xref: /linux/arch/parisc/kernel/time.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  *  linux/arch/parisc/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
5  *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6  *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7  *
8  * 1994-07-02  Alan Modra
9  *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
11  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
12  */
13 #include <linux/errno.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/param.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/time.h>
22 #include <linux/init.h>
23 #include <linux/smp.h>
24 #include <linux/profile.h>
25 #include <linux/clocksource.h>
26 #include <linux/platform_device.h>
27 #include <linux/ftrace.h>
28 
29 #include <asm/uaccess.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <asm/page.h>
33 #include <asm/param.h>
34 #include <asm/pdc.h>
35 #include <asm/led.h>
36 
37 #include <linux/timex.h>
38 
39 static unsigned long clocktick __read_mostly;	/* timer cycles per tick */
40 
41 /*
42  * We keep time on PA-RISC Linux by using the Interval Timer which is
43  * a pair of registers; one is read-only and one is write-only; both
44  * accessed through CR16.  The read-only register is 32 or 64 bits wide,
45  * and increments by 1 every CPU clock tick.  The architecture only
46  * guarantees us a rate between 0.5 and 2, but all implementations use a
47  * rate of 1.  The write-only register is 32-bits wide.  When the lowest
48  * 32 bits of the read-only register compare equal to the write-only
49  * register, it raises a maskable external interrupt.  Each processor has
50  * an Interval Timer of its own and they are not synchronised.
51  *
52  * We want to generate an interrupt every 1/HZ seconds.  So we program
53  * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
54  * is programmed with the intended time of the next tick.  We can be
55  * held off for an arbitrarily long period of time by interrupts being
56  * disabled, so we may miss one or more ticks.
57  */
58 irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
59 {
60 	unsigned long now, now2;
61 	unsigned long next_tick;
62 	unsigned long cycles_elapsed, ticks_elapsed = 1;
63 	unsigned long cycles_remainder;
64 	unsigned int cpu = smp_processor_id();
65 	struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
66 
67 	/* gcc can optimize for "read-only" case with a local clocktick */
68 	unsigned long cpt = clocktick;
69 
70 	profile_tick(CPU_PROFILING);
71 
72 	/* Initialize next_tick to the expected tick time. */
73 	next_tick = cpuinfo->it_value;
74 
75 	/* Get current cycle counter (Control Register 16). */
76 	now = mfctl(16);
77 
78 	cycles_elapsed = now - next_tick;
79 
80 	if ((cycles_elapsed >> 6) < cpt) {
81 		/* use "cheap" math (add/subtract) instead
82 		 * of the more expensive div/mul method
83 		 */
84 		cycles_remainder = cycles_elapsed;
85 		while (cycles_remainder > cpt) {
86 			cycles_remainder -= cpt;
87 			ticks_elapsed++;
88 		}
89 	} else {
90 		/* TODO: Reduce this to one fdiv op */
91 		cycles_remainder = cycles_elapsed % cpt;
92 		ticks_elapsed += cycles_elapsed / cpt;
93 	}
94 
95 	/* convert from "division remainder" to "remainder of clock tick" */
96 	cycles_remainder = cpt - cycles_remainder;
97 
98 	/* Determine when (in CR16 cycles) next IT interrupt will fire.
99 	 * We want IT to fire modulo clocktick even if we miss/skip some.
100 	 * But those interrupts don't in fact get delivered that regularly.
101 	 */
102 	next_tick = now + cycles_remainder;
103 
104 	cpuinfo->it_value = next_tick;
105 
106 	/* Program the IT when to deliver the next interrupt.
107 	 * Only bottom 32-bits of next_tick are writable in CR16!
108 	 */
109 	mtctl(next_tick, 16);
110 
111 	/* Skip one clocktick on purpose if we missed next_tick.
112 	 * The new CR16 must be "later" than current CR16 otherwise
113 	 * itimer would not fire until CR16 wrapped - e.g 4 seconds
114 	 * later on a 1Ghz processor. We'll account for the missed
115 	 * tick on the next timer interrupt.
116 	 *
117 	 * "next_tick - now" will always give the difference regardless
118 	 * if one or the other wrapped. If "now" is "bigger" we'll end up
119 	 * with a very large unsigned number.
120 	 */
121 	now2 = mfctl(16);
122 	if (next_tick - now2 > cpt)
123 		mtctl(next_tick+cpt, 16);
124 
125 #if 1
126 /*
127  * GGG: DEBUG code for how many cycles programming CR16 used.
128  */
129 	if (unlikely(now2 - now > 0x3000)) 	/* 12K cycles */
130 		printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
131 			" cyc %lX rem %lX "
132 			" next/now %lX/%lX\n",
133 			cpu, now2 - now, cycles_elapsed, cycles_remainder,
134 			next_tick, now );
135 #endif
136 
137 	/* Can we differentiate between "early CR16" (aka Scenario 1) and
138 	 * "long delay" (aka Scenario 3)? I don't think so.
139 	 *
140 	 * Timer_interrupt will be delivered at least a few hundred cycles
141 	 * after the IT fires. But it's arbitrary how much time passes
142 	 * before we call it "late". I've picked one second.
143 	 *
144 	 * It's important NO printk's are between reading CR16 and
145 	 * setting up the next value. May introduce huge variance.
146 	 */
147 	if (unlikely(ticks_elapsed > HZ)) {
148 		/* Scenario 3: very long delay?  bad in any case */
149 		printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
150 			" cycles %lX rem %lX "
151 			" next/now %lX/%lX\n",
152 			cpu,
153 			cycles_elapsed, cycles_remainder,
154 			next_tick, now );
155 	}
156 
157 	/* Done mucking with unreliable delivery of interrupts.
158 	 * Go do system house keeping.
159 	 */
160 
161 	if (!--cpuinfo->prof_counter) {
162 		cpuinfo->prof_counter = cpuinfo->prof_multiplier;
163 		update_process_times(user_mode(get_irq_regs()));
164 	}
165 
166 	if (cpu == 0)
167 		xtime_update(ticks_elapsed);
168 
169 	return IRQ_HANDLED;
170 }
171 
172 
173 unsigned long profile_pc(struct pt_regs *regs)
174 {
175 	unsigned long pc = instruction_pointer(regs);
176 
177 	if (regs->gr[0] & PSW_N)
178 		pc -= 4;
179 
180 #ifdef CONFIG_SMP
181 	if (in_lock_functions(pc))
182 		pc = regs->gr[2];
183 #endif
184 
185 	return pc;
186 }
187 EXPORT_SYMBOL(profile_pc);
188 
189 
190 /* clock source code */
191 
192 static cycle_t read_cr16(struct clocksource *cs)
193 {
194 	return get_cycles();
195 }
196 
197 static struct clocksource clocksource_cr16 = {
198 	.name			= "cr16",
199 	.rating			= 300,
200 	.read			= read_cr16,
201 	.mask			= CLOCKSOURCE_MASK(BITS_PER_LONG),
202 	.flags			= CLOCK_SOURCE_IS_CONTINUOUS,
203 };
204 
205 int update_cr16_clocksource(void)
206 {
207 	/* since the cr16 cycle counters are not synchronized across CPUs,
208 	   we'll check if we should switch to a safe clocksource: */
209 	if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
210 		clocksource_change_rating(&clocksource_cr16, 0);
211 		return 1;
212 	}
213 
214 	return 0;
215 }
216 
217 void __init start_cpu_itimer(void)
218 {
219 	unsigned int cpu = smp_processor_id();
220 	unsigned long next_tick = mfctl(16) + clocktick;
221 
222 	mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */
223 
224 	per_cpu(cpu_data, cpu).it_value = next_tick;
225 }
226 
227 static int __init rtc_init(void)
228 {
229 	struct platform_device *pdev;
230 
231 	pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
232 	return PTR_ERR_OR_ZERO(pdev);
233 }
234 device_initcall(rtc_init);
235 
236 void read_persistent_clock(struct timespec *ts)
237 {
238 	static struct pdc_tod tod_data;
239 	if (pdc_tod_read(&tod_data) == 0) {
240 		ts->tv_sec = tod_data.tod_sec;
241 		ts->tv_nsec = tod_data.tod_usec * 1000;
242 	} else {
243 		printk(KERN_ERR "Error reading tod clock\n");
244 	        ts->tv_sec = 0;
245 		ts->tv_nsec = 0;
246 	}
247 }
248 
249 void __init time_init(void)
250 {
251 	unsigned long current_cr16_khz;
252 
253 	clocktick = (100 * PAGE0->mem_10msec) / HZ;
254 
255 	start_cpu_itimer();	/* get CPU 0 started */
256 
257 	/* register at clocksource framework */
258 	current_cr16_khz = PAGE0->mem_10msec/10;  /* kHz */
259 	clocksource_register_khz(&clocksource_cr16, current_cr16_khz);
260 }
261