1 /* 2 * linux/arch/parisc/kernel/time.c 3 * 4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 5 * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King 6 * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org) 7 * 8 * 1994-07-02 Alan Modra 9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime 10 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96 11 * "A Kernel Model for Precision Timekeeping" by Dave Mills 12 */ 13 #include <linux/errno.h> 14 #include <linux/module.h> 15 #include <linux/sched.h> 16 #include <linux/kernel.h> 17 #include <linux/param.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/interrupt.h> 21 #include <linux/time.h> 22 #include <linux/init.h> 23 #include <linux/smp.h> 24 #include <linux/profile.h> 25 26 #include <asm/uaccess.h> 27 #include <asm/io.h> 28 #include <asm/irq.h> 29 #include <asm/param.h> 30 #include <asm/pdc.h> 31 #include <asm/led.h> 32 33 #include <linux/timex.h> 34 35 static unsigned long clocktick __read_mostly; /* timer cycles per tick */ 36 37 /* 38 * We keep time on PA-RISC Linux by using the Interval Timer which is 39 * a pair of registers; one is read-only and one is write-only; both 40 * accessed through CR16. The read-only register is 32 or 64 bits wide, 41 * and increments by 1 every CPU clock tick. The architecture only 42 * guarantees us a rate between 0.5 and 2, but all implementations use a 43 * rate of 1. The write-only register is 32-bits wide. When the lowest 44 * 32 bits of the read-only register compare equal to the write-only 45 * register, it raises a maskable external interrupt. Each processor has 46 * an Interval Timer of its own and they are not synchronised. 47 * 48 * We want to generate an interrupt every 1/HZ seconds. So we program 49 * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data 50 * is programmed with the intended time of the next tick. We can be 51 * held off for an arbitrarily long period of time by interrupts being 52 * disabled, so we may miss one or more ticks. 53 */ 54 irqreturn_t timer_interrupt(int irq, void *dev_id) 55 { 56 unsigned long now; 57 unsigned long next_tick; 58 unsigned long cycles_elapsed, ticks_elapsed; 59 unsigned long cycles_remainder; 60 unsigned int cpu = smp_processor_id(); 61 struct cpuinfo_parisc *cpuinfo = &cpu_data[cpu]; 62 63 /* gcc can optimize for "read-only" case with a local clocktick */ 64 unsigned long cpt = clocktick; 65 66 profile_tick(CPU_PROFILING); 67 68 /* Initialize next_tick to the expected tick time. */ 69 next_tick = cpuinfo->it_value; 70 71 /* Get current interval timer. 72 * CR16 reads as 64 bits in CPU wide mode. 73 * CR16 reads as 32 bits in CPU narrow mode. 74 */ 75 now = mfctl(16); 76 77 cycles_elapsed = now - next_tick; 78 79 if ((cycles_elapsed >> 5) < cpt) { 80 /* use "cheap" math (add/subtract) instead 81 * of the more expensive div/mul method 82 */ 83 cycles_remainder = cycles_elapsed; 84 ticks_elapsed = 1; 85 while (cycles_remainder > cpt) { 86 cycles_remainder -= cpt; 87 ticks_elapsed++; 88 } 89 } else { 90 cycles_remainder = cycles_elapsed % cpt; 91 ticks_elapsed = 1 + cycles_elapsed / cpt; 92 } 93 94 /* Can we differentiate between "early CR16" (aka Scenario 1) and 95 * "long delay" (aka Scenario 3)? I don't think so. 96 * 97 * We expected timer_interrupt to be delivered at least a few hundred 98 * cycles after the IT fires. But it's arbitrary how much time passes 99 * before we call it "late". I've picked one second. 100 */ 101 if (ticks_elapsed > HZ) { 102 /* Scenario 3: very long delay? bad in any case */ 103 printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!" 104 " cycles %lX rem %lX " 105 " next/now %lX/%lX\n", 106 cpu, 107 cycles_elapsed, cycles_remainder, 108 next_tick, now ); 109 } 110 111 /* convert from "division remainder" to "remainder of clock tick" */ 112 cycles_remainder = cpt - cycles_remainder; 113 114 /* Determine when (in CR16 cycles) next IT interrupt will fire. 115 * We want IT to fire modulo clocktick even if we miss/skip some. 116 * But those interrupts don't in fact get delivered that regularly. 117 */ 118 next_tick = now + cycles_remainder; 119 120 cpuinfo->it_value = next_tick; 121 122 /* Skip one clocktick on purpose if we are likely to miss next_tick. 123 * We want to avoid the new next_tick being less than CR16. 124 * If that happened, itimer wouldn't fire until CR16 wrapped. 125 * We'll catch the tick we missed on the tick after that. 126 */ 127 if (!(cycles_remainder >> 13)) 128 next_tick += cpt; 129 130 /* Program the IT when to deliver the next interrupt. */ 131 /* Only bottom 32-bits of next_tick are written to cr16. */ 132 mtctl(next_tick, 16); 133 134 135 /* Done mucking with unreliable delivery of interrupts. 136 * Go do system house keeping. 137 */ 138 139 if (!--cpuinfo->prof_counter) { 140 cpuinfo->prof_counter = cpuinfo->prof_multiplier; 141 update_process_times(user_mode(get_irq_regs())); 142 } 143 144 if (cpu == 0) { 145 write_seqlock(&xtime_lock); 146 do_timer(ticks_elapsed); 147 write_sequnlock(&xtime_lock); 148 } 149 150 /* check soft power switch status */ 151 if (cpu == 0 && !atomic_read(&power_tasklet.count)) 152 tasklet_schedule(&power_tasklet); 153 154 return IRQ_HANDLED; 155 } 156 157 158 unsigned long profile_pc(struct pt_regs *regs) 159 { 160 unsigned long pc = instruction_pointer(regs); 161 162 if (regs->gr[0] & PSW_N) 163 pc -= 4; 164 165 #ifdef CONFIG_SMP 166 if (in_lock_functions(pc)) 167 pc = regs->gr[2]; 168 #endif 169 170 return pc; 171 } 172 EXPORT_SYMBOL(profile_pc); 173 174 175 /* 176 * Return the number of micro-seconds that elapsed since the last 177 * update to wall time (aka xtime). The xtime_lock 178 * must be at least read-locked when calling this routine. 179 */ 180 static inline unsigned long gettimeoffset (void) 181 { 182 #ifndef CONFIG_SMP 183 /* 184 * FIXME: This won't work on smp because jiffies are updated by cpu 0. 185 * Once parisc-linux learns the cr16 difference between processors, 186 * this could be made to work. 187 */ 188 unsigned long now; 189 unsigned long prev_tick; 190 unsigned long next_tick; 191 unsigned long elapsed_cycles; 192 unsigned long usec; 193 unsigned long cpuid = smp_processor_id(); 194 unsigned long cpt = clocktick; 195 196 next_tick = cpu_data[cpuid].it_value; 197 now = mfctl(16); /* Read the hardware interval timer. */ 198 199 prev_tick = next_tick - cpt; 200 201 /* Assume Scenario 1: "now" is later than prev_tick. */ 202 elapsed_cycles = now - prev_tick; 203 204 /* aproximate HZ with shifts. Intended math is "(elapsed/clocktick) > HZ" */ 205 #if HZ == 1000 206 if (elapsed_cycles > (cpt << 10) ) 207 #elif HZ == 250 208 if (elapsed_cycles > (cpt << 8) ) 209 #elif HZ == 100 210 if (elapsed_cycles > (cpt << 7) ) 211 #else 212 #warn WTF is HZ set to anyway? 213 if (elapsed_cycles > (HZ * cpt) ) 214 #endif 215 { 216 /* Scenario 3: clock ticks are missing. */ 217 printk (KERN_CRIT "gettimeoffset(CPU %ld): missing %ld ticks!" 218 " cycles %lX prev/now/next %lX/%lX/%lX clock %lX\n", 219 cpuid, elapsed_cycles / cpt, 220 elapsed_cycles, prev_tick, now, next_tick, cpt); 221 } 222 223 /* FIXME: Can we improve the precision? Not with PAGE0. */ 224 usec = (elapsed_cycles * 10000) / PAGE0->mem_10msec; 225 return usec; 226 #else 227 return 0; 228 #endif 229 } 230 231 void 232 do_gettimeofday (struct timeval *tv) 233 { 234 unsigned long flags, seq, usec, sec; 235 236 /* Hold xtime_lock and adjust timeval. */ 237 do { 238 seq = read_seqbegin_irqsave(&xtime_lock, flags); 239 usec = gettimeoffset(); 240 sec = xtime.tv_sec; 241 usec += (xtime.tv_nsec / 1000); 242 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); 243 244 /* Move adjusted usec's into sec's. */ 245 while (usec >= USEC_PER_SEC) { 246 usec -= USEC_PER_SEC; 247 ++sec; 248 } 249 250 /* Return adjusted result. */ 251 tv->tv_sec = sec; 252 tv->tv_usec = usec; 253 } 254 255 EXPORT_SYMBOL(do_gettimeofday); 256 257 int 258 do_settimeofday (struct timespec *tv) 259 { 260 time_t wtm_sec, sec = tv->tv_sec; 261 long wtm_nsec, nsec = tv->tv_nsec; 262 263 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 264 return -EINVAL; 265 266 write_seqlock_irq(&xtime_lock); 267 { 268 /* 269 * This is revolting. We need to set "xtime" 270 * correctly. However, the value in this location is 271 * the value at the most recent update of wall time. 272 * Discover what correction gettimeofday would have 273 * done, and then undo it! 274 */ 275 nsec -= gettimeoffset() * 1000; 276 277 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); 278 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); 279 280 set_normalized_timespec(&xtime, sec, nsec); 281 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); 282 283 ntp_clear(); 284 } 285 write_sequnlock_irq(&xtime_lock); 286 clock_was_set(); 287 return 0; 288 } 289 EXPORT_SYMBOL(do_settimeofday); 290 291 void __init start_cpu_itimer(void) 292 { 293 unsigned int cpu = smp_processor_id(); 294 unsigned long next_tick = mfctl(16) + clocktick; 295 296 mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */ 297 298 cpu_data[cpu].it_value = next_tick; 299 } 300 301 void __init time_init(void) 302 { 303 static struct pdc_tod tod_data; 304 305 clocktick = (100 * PAGE0->mem_10msec) / HZ; 306 307 start_cpu_itimer(); /* get CPU 0 started */ 308 309 if (pdc_tod_read(&tod_data) == 0) { 310 unsigned long flags; 311 312 write_seqlock_irqsave(&xtime_lock, flags); 313 xtime.tv_sec = tod_data.tod_sec; 314 xtime.tv_nsec = tod_data.tod_usec * 1000; 315 set_normalized_timespec(&wall_to_monotonic, 316 -xtime.tv_sec, -xtime.tv_nsec); 317 write_sequnlock_irqrestore(&xtime_lock, flags); 318 } else { 319 printk(KERN_ERR "Error reading tod clock\n"); 320 xtime.tv_sec = 0; 321 xtime.tv_nsec = 0; 322 } 323 } 324 325