(srcdstB) << 31 - shiftamt) |	\
593 			 Dextallp3(srcdstC) | Dextallp4(srcdstD);	\
594                 Variable_shift_double(Dextallp1(srcdstA),		\
595 		 Dextallp2(srcdstB),shiftamt,Dextallp4(srcdstD));	\
596 	     }								\
597 	     else {							\
598 		sticky = Dextallp3(srcdstC) | Dextallp4(srcdstD);	\
599 		Dextallp4(srcdstD) = Dextallp2(srcdstB);		\
600 	     }								\
601 	     Dextallp3(srcdstC) = Dextallp1(srcdstA) >> shiftamt;	\
602 	     Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0;		\
603 	     break;							\
604      case 3: if (shiftamt > 0) {					\
605                 sticky = (Dextallp1(srcdstA) << 31 - shiftamt) |	\
606 			 Dextallp2(srcdstB) | Dextallp3(srcdstC) |	\
607 			 Dextallp4(srcdstD);				\
608 	     }								\
609 	     else {							\
610 		sticky = Dextallp2(srcdstB) | Dextallp3(srcdstC) |	\
611 		    Dextallp4(srcdstD);					\
612 	     }								\
613 	     Dextallp4(srcdstD) = Dextallp1(srcdstA) >> shiftamt;	\
614 	     Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0;		\
615 	     Dextallp3(srcdstC) = 0;					\
616 	     break;							\
617     }									\
618     if (sticky) Dblext_setone_lowmantissap4(srcdstD);			\
619   }
620 
621 /* The left argument is never smaller than the right argument */
622 #define Dblext_subtract(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \
623     if( Dextallp4(rightd) > Dextallp4(leftd) ) 			\
624 	if( (Dextallp3(leftc)--) == 0)				\
625 	    if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--;	\
626     Dextallp4(resultd) = Dextallp4(leftd) - Dextallp4(rightd);	\
627     if( Dextallp3(rightc) > Dextallp3(leftc) ) 			\
628         if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--;	\
629     Dextallp3(resultc) = Dextallp3(leftc) - Dextallp3(rightc);	\
630     if( Dextallp2(rightb) > Dextallp2(leftb) ) Dextallp1(lefta)--; \
631     Dextallp2(resultb) = Dextallp2(leftb) - Dextallp2(rightb);	\
632     Dextallp1(resulta) = Dextallp1(lefta) - Dextallp1(righta)
633 
634 #define Dblext_addition(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \
635     /* If the sum of the low words is less than either source, then \
636      * an overflow into the next word occurred. */ \
637     if ((Dextallp4(resultd) = Dextallp4(leftd)+Dextallp4(rightd)) < \
638 	Dextallp4(rightd)) \
639 	if((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)+1) <= \
640 	    Dextallp3(rightc)) \
641 	    if((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \
642 	        <= Dextallp2(rightb))  \
643 		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
644 	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
645 	else \
646 	    if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \
647 	        Dextallp2(rightb)) \
648 		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
649 	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
650     else \
651 	if ((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)) < \
652 	    Dextallp3(rightc))  \
653 	    if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \
654 	        <= Dextallp2(rightb)) \
655 		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
656 	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
657 	else \
658 	    if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \
659 	        Dextallp2(rightb)) \
660 		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
661 	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)
662 
663 
664 #define Dblext_arithrightshiftby1(srcdstA,srcdstB,srcdstC,srcdstD)	\
665     Shiftdouble(Dextallp3(srcdstC),Dextallp4(srcdstD),1,Dextallp4(srcdstD)); \
666     Shiftdouble(Dextallp2(srcdstB),Dextallp3(srcdstC),1,Dextallp3(srcdstC)); \
667     Shiftdouble(Dextallp1(srcdstA),Dextallp2(srcdstB),1,Dextallp2(srcdstB)); \
668     Dextallp1(srcdstA) = (int)Dextallp1(srcdstA) >> 1
669 
670 #define Dblext_leftshiftby8(valA,valB,valC,valD) \
671     Shiftdouble(Dextallp1(valA),Dextallp2(valB),24,Dextallp1(valA)); \
672     Shiftdouble(Dextallp2(valB),Dextallp3(valC),24,Dextallp2(valB)); \
673     Shiftdouble(Dextallp3(valC),Dextallp4(valD),24,Dextallp3(valC)); \
674     Dextallp4(valD) <<= 8
675 #define Dblext_leftshiftby4(valA,valB,valC,valD) \
676     Shiftdouble(Dextallp1(valA),Dextallp2(valB),28,Dextallp1(valA)); \
677     Shiftdouble(Dextallp2(valB),Dextallp3(valC),28,Dextallp2(valB)); \
678     Shiftdouble(Dextallp3(valC),Dextallp4(valD),28,Dextallp3(valC)); \
679     Dextallp4(valD) <<= 4
680 #define Dblext_leftshiftby3(valA,valB,valC,valD) \
681     Shiftdouble(Dextallp1(valA),Dextallp2(valB),29,Dextallp1(valA)); \
682     Shiftdouble(Dextallp2(valB),Dextallp3(valC),29,Dextallp2(valB)); \
683     Shiftdouble(Dextallp3(valC),Dextallp4(valD),29,Dextallp3(valC)); \
684     Dextallp4(valD) <<= 3
685 #define Dblext_leftshiftby2(valA,valB,valC,valD) \
686     Shiftdouble(Dextallp1(valA),Dextallp2(valB),30,Dextallp1(valA)); \
687     Shiftdouble(Dextallp2(valB),Dextallp3(valC),30,Dextallp2(valB)); \
688     Shiftdouble(Dextallp3(valC),Dextallp4(valD),30,Dextallp3(valC)); \
689     Dextallp4(valD) <<= 2
690 #define Dblext_leftshiftby1(valA,valB,valC,valD) \
691     Shiftdouble(Dextallp1(valA),Dextallp2(valB),31,Dextallp1(valA)); \
692     Shiftdouble(Dextallp2(valB),Dextallp3(valC),31,Dextallp2(valB)); \
693     Shiftdouble(Dextallp3(valC),Dextallp4(valD),31,Dextallp3(valC)); \
694     Dextallp4(valD) <<= 1
695 
696 #define Dblext_rightshiftby4(valueA,valueB,valueC,valueD) \
697     Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),4,Dextallp4(valueD)); \
698     Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),4,Dextallp3(valueC)); \
699     Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),4,Dextallp2(valueB)); \
700     Dextallp1(valueA) >>= 4
701 #define Dblext_rightshiftby1(valueA,valueB,valueC,valueD) \
702     Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),1,Dextallp4(valueD)); \
703     Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),1,Dextallp3(valueC)); \
704     Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),1,Dextallp2(valueB)); \
705     Dextallp1(valueA) >>= 1
706 
707 #define Dblext_xortointp1(left,right,result) Dbl_xortointp1(left,right,result)
708 
709 #define Dblext_xorfromintp1(left,right,result) \
710 	Dbl_xorfromintp1(left,right,result)
711 
712 #define Dblext_copytoint_exponentmantissap1(src,dest) \
713 	Dbl_copytoint_exponentmantissap1(src,dest)
714 
715 #define Dblext_ismagnitudeless(leftB,rightB,signlessleft,signlessright) \
716 	Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright)
717 
718 #define Dbl_copyto_dblext(src1,src2,dest1,dest2,dest3,dest4) \
719 	Dextallp1(dest1) = Dallp1(src1); Dextallp2(dest2) = Dallp2(src2); \
720 	Dextallp3(dest3) = 0; Dextallp4(dest4) = 0
721 
722 #define Dblext_set_sign(dbl_value,sign)  Dbl_set_sign(dbl_value,sign)
723 #define Dblext_clear_signexponent_set_hidden(srcdst) \
724 	Dbl_clear_signexponent_set_hidden(srcdst)
725 #define Dblext_clear_signexponent(srcdst) Dbl_clear_signexponent(srcdst)
726 #define Dblext_clear_sign(srcdst) Dbl_clear_sign(srcdst)
727 #define Dblext_isone_hidden(dbl_value) Dbl_isone_hidden(dbl_value)
728 
729 /*
730  * The Fourword_add() macro assumes that integers are 4 bytes in size.
731  * It will break if this is not the case.
732  */
733 
734 #define Fourword_add(src1dstA,src1dstB,src1dstC,src1dstD,src2A,src2B,src2C,src2D) \
735 	/* 								\
736 	 * want this macro to generate:					\
737 	 *	ADD	src1dstD,src2D,src1dstD;			\
738 	 *	ADDC	src1dstC,src2C,src1dstC;			\
739 	 *	ADDC	src1dstB,src2B,src1dstB;			\
740 	 *	ADDC	src1dstA,src2A,src1dstA;			\
741 	 */								\
742 	if ((unsigned int)(src1dstD += (src2D)) < (unsigned int)(src2D)) { \
743 	   if ((unsigned int)(src1dstC += (src2C) + 1) <=		\
744 	       (unsigned int)(src2C)) {					\
745 	     if ((unsigned int)(src1dstB += (src2B) + 1) <=		\
746 		 (unsigned int)(src2B)) src1dstA++;			\
747 	   }								\
748 	   else if ((unsigned int)(src1dstB += (src2B)) < 		\
749 		    (unsigned int)(src2B)) src1dstA++;			\
750 	}								\
751 	else {								\
752 	   if ((unsigned int)(src1dstC += (src2C)) <			\
753 	       (unsigned int)(src2C)) {					\
754 	      if ((unsigned int)(src1dstB += (src2B) + 1) <=		\
755 		  (unsigned int)(src2B)) src1dstA++;			\
756 	   }								\
757 	   else if ((unsigned int)(src1dstB += (src2B)) <		\
758 		    (unsigned int)(src2B)) src1dstA++;			\
759 	}								\
760 	src1dstA += (src2A)
761 
762 #define Dblext_denormalize(opndp1,opndp2,opndp3,opndp4,exponent,is_tiny) \
763   {int shiftamt, sticky;						\
764     is_tiny = TRUE;							\
765     if (exponent == 0 && (Dextallp3(opndp3) || Dextallp4(opndp4))) {	\
766 	switch (Rounding_mode()) {					\
767 	case ROUNDPLUS:							\
768 		if (Dbl_iszero_sign(opndp1)) {				\
769 			Dbl_increment(opndp1,opndp2);			\
770 			if (Dbl_isone_hiddenoverflow(opndp1))		\
771 				is_tiny = FALSE;			\
772 			Dbl_decrement(opndp1,opndp2);			\
773 		}							\
774 		break;							\
775 	case ROUNDMINUS:						\
776 		if (Dbl_isone_sign(opndp1)) {				\
777 			Dbl_increment(opndp1,opndp2);			\
778 			if (Dbl_isone_hiddenoverflow(opndp1))		\
779 				is_tiny = FALSE;			\
780 			Dbl_decrement(opndp1,opndp2);			\
781 		}							\
782 		break;							\
783 	case ROUNDNEAREST:						\
784 		if (Dblext_isone_highp3(opndp3) &&			\
785 		    (Dblext_isone_lowp2(opndp2) || 			\
786 		     Dblext_isnotzero_low31p3(opndp3)))	{		\
787 			Dbl_increment(opndp1,opndp2);			\
788 			if (Dbl_isone_hiddenoverflow(opndp1))		\
789 				is_tiny = FALSE;			\
790 			Dbl_decrement(opndp1,opndp2);			\
791 		}							\
792 		break;							\
793 	}								\
794     }									\
795     Dblext_clear_signexponent_set_hidden(opndp1);			\
796     if (exponent >= (1-QUAD_P)) {					\
797 	shiftamt = (1-exponent) % 32;					\
798 	switch((1-exponent)/32) {					\
799 	  case 0: sticky = Dextallp4(opndp4) << 32-(shiftamt);		\
800 		  Variableshiftdouble(opndp3,opndp4,shiftamt,opndp4);	\
801 		  Variableshiftdouble(opndp2,opndp3,shiftamt,opndp3);	\
802 		  Variableshiftdouble(opndp1,opndp2,shiftamt,opndp2);	\
803 		  Dextallp1(opndp1) >>= shiftamt;			\
804 		  break;						\
805 	  case 1: sticky = (Dextallp3(opndp3) << 32-(shiftamt)) | 	\
806 			   Dextallp4(opndp4);				\
807 		  Variableshiftdouble(opndp2,opndp3,shiftamt,opndp4);	\
808 		  Variableshiftdouble(opndp1,opndp2,shiftamt,opndp3);	\
809 		  Dextallp2(opndp2) = Dextallp1(opndp1) >> shiftamt;	\
810 		  Dextallp1(opndp1) = 0;				\
811 		  break;						\
812 	  case 2: sticky = (Dextallp2(opndp2) << 32-(shiftamt)) |	\
813 			    Dextallp3(opndp3) | Dextallp4(opndp4);	\
814 		  Variableshiftdouble(opndp1,opndp2,shiftamt,opndp4);	\
815 		  Dextallp3(opndp3) = Dextallp1(opndp1) >> shiftamt;	\
816 		  Dextallp1(opndp1) = Dextallp2(opndp2) = 0;		\
817 		  break;						\
818 	  case 3: sticky = (Dextallp1(opndp1) << 32-(shiftamt)) |	\
819 		  	Dextallp2(opndp2) | Dextallp3(opndp3) | 	\
820 			Dextallp4(opndp4);				\
821 		  Dextallp4(opndp4) = Dextallp1(opndp1) >> shiftamt;	\
822 		  Dextallp1(opndp1) = Dextallp2(opndp2) = 0;		\
823 		  Dextallp3(opndp3) = 0;				\
824 		  break;						\
825 	}								\
826     }									\
827     else {								\
828 	sticky = Dextallp1(opndp1) | Dextallp2(opndp2) |		\
829 		 Dextallp3(opndp3) | Dextallp4(opndp4);			\
830 	Dblext_setzero(opndp1,opndp2,opndp3,opndp4);			\
831     }									\
832     if (sticky) Dblext_setone_lowmantissap4(opndp4);			\
833     exponent = 0;							\
834   }
835