xref: /linux/arch/parisc/kernel/time.c (revision 606d099cdd1080bbb50ea50dc52d98252f8f10a1)
1 /*
2  *  linux/arch/parisc/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
5  *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6  *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7  *
8  * 1994-07-02  Alan Modra
9  *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
11  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
12  */
13 #include <linux/errno.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/param.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/time.h>
22 #include <linux/init.h>
23 #include <linux/smp.h>
24 #include <linux/profile.h>
25 
26 #include <asm/uaccess.h>
27 #include <asm/io.h>
28 #include <asm/irq.h>
29 #include <asm/param.h>
30 #include <asm/pdc.h>
31 #include <asm/led.h>
32 
33 #include <linux/timex.h>
34 
35 static unsigned long clocktick __read_mostly;	/* timer cycles per tick */
36 
37 /*
38  * We keep time on PA-RISC Linux by using the Interval Timer which is
39  * a pair of registers; one is read-only and one is write-only; both
40  * accessed through CR16.  The read-only register is 32 or 64 bits wide,
41  * and increments by 1 every CPU clock tick.  The architecture only
42  * guarantees us a rate between 0.5 and 2, but all implementations use a
43  * rate of 1.  The write-only register is 32-bits wide.  When the lowest
44  * 32 bits of the read-only register compare equal to the write-only
45  * register, it raises a maskable external interrupt.  Each processor has
46  * an Interval Timer of its own and they are not synchronised.
47  *
48  * We want to generate an interrupt every 1/HZ seconds.  So we program
49  * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
50  * is programmed with the intended time of the next tick.  We can be
51  * held off for an arbitrarily long period of time by interrupts being
52  * disabled, so we may miss one or more ticks.
53  */
54 irqreturn_t timer_interrupt(int irq, void *dev_id)
55 {
56 	unsigned long now;
57 	unsigned long next_tick;
58 	unsigned long cycles_elapsed, ticks_elapsed;
59 	unsigned long cycles_remainder;
60 	unsigned int cpu = smp_processor_id();
61 	struct cpuinfo_parisc *cpuinfo = &cpu_data[cpu];
62 
63 	/* gcc can optimize for "read-only" case with a local clocktick */
64 	unsigned long cpt = clocktick;
65 
66 	profile_tick(CPU_PROFILING);
67 
68 	/* Initialize next_tick to the expected tick time. */
69 	next_tick = cpuinfo->it_value;
70 
71 	/* Get current interval timer.
72 	 * CR16 reads as 64 bits in CPU wide mode.
73 	 * CR16 reads as 32 bits in CPU narrow mode.
74 	 */
75 	now = mfctl(16);
76 
77 	cycles_elapsed = now - next_tick;
78 
79 	if ((cycles_elapsed >> 5) < cpt) {
80 		/* use "cheap" math (add/subtract) instead
81 		 * of the more expensive div/mul method
82 		 */
83 		cycles_remainder = cycles_elapsed;
84 		ticks_elapsed = 1;
85 		while (cycles_remainder > cpt) {
86 			cycles_remainder -= cpt;
87 			ticks_elapsed++;
88 		}
89 	} else {
90 		cycles_remainder = cycles_elapsed % cpt;
91 		ticks_elapsed = 1 + cycles_elapsed / cpt;
92 	}
93 
94 	/* Can we differentiate between "early CR16" (aka Scenario 1) and
95 	 * "long delay" (aka Scenario 3)? I don't think so.
96 	 *
97 	 * We expected timer_interrupt to be delivered at least a few hundred
98 	 * cycles after the IT fires. But it's arbitrary how much time passes
99 	 * before we call it "late". I've picked one second.
100 	 */
101 	if (ticks_elapsed > HZ) {
102 		/* Scenario 3: very long delay?  bad in any case */
103 		printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
104 			" cycles %lX rem %lX "
105 			" next/now %lX/%lX\n",
106 			cpu,
107 			cycles_elapsed, cycles_remainder,
108 			next_tick, now );
109 	}
110 
111 	/* convert from "division remainder" to "remainder of clock tick" */
112 	cycles_remainder = cpt - cycles_remainder;
113 
114 	/* Determine when (in CR16 cycles) next IT interrupt will fire.
115 	 * We want IT to fire modulo clocktick even if we miss/skip some.
116 	 * But those interrupts don't in fact get delivered that regularly.
117 	 */
118 	next_tick = now + cycles_remainder;
119 
120 	cpuinfo->it_value = next_tick;
121 
122 	/* Skip one clocktick on purpose if we are likely to miss next_tick.
123 	 * We want to avoid the new next_tick being less than CR16.
124 	 * If that happened, itimer wouldn't fire until CR16 wrapped.
125 	 * We'll catch the tick we missed on the tick after that.
126 	 */
127 	if (!(cycles_remainder >> 13))
128 		next_tick += cpt;
129 
130 	/* Program the IT when to deliver the next interrupt. */
131 	/* Only bottom 32-bits of next_tick are written to cr16.  */
132 	mtctl(next_tick, 16);
133 
134 
135 	/* Done mucking with unreliable delivery of interrupts.
136 	 * Go do system house keeping.
137 	 */
138 
139 	if (!--cpuinfo->prof_counter) {
140 		cpuinfo->prof_counter = cpuinfo->prof_multiplier;
141 		update_process_times(user_mode(get_irq_regs()));
142 	}
143 
144 	if (cpu == 0) {
145 		write_seqlock(&xtime_lock);
146 		do_timer(ticks_elapsed);
147 		write_sequnlock(&xtime_lock);
148 	}
149 
150 	/* check soft power switch status */
151 	if (cpu == 0 && !atomic_read(&power_tasklet.count))
152 		tasklet_schedule(&power_tasklet);
153 
154 	return IRQ_HANDLED;
155 }
156 
157 
158 unsigned long profile_pc(struct pt_regs *regs)
159 {
160 	unsigned long pc = instruction_pointer(regs);
161 
162 	if (regs->gr[0] & PSW_N)
163 		pc -= 4;
164 
165 #ifdef CONFIG_SMP
166 	if (in_lock_functions(pc))
167 		pc = regs->gr[2];
168 #endif
169 
170 	return pc;
171 }
172 EXPORT_SYMBOL(profile_pc);
173 
174 
175 /*
176  * Return the number of micro-seconds that elapsed since the last
177  * update to wall time (aka xtime).  The xtime_lock
178  * must be at least read-locked when calling this routine.
179  */
180 static inline unsigned long gettimeoffset (void)
181 {
182 #ifndef CONFIG_SMP
183 	/*
184 	 * FIXME: This won't work on smp because jiffies are updated by cpu 0.
185 	 *    Once parisc-linux learns the cr16 difference between processors,
186 	 *    this could be made to work.
187 	 */
188 	unsigned long now;
189 	unsigned long prev_tick;
190 	unsigned long next_tick;
191 	unsigned long elapsed_cycles;
192 	unsigned long usec;
193 	unsigned long cpuid = smp_processor_id();
194 	unsigned long cpt = clocktick;
195 
196 	next_tick = cpu_data[cpuid].it_value;
197 	now = mfctl(16);	/* Read the hardware interval timer.  */
198 
199 	prev_tick = next_tick - cpt;
200 
201 	/* Assume Scenario 1: "now" is later than prev_tick.  */
202 	elapsed_cycles = now - prev_tick;
203 
204 /* aproximate HZ with shifts. Intended math is "(elapsed/clocktick) > HZ" */
205 #if HZ == 1000
206 	if (elapsed_cycles > (cpt << 10) )
207 #elif HZ == 250
208 	if (elapsed_cycles > (cpt << 8) )
209 #elif HZ == 100
210 	if (elapsed_cycles > (cpt << 7) )
211 #else
212 #warn WTF is HZ set to anyway?
213 	if (elapsed_cycles > (HZ * cpt) )
214 #endif
215 	{
216 		/* Scenario 3: clock ticks are missing. */
217 		printk (KERN_CRIT "gettimeoffset(CPU %ld): missing %ld ticks!"
218 			" cycles %lX prev/now/next %lX/%lX/%lX  clock %lX\n",
219 			cpuid, elapsed_cycles / cpt,
220 			elapsed_cycles, prev_tick, now, next_tick, cpt);
221 	}
222 
223 	/* FIXME: Can we improve the precision? Not with PAGE0. */
224 	usec = (elapsed_cycles * 10000) / PAGE0->mem_10msec;
225 	return usec;
226 #else
227 	return 0;
228 #endif
229 }
230 
231 void
232 do_gettimeofday (struct timeval *tv)
233 {
234 	unsigned long flags, seq, usec, sec;
235 
236 	/* Hold xtime_lock and adjust timeval.  */
237 	do {
238 		seq = read_seqbegin_irqsave(&xtime_lock, flags);
239 		usec = gettimeoffset();
240 		sec = xtime.tv_sec;
241 		usec += (xtime.tv_nsec / 1000);
242 	} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
243 
244 	/* Move adjusted usec's into sec's.  */
245 	while (usec >= USEC_PER_SEC) {
246 		usec -= USEC_PER_SEC;
247 		++sec;
248 	}
249 
250 	/* Return adjusted result.  */
251 	tv->tv_sec = sec;
252 	tv->tv_usec = usec;
253 }
254 
255 EXPORT_SYMBOL(do_gettimeofday);
256 
257 int
258 do_settimeofday (struct timespec *tv)
259 {
260 	time_t wtm_sec, sec = tv->tv_sec;
261 	long wtm_nsec, nsec = tv->tv_nsec;
262 
263 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
264 		return -EINVAL;
265 
266 	write_seqlock_irq(&xtime_lock);
267 	{
268 		/*
269 		 * This is revolting. We need to set "xtime"
270 		 * correctly. However, the value in this location is
271 		 * the value at the most recent update of wall time.
272 		 * Discover what correction gettimeofday would have
273 		 * done, and then undo it!
274 		 */
275 		nsec -= gettimeoffset() * 1000;
276 
277 		wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
278 		wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
279 
280 		set_normalized_timespec(&xtime, sec, nsec);
281 		set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
282 
283 		ntp_clear();
284 	}
285 	write_sequnlock_irq(&xtime_lock);
286 	clock_was_set();
287 	return 0;
288 }
289 EXPORT_SYMBOL(do_settimeofday);
290 
291 /*
292  * XXX: We can do better than this.
293  * Returns nanoseconds
294  */
295 
296 unsigned long long sched_clock(void)
297 {
298 	return (unsigned long long)jiffies * (1000000000 / HZ);
299 }
300 
301 
302 void __init start_cpu_itimer(void)
303 {
304 	unsigned int cpu = smp_processor_id();
305 	unsigned long next_tick = mfctl(16) + clocktick;
306 
307 	mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */
308 
309 	cpu_data[cpu].it_value = next_tick;
310 }
311 
312 void __init time_init(void)
313 {
314 	static struct pdc_tod tod_data;
315 
316 	clocktick = (100 * PAGE0->mem_10msec) / HZ;
317 
318 	start_cpu_itimer();	/* get CPU 0 started */
319 
320 	if (pdc_tod_read(&tod_data) == 0) {
321 		unsigned long flags;
322 
323 		write_seqlock_irqsave(&xtime_lock, flags);
324 		xtime.tv_sec = tod_data.tod_sec;
325 		xtime.tv_nsec = tod_data.tod_usec * 1000;
326 		set_normalized_timespec(&wall_to_monotonic,
327 		                        -xtime.tv_sec, -xtime.tv_nsec);
328 		write_sequnlock_irqrestore(&xtime_lock, flags);
329 	} else {
330 		printk(KERN_ERR "Error reading tod clock\n");
331 	        xtime.tv_sec = 0;
332 		xtime.tv_nsec = 0;
333 	}
334 }
335 
336