xref: /linux/arch/parisc/kernel/smp.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2 ** SMP Support
3 **
4 ** Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
5 ** Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
6 ** Copyright (C) 2001,2004 Grant Grundler <grundler@parisc-linux.org>
7 **
8 ** Lots of stuff stolen from arch/alpha/kernel/smp.c
9 ** ...and then parisc stole from arch/ia64/kernel/smp.c. Thanks David! :^)
10 **
11 ** Thanks to John Curry and Ullas Ponnadi. I learned alot from their work.
12 ** -grant (1/12/2001)
13 **
14 **	This program is free software; you can redistribute it and/or modify
15 **	it under the terms of the GNU General Public License as published by
16 **      the Free Software Foundation; either version 2 of the License, or
17 **      (at your option) any later version.
18 */
19 #include <linux/types.h>
20 #include <linux/spinlock.h>
21 #include <linux/slab.h>
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/sched.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/smp.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/mm.h>
31 #include <linux/delay.h>
32 #include <linux/bitops.h>
33 
34 #include <asm/system.h>
35 #include <asm/atomic.h>
36 #include <asm/current.h>
37 #include <asm/delay.h>
38 #include <asm/tlbflush.h>
39 
40 #include <asm/io.h>
41 #include <asm/irq.h>		/* for CPU_IRQ_REGION and friends */
42 #include <asm/mmu_context.h>
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/pgalloc.h>
46 #include <asm/processor.h>
47 #include <asm/ptrace.h>
48 #include <asm/unistd.h>
49 #include <asm/cacheflush.h>
50 
51 #undef DEBUG_SMP
52 #ifdef DEBUG_SMP
53 static int smp_debug_lvl = 0;
54 #define smp_debug(lvl, printargs...)		\
55 		if (lvl >= smp_debug_lvl)	\
56 			printk(printargs);
57 #else
58 #define smp_debug(lvl, ...)
59 #endif /* DEBUG_SMP */
60 
61 DEFINE_SPINLOCK(smp_lock);
62 
63 volatile struct task_struct *smp_init_current_idle_task;
64 
65 static volatile int cpu_now_booting __read_mostly = 0;	/* track which CPU is booting */
66 
67 static int parisc_max_cpus __read_mostly = 1;
68 
69 /* online cpus are ones that we've managed to bring up completely
70  * possible cpus are all valid cpu
71  * present cpus are all detected cpu
72  *
73  * On startup we bring up the "possible" cpus. Since we discover
74  * CPUs later, we add them as hotplug, so the possible cpu mask is
75  * empty in the beginning.
76  */
77 
78 cpumask_t cpu_online_map   __read_mostly = CPU_MASK_NONE;	/* Bitmap of online CPUs */
79 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;	/* Bitmap of Present CPUs */
80 
81 EXPORT_SYMBOL(cpu_online_map);
82 EXPORT_SYMBOL(cpu_possible_map);
83 
84 DEFINE_PER_CPU(spinlock_t, ipi_lock) = SPIN_LOCK_UNLOCKED;
85 
86 struct smp_call_struct {
87 	void (*func) (void *info);
88 	void *info;
89 	long wait;
90 	atomic_t unstarted_count;
91 	atomic_t unfinished_count;
92 };
93 static volatile struct smp_call_struct *smp_call_function_data;
94 
95 enum ipi_message_type {
96 	IPI_NOP=0,
97 	IPI_RESCHEDULE=1,
98 	IPI_CALL_FUNC,
99 	IPI_CPU_START,
100 	IPI_CPU_STOP,
101 	IPI_CPU_TEST
102 };
103 
104 
105 /********** SMP inter processor interrupt and communication routines */
106 
107 #undef PER_CPU_IRQ_REGION
108 #ifdef PER_CPU_IRQ_REGION
109 /* XXX REVISIT Ignore for now.
110 **    *May* need this "hook" to register IPI handler
111 **    once we have perCPU ExtIntr switch tables.
112 */
113 static void
114 ipi_init(int cpuid)
115 {
116 #error verify IRQ_OFFSET(IPI_IRQ) is ipi_interrupt() in new IRQ region
117 
118 	if(cpu_online(cpuid) )
119 	{
120 		switch_to_idle_task(current);
121 	}
122 
123 	return;
124 }
125 #endif
126 
127 
128 /*
129 ** Yoink this CPU from the runnable list...
130 **
131 */
132 static void
133 halt_processor(void)
134 {
135 	/* REVISIT : redirect I/O Interrupts to another CPU? */
136 	/* REVISIT : does PM *know* this CPU isn't available? */
137 	cpu_clear(smp_processor_id(), cpu_online_map);
138 	local_irq_disable();
139 	for (;;)
140 		;
141 }
142 
143 
144 irqreturn_t
145 ipi_interrupt(int irq, void *dev_id)
146 {
147 	int this_cpu = smp_processor_id();
148 	struct cpuinfo_parisc *p = &cpu_data[this_cpu];
149 	unsigned long ops;
150 	unsigned long flags;
151 
152 	/* Count this now; we may make a call that never returns. */
153 	p->ipi_count++;
154 
155 	mb();	/* Order interrupt and bit testing. */
156 
157 	for (;;) {
158 		spinlock_t *lock = &per_cpu(ipi_lock, this_cpu);
159 		spin_lock_irqsave(lock, flags);
160 		ops = p->pending_ipi;
161 		p->pending_ipi = 0;
162 		spin_unlock_irqrestore(lock, flags);
163 
164 		mb(); /* Order bit clearing and data access. */
165 
166 		if (!ops)
167 		    break;
168 
169 		while (ops) {
170 			unsigned long which = ffz(~ops);
171 
172 			ops &= ~(1 << which);
173 
174 			switch (which) {
175 			case IPI_NOP:
176 				smp_debug(100, KERN_DEBUG "CPU%d IPI_NOP\n", this_cpu);
177 				break;
178 
179 			case IPI_RESCHEDULE:
180 				smp_debug(100, KERN_DEBUG "CPU%d IPI_RESCHEDULE\n", this_cpu);
181 				/*
182 				 * Reschedule callback.  Everything to be
183 				 * done is done by the interrupt return path.
184 				 */
185 				break;
186 
187 			case IPI_CALL_FUNC:
188 				smp_debug(100, KERN_DEBUG "CPU%d IPI_CALL_FUNC\n", this_cpu);
189 				{
190 					volatile struct smp_call_struct *data;
191 					void (*func)(void *info);
192 					void *info;
193 					int wait;
194 
195 					data = smp_call_function_data;
196 					func = data->func;
197 					info = data->info;
198 					wait = data->wait;
199 
200 					mb();
201 					atomic_dec ((atomic_t *)&data->unstarted_count);
202 
203 					/* At this point, *data can't
204 					 * be relied upon.
205 					 */
206 
207 					(*func)(info);
208 
209 					/* Notify the sending CPU that the
210 					 * task is done.
211 					 */
212 					mb();
213 					if (wait)
214 						atomic_dec ((atomic_t *)&data->unfinished_count);
215 				}
216 				break;
217 
218 			case IPI_CPU_START:
219 				smp_debug(100, KERN_DEBUG "CPU%d IPI_CPU_START\n", this_cpu);
220 				break;
221 
222 			case IPI_CPU_STOP:
223 				smp_debug(100, KERN_DEBUG "CPU%d IPI_CPU_STOP\n", this_cpu);
224 				halt_processor();
225 				break;
226 
227 			case IPI_CPU_TEST:
228 				smp_debug(100, KERN_DEBUG "CPU%d is alive!\n", this_cpu);
229 				break;
230 
231 			default:
232 				printk(KERN_CRIT "Unknown IPI num on CPU%d: %lu\n",
233 					this_cpu, which);
234 				return IRQ_NONE;
235 			} /* Switch */
236 		/* let in any pending interrupts */
237 		local_irq_enable();
238 		local_irq_disable();
239 		} /* while (ops) */
240 	}
241 	return IRQ_HANDLED;
242 }
243 
244 
245 static inline void
246 ipi_send(int cpu, enum ipi_message_type op)
247 {
248 	struct cpuinfo_parisc *p = &cpu_data[cpu];
249 	spinlock_t *lock = &per_cpu(ipi_lock, cpu);
250 	unsigned long flags;
251 
252 	spin_lock_irqsave(lock, flags);
253 	p->pending_ipi |= 1 << op;
254 	gsc_writel(IPI_IRQ - CPU_IRQ_BASE, cpu_data[cpu].hpa);
255 	spin_unlock_irqrestore(lock, flags);
256 }
257 
258 
259 static inline void
260 send_IPI_single(int dest_cpu, enum ipi_message_type op)
261 {
262 	if (dest_cpu == NO_PROC_ID) {
263 		BUG();
264 		return;
265 	}
266 
267 	ipi_send(dest_cpu, op);
268 }
269 
270 static inline void
271 send_IPI_allbutself(enum ipi_message_type op)
272 {
273 	int i;
274 
275 	for_each_online_cpu(i) {
276 		if (i != smp_processor_id())
277 			send_IPI_single(i, op);
278 	}
279 }
280 
281 
282 inline void
283 smp_send_stop(void)	{ send_IPI_allbutself(IPI_CPU_STOP); }
284 
285 static inline void
286 smp_send_start(void)	{ send_IPI_allbutself(IPI_CPU_START); }
287 
288 void
289 smp_send_reschedule(int cpu) { send_IPI_single(cpu, IPI_RESCHEDULE); }
290 
291 void
292 smp_send_all_nop(void)
293 {
294 	send_IPI_allbutself(IPI_NOP);
295 }
296 
297 
298 /**
299  * Run a function on all other CPUs.
300  *  <func>	The function to run. This must be fast and non-blocking.
301  *  <info>	An arbitrary pointer to pass to the function.
302  *  <retry>	If true, keep retrying until ready.
303  *  <wait>	If true, wait until function has completed on other CPUs.
304  *  [RETURNS]   0 on success, else a negative status code.
305  *
306  * Does not return until remote CPUs are nearly ready to execute <func>
307  * or have executed.
308  */
309 
310 int
311 smp_call_function (void (*func) (void *info), void *info, int retry, int wait)
312 {
313 	struct smp_call_struct data;
314 	unsigned long timeout;
315 	static DEFINE_SPINLOCK(lock);
316 	int retries = 0;
317 
318 	if (num_online_cpus() < 2)
319 		return 0;
320 
321 	/* Can deadlock when called with interrupts disabled */
322 	WARN_ON(irqs_disabled());
323 
324 	/* can also deadlock if IPIs are disabled */
325 	WARN_ON((get_eiem() & (1UL<<(CPU_IRQ_MAX - IPI_IRQ))) == 0);
326 
327 
328 	data.func = func;
329 	data.info = info;
330 	data.wait = wait;
331 	atomic_set(&data.unstarted_count, num_online_cpus() - 1);
332 	atomic_set(&data.unfinished_count, num_online_cpus() - 1);
333 
334 	if (retry) {
335 		spin_lock (&lock);
336 		while (smp_call_function_data != 0)
337 			barrier();
338 	}
339 	else {
340 		spin_lock (&lock);
341 		if (smp_call_function_data) {
342 			spin_unlock (&lock);
343 			return -EBUSY;
344 		}
345 	}
346 
347 	smp_call_function_data = &data;
348 	spin_unlock (&lock);
349 
350 	/*  Send a message to all other CPUs and wait for them to respond  */
351 	send_IPI_allbutself(IPI_CALL_FUNC);
352 
353  retry:
354 	/*  Wait for response  */
355 	timeout = jiffies + HZ;
356 	while ( (atomic_read (&data.unstarted_count) > 0) &&
357 		time_before (jiffies, timeout) )
358 		barrier ();
359 
360 	if (atomic_read (&data.unstarted_count) > 0) {
361 		printk(KERN_CRIT "SMP CALL FUNCTION TIMED OUT! (cpu=%d), try %d\n",
362 		      smp_processor_id(), ++retries);
363 		goto retry;
364 	}
365 	/* We either got one or timed out. Release the lock */
366 
367 	mb();
368 	smp_call_function_data = NULL;
369 
370 	while (wait && atomic_read (&data.unfinished_count) > 0)
371 			barrier ();
372 
373 	return 0;
374 }
375 
376 EXPORT_SYMBOL(smp_call_function);
377 
378 /*
379  * Flush all other CPU's tlb and then mine.  Do this with on_each_cpu()
380  * as we want to ensure all TLB's flushed before proceeding.
381  */
382 
383 void
384 smp_flush_tlb_all(void)
385 {
386 	on_each_cpu(flush_tlb_all_local, NULL, 1, 1);
387 }
388 
389 /*
390  * Called by secondaries to update state and initialize CPU registers.
391  */
392 static void __init
393 smp_cpu_init(int cpunum)
394 {
395 	extern int init_per_cpu(int);  /* arch/parisc/kernel/processor.c */
396 	extern void init_IRQ(void);    /* arch/parisc/kernel/irq.c */
397 	extern void start_cpu_itimer(void); /* arch/parisc/kernel/time.c */
398 
399 	/* Set modes and Enable floating point coprocessor */
400 	(void) init_per_cpu(cpunum);
401 
402 	disable_sr_hashing();
403 
404 	mb();
405 
406 	/* Well, support 2.4 linux scheme as well. */
407 	if (cpu_test_and_set(cpunum, cpu_online_map))
408 	{
409 		extern void machine_halt(void); /* arch/parisc.../process.c */
410 
411 		printk(KERN_CRIT "CPU#%d already initialized!\n", cpunum);
412 		machine_halt();
413 	}
414 
415 	/* Initialise the idle task for this CPU */
416 	atomic_inc(&init_mm.mm_count);
417 	current->active_mm = &init_mm;
418 	if(current->mm)
419 		BUG();
420 	enter_lazy_tlb(&init_mm, current);
421 
422 	init_IRQ();   /* make sure no IRQ's are enabled or pending */
423 	start_cpu_itimer();
424 }
425 
426 
427 /*
428  * Slaves start using C here. Indirectly called from smp_slave_stext.
429  * Do what start_kernel() and main() do for boot strap processor (aka monarch)
430  */
431 void __init smp_callin(void)
432 {
433 	int slave_id = cpu_now_booting;
434 #if 0
435 	void *istack;
436 #endif
437 
438 	smp_cpu_init(slave_id);
439 	preempt_disable();
440 
441 #if 0	/* NOT WORKING YET - see entry.S */
442 	istack = (void *)__get_free_pages(GFP_KERNEL,ISTACK_ORDER);
443 	if (istack == NULL) {
444 	    printk(KERN_CRIT "Failed to allocate interrupt stack for cpu %d\n",slave_id);
445 	    BUG();
446 	}
447 	mtctl(istack,31);
448 #endif
449 
450 	flush_cache_all_local(); /* start with known state */
451 	flush_tlb_all_local(NULL);
452 
453 	local_irq_enable();  /* Interrupts have been off until now */
454 
455 	cpu_idle();      /* Wait for timer to schedule some work */
456 
457 	/* NOTREACHED */
458 	panic("smp_callin() AAAAaaaaahhhh....\n");
459 }
460 
461 /*
462  * Bring one cpu online.
463  */
464 int __init smp_boot_one_cpu(int cpuid)
465 {
466 	struct task_struct *idle;
467 	long timeout;
468 
469 	/*
470 	 * Create an idle task for this CPU.  Note the address wed* give
471 	 * to kernel_thread is irrelevant -- it's going to start
472 	 * where OS_BOOT_RENDEVZ vector in SAL says to start.  But
473 	 * this gets all the other task-y sort of data structures set
474 	 * up like we wish.   We need to pull the just created idle task
475 	 * off the run queue and stuff it into the init_tasks[] array.
476 	 * Sheesh . . .
477 	 */
478 
479 	idle = fork_idle(cpuid);
480 	if (IS_ERR(idle))
481 		panic("SMP: fork failed for CPU:%d", cpuid);
482 
483 	task_thread_info(idle)->cpu = cpuid;
484 
485 	/* Let _start know what logical CPU we're booting
486 	** (offset into init_tasks[],cpu_data[])
487 	*/
488 	cpu_now_booting = cpuid;
489 
490 	/*
491 	** boot strap code needs to know the task address since
492 	** it also contains the process stack.
493 	*/
494 	smp_init_current_idle_task = idle ;
495 	mb();
496 
497 	printk("Releasing cpu %d now, hpa=%lx\n", cpuid, cpu_data[cpuid].hpa);
498 
499 	/*
500 	** This gets PDC to release the CPU from a very tight loop.
501 	**
502 	** From the PA-RISC 2.0 Firmware Architecture Reference Specification:
503 	** "The MEM_RENDEZ vector specifies the location of OS_RENDEZ which
504 	** is executed after receiving the rendezvous signal (an interrupt to
505 	** EIR{0}). MEM_RENDEZ is valid only when it is nonzero and the
506 	** contents of memory are valid."
507 	*/
508 	gsc_writel(TIMER_IRQ - CPU_IRQ_BASE, cpu_data[cpuid].hpa);
509 	mb();
510 
511 	/*
512 	 * OK, wait a bit for that CPU to finish staggering about.
513 	 * Slave will set a bit when it reaches smp_cpu_init().
514 	 * Once the "monarch CPU" sees the bit change, it can move on.
515 	 */
516 	for (timeout = 0; timeout < 10000; timeout++) {
517 		if(cpu_online(cpuid)) {
518 			/* Which implies Slave has started up */
519 			cpu_now_booting = 0;
520 			smp_init_current_idle_task = NULL;
521 			goto alive ;
522 		}
523 		udelay(100);
524 		barrier();
525 	}
526 
527 	put_task_struct(idle);
528 	idle = NULL;
529 
530 	printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid);
531 	return -1;
532 
533 alive:
534 	/* Remember the Slave data */
535 	smp_debug(100, KERN_DEBUG "SMP: CPU:%d came alive after %ld _us\n",
536 		cpuid, timeout * 100);
537 	return 0;
538 }
539 
540 void __devinit smp_prepare_boot_cpu(void)
541 {
542 	int bootstrap_processor=cpu_data[0].cpuid;	/* CPU ID of BSP */
543 
544 	/* Setup BSP mappings */
545 	printk("SMP: bootstrap CPU ID is %d\n",bootstrap_processor);
546 
547 	cpu_set(bootstrap_processor, cpu_online_map);
548 	cpu_set(bootstrap_processor, cpu_present_map);
549 }
550 
551 
552 
553 /*
554 ** inventory.c:do_inventory() hasn't yet been run and thus we
555 ** don't 'discover' the additional CPU's until later.
556 */
557 void __init smp_prepare_cpus(unsigned int max_cpus)
558 {
559 	cpus_clear(cpu_present_map);
560 	cpu_set(0, cpu_present_map);
561 
562 	parisc_max_cpus = max_cpus;
563 	if (!max_cpus)
564 		printk(KERN_INFO "SMP mode deactivated.\n");
565 }
566 
567 
568 void smp_cpus_done(unsigned int cpu_max)
569 {
570 	return;
571 }
572 
573 
574 int __cpuinit __cpu_up(unsigned int cpu)
575 {
576 	if (cpu != 0 && cpu < parisc_max_cpus)
577 		smp_boot_one_cpu(cpu);
578 
579 	return cpu_online(cpu) ? 0 : -ENOSYS;
580 }
581 
582 #ifdef CONFIG_PROC_FS
583 int __init
584 setup_profiling_timer(unsigned int multiplier)
585 {
586 	return -EINVAL;
587 }
588 #endif
589