xref: /linux/arch/parisc/kernel/smp.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2 ** SMP Support
3 **
4 ** Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
5 ** Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
6 ** Copyright (C) 2001,2004 Grant Grundler <grundler@parisc-linux.org>
7 **
8 ** Lots of stuff stolen from arch/alpha/kernel/smp.c
9 ** ...and then parisc stole from arch/ia64/kernel/smp.c. Thanks David! :^)
10 **
11 ** Thanks to John Curry and Ullas Ponnadi. I learned alot from their work.
12 ** -grant (1/12/2001)
13 **
14 **	This program is free software; you can redistribute it and/or modify
15 **	it under the terms of the GNU General Public License as published by
16 **      the Free Software Foundation; either version 2 of the License, or
17 **      (at your option) any later version.
18 */
19 #undef ENTRY_SYS_CPUS	/* syscall support for iCOD-like functionality */
20 
21 
22 #include <linux/types.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/smp.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/mm.h>
34 #include <linux/delay.h>
35 #include <linux/bitops.h>
36 
37 #include <asm/system.h>
38 #include <asm/atomic.h>
39 #include <asm/current.h>
40 #include <asm/delay.h>
41 #include <asm/tlbflush.h>
42 
43 #include <asm/io.h>
44 #include <asm/irq.h>		/* for CPU_IRQ_REGION and friends */
45 #include <asm/mmu_context.h>
46 #include <asm/page.h>
47 #include <asm/pgtable.h>
48 #include <asm/pgalloc.h>
49 #include <asm/processor.h>
50 #include <asm/ptrace.h>
51 #include <asm/unistd.h>
52 #include <asm/cacheflush.h>
53 
54 #define kDEBUG 0
55 
56 DEFINE_SPINLOCK(smp_lock);
57 
58 volatile struct task_struct *smp_init_current_idle_task;
59 
60 static volatile int cpu_now_booting __read_mostly = 0;	/* track which CPU is booting */
61 
62 static int parisc_max_cpus __read_mostly = 1;
63 
64 /* online cpus are ones that we've managed to bring up completely
65  * possible cpus are all valid cpu
66  * present cpus are all detected cpu
67  *
68  * On startup we bring up the "possible" cpus. Since we discover
69  * CPUs later, we add them as hotplug, so the possible cpu mask is
70  * empty in the beginning.
71  */
72 
73 cpumask_t cpu_online_map   __read_mostly = CPU_MASK_NONE;	/* Bitmap of online CPUs */
74 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;	/* Bitmap of Present CPUs */
75 
76 EXPORT_SYMBOL(cpu_online_map);
77 EXPORT_SYMBOL(cpu_possible_map);
78 
79 
80 struct smp_call_struct {
81 	void (*func) (void *info);
82 	void *info;
83 	long wait;
84 	atomic_t unstarted_count;
85 	atomic_t unfinished_count;
86 };
87 static volatile struct smp_call_struct *smp_call_function_data;
88 
89 enum ipi_message_type {
90 	IPI_NOP=0,
91 	IPI_RESCHEDULE=1,
92 	IPI_CALL_FUNC,
93 	IPI_CPU_START,
94 	IPI_CPU_STOP,
95 	IPI_CPU_TEST
96 };
97 
98 
99 /********** SMP inter processor interrupt and communication routines */
100 
101 #undef PER_CPU_IRQ_REGION
102 #ifdef PER_CPU_IRQ_REGION
103 /* XXX REVISIT Ignore for now.
104 **    *May* need this "hook" to register IPI handler
105 **    once we have perCPU ExtIntr switch tables.
106 */
107 static void
108 ipi_init(int cpuid)
109 {
110 
111 	/* If CPU is present ... */
112 #ifdef ENTRY_SYS_CPUS
113 	/* *and* running (not stopped) ... */
114 #error iCOD support wants state checked here.
115 #endif
116 
117 #error verify IRQ_OFFSET(IPI_IRQ) is ipi_interrupt() in new IRQ region
118 
119 	if(cpu_online(cpuid) )
120 	{
121 		switch_to_idle_task(current);
122 	}
123 
124 	return;
125 }
126 #endif
127 
128 
129 /*
130 ** Yoink this CPU from the runnable list...
131 **
132 */
133 static void
134 halt_processor(void)
135 {
136 #ifdef ENTRY_SYS_CPUS
137 #error halt_processor() needs rework
138 /*
139 ** o migrate I/O interrupts off this CPU.
140 ** o leave IPI enabled - __cli() will disable IPI.
141 ** o leave CPU in online map - just change the state
142 */
143 	cpu_data[this_cpu].state = STATE_STOPPED;
144 	mark_bh(IPI_BH);
145 #else
146 	/* REVISIT : redirect I/O Interrupts to another CPU? */
147 	/* REVISIT : does PM *know* this CPU isn't available? */
148 	cpu_clear(smp_processor_id(), cpu_online_map);
149 	local_irq_disable();
150 	for (;;)
151 		;
152 #endif
153 }
154 
155 
156 irqreturn_t
157 ipi_interrupt(int irq, void *dev_id, struct pt_regs *regs)
158 {
159 	int this_cpu = smp_processor_id();
160 	struct cpuinfo_parisc *p = &cpu_data[this_cpu];
161 	unsigned long ops;
162 	unsigned long flags;
163 
164 	/* Count this now; we may make a call that never returns. */
165 	p->ipi_count++;
166 
167 	mb();	/* Order interrupt and bit testing. */
168 
169 	for (;;) {
170 		spin_lock_irqsave(&(p->lock),flags);
171 		ops = p->pending_ipi;
172 		p->pending_ipi = 0;
173 		spin_unlock_irqrestore(&(p->lock),flags);
174 
175 		mb(); /* Order bit clearing and data access. */
176 
177 		if (!ops)
178 		    break;
179 
180 		while (ops) {
181 			unsigned long which = ffz(~ops);
182 
183 			ops &= ~(1 << which);
184 
185 			switch (which) {
186 			case IPI_NOP:
187 #if (kDEBUG>=100)
188 				printk(KERN_DEBUG "CPU%d IPI_NOP\n",this_cpu);
189 #endif /* kDEBUG */
190 				break;
191 
192 			case IPI_RESCHEDULE:
193 #if (kDEBUG>=100)
194 				printk(KERN_DEBUG "CPU%d IPI_RESCHEDULE\n",this_cpu);
195 #endif /* kDEBUG */
196 				/*
197 				 * Reschedule callback.  Everything to be
198 				 * done is done by the interrupt return path.
199 				 */
200 				break;
201 
202 			case IPI_CALL_FUNC:
203 #if (kDEBUG>=100)
204 				printk(KERN_DEBUG "CPU%d IPI_CALL_FUNC\n",this_cpu);
205 #endif /* kDEBUG */
206 				{
207 					volatile struct smp_call_struct *data;
208 					void (*func)(void *info);
209 					void *info;
210 					int wait;
211 
212 					data = smp_call_function_data;
213 					func = data->func;
214 					info = data->info;
215 					wait = data->wait;
216 
217 					mb();
218 					atomic_dec ((atomic_t *)&data->unstarted_count);
219 
220 					/* At this point, *data can't
221 					 * be relied upon.
222 					 */
223 
224 					(*func)(info);
225 
226 					/* Notify the sending CPU that the
227 					 * task is done.
228 					 */
229 					mb();
230 					if (wait)
231 						atomic_dec ((atomic_t *)&data->unfinished_count);
232 				}
233 				break;
234 
235 			case IPI_CPU_START:
236 #if (kDEBUG>=100)
237 				printk(KERN_DEBUG "CPU%d IPI_CPU_START\n",this_cpu);
238 #endif /* kDEBUG */
239 #ifdef ENTRY_SYS_CPUS
240 				p->state = STATE_RUNNING;
241 #endif
242 				break;
243 
244 			case IPI_CPU_STOP:
245 #if (kDEBUG>=100)
246 				printk(KERN_DEBUG "CPU%d IPI_CPU_STOP\n",this_cpu);
247 #endif /* kDEBUG */
248 #ifdef ENTRY_SYS_CPUS
249 #else
250 				halt_processor();
251 #endif
252 				break;
253 
254 			case IPI_CPU_TEST:
255 #if (kDEBUG>=100)
256 				printk(KERN_DEBUG "CPU%d is alive!\n",this_cpu);
257 #endif /* kDEBUG */
258 				break;
259 
260 			default:
261 				printk(KERN_CRIT "Unknown IPI num on CPU%d: %lu\n",
262 					this_cpu, which);
263 				return IRQ_NONE;
264 			} /* Switch */
265 		} /* while (ops) */
266 	}
267 	return IRQ_HANDLED;
268 }
269 
270 
271 static inline void
272 ipi_send(int cpu, enum ipi_message_type op)
273 {
274 	struct cpuinfo_parisc *p = &cpu_data[cpu];
275 	unsigned long flags;
276 
277 	spin_lock_irqsave(&(p->lock),flags);
278 	p->pending_ipi |= 1 << op;
279 	gsc_writel(IPI_IRQ - CPU_IRQ_BASE, cpu_data[cpu].hpa);
280 	spin_unlock_irqrestore(&(p->lock),flags);
281 }
282 
283 
284 static inline void
285 send_IPI_single(int dest_cpu, enum ipi_message_type op)
286 {
287 	if (dest_cpu == NO_PROC_ID) {
288 		BUG();
289 		return;
290 	}
291 
292 	ipi_send(dest_cpu, op);
293 }
294 
295 static inline void
296 send_IPI_allbutself(enum ipi_message_type op)
297 {
298 	int i;
299 
300 	for_each_online_cpu(i) {
301 		if (i != smp_processor_id())
302 			send_IPI_single(i, op);
303 	}
304 }
305 
306 
307 inline void
308 smp_send_stop(void)	{ send_IPI_allbutself(IPI_CPU_STOP); }
309 
310 static inline void
311 smp_send_start(void)	{ send_IPI_allbutself(IPI_CPU_START); }
312 
313 void
314 smp_send_reschedule(int cpu) { send_IPI_single(cpu, IPI_RESCHEDULE); }
315 
316 void
317 smp_send_all_nop(void)
318 {
319 	send_IPI_allbutself(IPI_NOP);
320 }
321 
322 
323 /**
324  * Run a function on all other CPUs.
325  *  <func>	The function to run. This must be fast and non-blocking.
326  *  <info>	An arbitrary pointer to pass to the function.
327  *  <retry>	If true, keep retrying until ready.
328  *  <wait>	If true, wait until function has completed on other CPUs.
329  *  [RETURNS]   0 on success, else a negative status code.
330  *
331  * Does not return until remote CPUs are nearly ready to execute <func>
332  * or have executed.
333  */
334 
335 int
336 smp_call_function (void (*func) (void *info), void *info, int retry, int wait)
337 {
338 	struct smp_call_struct data;
339 	unsigned long timeout;
340 	static DEFINE_SPINLOCK(lock);
341 	int retries = 0;
342 
343 	if (num_online_cpus() < 2)
344 		return 0;
345 
346 	/* Can deadlock when called with interrupts disabled */
347 	WARN_ON(irqs_disabled());
348 
349 	/* can also deadlock if IPIs are disabled */
350 	WARN_ON((get_eiem() & (1UL<<(CPU_IRQ_MAX - IPI_IRQ))) == 0);
351 
352 
353 	data.func = func;
354 	data.info = info;
355 	data.wait = wait;
356 	atomic_set(&data.unstarted_count, num_online_cpus() - 1);
357 	atomic_set(&data.unfinished_count, num_online_cpus() - 1);
358 
359 	if (retry) {
360 		spin_lock (&lock);
361 		while (smp_call_function_data != 0)
362 			barrier();
363 	}
364 	else {
365 		spin_lock (&lock);
366 		if (smp_call_function_data) {
367 			spin_unlock (&lock);
368 			return -EBUSY;
369 		}
370 	}
371 
372 	smp_call_function_data = &data;
373 	spin_unlock (&lock);
374 
375 	/*  Send a message to all other CPUs and wait for them to respond  */
376 	send_IPI_allbutself(IPI_CALL_FUNC);
377 
378  retry:
379 	/*  Wait for response  */
380 	timeout = jiffies + HZ;
381 	while ( (atomic_read (&data.unstarted_count) > 0) &&
382 		time_before (jiffies, timeout) )
383 		barrier ();
384 
385 	if (atomic_read (&data.unstarted_count) > 0) {
386 		printk(KERN_CRIT "SMP CALL FUNCTION TIMED OUT! (cpu=%d), try %d\n",
387 		      smp_processor_id(), ++retries);
388 		goto retry;
389 	}
390 	/* We either got one or timed out. Release the lock */
391 
392 	mb();
393 	smp_call_function_data = NULL;
394 
395 	while (wait && atomic_read (&data.unfinished_count) > 0)
396 			barrier ();
397 
398 	return 0;
399 }
400 
401 EXPORT_SYMBOL(smp_call_function);
402 
403 /*
404  * Flush all other CPU's tlb and then mine.  Do this with on_each_cpu()
405  * as we want to ensure all TLB's flushed before proceeding.
406  */
407 
408 void
409 smp_flush_tlb_all(void)
410 {
411 	on_each_cpu(flush_tlb_all_local, NULL, 1, 1);
412 }
413 
414 
415 void
416 smp_do_timer(struct pt_regs *regs)
417 {
418 	int cpu = smp_processor_id();
419 	struct cpuinfo_parisc *data = &cpu_data[cpu];
420 
421         if (!--data->prof_counter) {
422 		data->prof_counter = data->prof_multiplier;
423 		update_process_times(user_mode(regs));
424 	}
425 }
426 
427 /*
428  * Called by secondaries to update state and initialize CPU registers.
429  */
430 static void __init
431 smp_cpu_init(int cpunum)
432 {
433 	extern int init_per_cpu(int);  /* arch/parisc/kernel/setup.c */
434 	extern void init_IRQ(void);    /* arch/parisc/kernel/irq.c */
435 
436 	/* Set modes and Enable floating point coprocessor */
437 	(void) init_per_cpu(cpunum);
438 
439 	disable_sr_hashing();
440 
441 	mb();
442 
443 	/* Well, support 2.4 linux scheme as well. */
444 	if (cpu_test_and_set(cpunum, cpu_online_map))
445 	{
446 		extern void machine_halt(void); /* arch/parisc.../process.c */
447 
448 		printk(KERN_CRIT "CPU#%d already initialized!\n", cpunum);
449 		machine_halt();
450 	}
451 
452 	/* Initialise the idle task for this CPU */
453 	atomic_inc(&init_mm.mm_count);
454 	current->active_mm = &init_mm;
455 	if(current->mm)
456 		BUG();
457 	enter_lazy_tlb(&init_mm, current);
458 
459 	init_IRQ();   /* make sure no IRQ's are enabled or pending */
460 }
461 
462 
463 /*
464  * Slaves start using C here. Indirectly called from smp_slave_stext.
465  * Do what start_kernel() and main() do for boot strap processor (aka monarch)
466  */
467 void __init smp_callin(void)
468 {
469 	int slave_id = cpu_now_booting;
470 #if 0
471 	void *istack;
472 #endif
473 
474 	smp_cpu_init(slave_id);
475 	preempt_disable();
476 
477 #if 0	/* NOT WORKING YET - see entry.S */
478 	istack = (void *)__get_free_pages(GFP_KERNEL,ISTACK_ORDER);
479 	if (istack == NULL) {
480 	    printk(KERN_CRIT "Failed to allocate interrupt stack for cpu %d\n",slave_id);
481 	    BUG();
482 	}
483 	mtctl(istack,31);
484 #endif
485 
486 	flush_cache_all_local(); /* start with known state */
487 	flush_tlb_all_local(NULL);
488 
489 	local_irq_enable();  /* Interrupts have been off until now */
490 
491 	cpu_idle();      /* Wait for timer to schedule some work */
492 
493 	/* NOTREACHED */
494 	panic("smp_callin() AAAAaaaaahhhh....\n");
495 }
496 
497 /*
498  * Bring one cpu online.
499  */
500 int __init smp_boot_one_cpu(int cpuid)
501 {
502 	struct task_struct *idle;
503 	long timeout;
504 
505 	/*
506 	 * Create an idle task for this CPU.  Note the address wed* give
507 	 * to kernel_thread is irrelevant -- it's going to start
508 	 * where OS_BOOT_RENDEVZ vector in SAL says to start.  But
509 	 * this gets all the other task-y sort of data structures set
510 	 * up like we wish.   We need to pull the just created idle task
511 	 * off the run queue and stuff it into the init_tasks[] array.
512 	 * Sheesh . . .
513 	 */
514 
515 	idle = fork_idle(cpuid);
516 	if (IS_ERR(idle))
517 		panic("SMP: fork failed for CPU:%d", cpuid);
518 
519 	task_thread_info(idle)->cpu = cpuid;
520 
521 	/* Let _start know what logical CPU we're booting
522 	** (offset into init_tasks[],cpu_data[])
523 	*/
524 	cpu_now_booting = cpuid;
525 
526 	/*
527 	** boot strap code needs to know the task address since
528 	** it also contains the process stack.
529 	*/
530 	smp_init_current_idle_task = idle ;
531 	mb();
532 
533 	printk("Releasing cpu %d now, hpa=%lx\n", cpuid, cpu_data[cpuid].hpa);
534 
535 	/*
536 	** This gets PDC to release the CPU from a very tight loop.
537 	**
538 	** From the PA-RISC 2.0 Firmware Architecture Reference Specification:
539 	** "The MEM_RENDEZ vector specifies the location of OS_RENDEZ which
540 	** is executed after receiving the rendezvous signal (an interrupt to
541 	** EIR{0}). MEM_RENDEZ is valid only when it is nonzero and the
542 	** contents of memory are valid."
543 	*/
544 	gsc_writel(TIMER_IRQ - CPU_IRQ_BASE, cpu_data[cpuid].hpa);
545 	mb();
546 
547 	/*
548 	 * OK, wait a bit for that CPU to finish staggering about.
549 	 * Slave will set a bit when it reaches smp_cpu_init().
550 	 * Once the "monarch CPU" sees the bit change, it can move on.
551 	 */
552 	for (timeout = 0; timeout < 10000; timeout++) {
553 		if(cpu_online(cpuid)) {
554 			/* Which implies Slave has started up */
555 			cpu_now_booting = 0;
556 			smp_init_current_idle_task = NULL;
557 			goto alive ;
558 		}
559 		udelay(100);
560 		barrier();
561 	}
562 
563 	put_task_struct(idle);
564 	idle = NULL;
565 
566 	printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid);
567 	return -1;
568 
569 alive:
570 	/* Remember the Slave data */
571 #if (kDEBUG>=100)
572 	printk(KERN_DEBUG "SMP: CPU:%d came alive after %ld _us\n",
573 		cpuid, timeout * 100);
574 #endif /* kDEBUG */
575 #ifdef ENTRY_SYS_CPUS
576 	cpu_data[cpuid].state = STATE_RUNNING;
577 #endif
578 	return 0;
579 }
580 
581 void __devinit smp_prepare_boot_cpu(void)
582 {
583 	int bootstrap_processor=cpu_data[0].cpuid;	/* CPU ID of BSP */
584 
585 #ifdef ENTRY_SYS_CPUS
586 	cpu_data[0].state = STATE_RUNNING;
587 #endif
588 
589 	/* Setup BSP mappings */
590 	printk("SMP: bootstrap CPU ID is %d\n",bootstrap_processor);
591 
592 	cpu_set(bootstrap_processor, cpu_online_map);
593 	cpu_set(bootstrap_processor, cpu_present_map);
594 }
595 
596 
597 
598 /*
599 ** inventory.c:do_inventory() hasn't yet been run and thus we
600 ** don't 'discover' the additional CPU's until later.
601 */
602 void __init smp_prepare_cpus(unsigned int max_cpus)
603 {
604 	cpus_clear(cpu_present_map);
605 	cpu_set(0, cpu_present_map);
606 
607 	parisc_max_cpus = max_cpus;
608 	if (!max_cpus)
609 		printk(KERN_INFO "SMP mode deactivated.\n");
610 }
611 
612 
613 void smp_cpus_done(unsigned int cpu_max)
614 {
615 	return;
616 }
617 
618 
619 int __devinit __cpu_up(unsigned int cpu)
620 {
621 	if (cpu != 0 && cpu < parisc_max_cpus)
622 		smp_boot_one_cpu(cpu);
623 
624 	return cpu_online(cpu) ? 0 : -ENOSYS;
625 }
626 
627 
628 
629 #ifdef ENTRY_SYS_CPUS
630 /* Code goes along with:
631 **    entry.s:        ENTRY_NAME(sys_cpus)   / * 215, for cpu stat * /
632 */
633 int sys_cpus(int argc, char **argv)
634 {
635 	int i,j=0;
636 	extern int current_pid(int cpu);
637 
638 	if( argc > 2 ) {
639 		printk("sys_cpus:Only one argument supported\n");
640 		return (-1);
641 	}
642 	if ( argc == 1 ){
643 
644 #ifdef DUMP_MORE_STATE
645 		for_each_online_cpu(i) {
646 			int cpus_per_line = 4;
647 
648 			if (j++ % cpus_per_line)
649 				printk(" %3d",i);
650 			else
651 				printk("\n %3d",i);
652 		}
653 		printk("\n");
654 #else
655 	    	printk("\n 0\n");
656 #endif
657 	} else if((argc==2) && !(strcmp(argv[1],"-l"))) {
658 		printk("\nCPUSTATE  TASK CPUNUM CPUID HARDCPU(HPA)\n");
659 #ifdef DUMP_MORE_STATE
660 		for_each_online_cpu(i) {
661 			if (cpu_data[i].cpuid != NO_PROC_ID) {
662 				switch(cpu_data[i].state) {
663 					case STATE_RENDEZVOUS:
664 						printk("RENDEZVS ");
665 						break;
666 					case STATE_RUNNING:
667 						printk((current_pid(i)!=0) ? "RUNNING  " : "IDLING   ");
668 						break;
669 					case STATE_STOPPED:
670 						printk("STOPPED  ");
671 						break;
672 					case STATE_HALTED:
673 						printk("HALTED   ");
674 						break;
675 					default:
676 						printk("%08x?", cpu_data[i].state);
677 						break;
678 				}
679 				if(cpu_online(i)) {
680 					printk(" %4d",current_pid(i));
681 				}
682 				printk(" %6d",cpu_number_map(i));
683 				printk(" %5d",i);
684 				printk(" 0x%lx\n",cpu_data[i].hpa);
685 			}
686 		}
687 #else
688 		printk("\n%s  %4d      0     0 --------",
689 			(current->pid)?"RUNNING ": "IDLING  ",current->pid);
690 #endif
691 	} else if ((argc==2) && !(strcmp(argv[1],"-s"))) {
692 #ifdef DUMP_MORE_STATE
693      		printk("\nCPUSTATE   CPUID\n");
694 		for_each_online_cpu(i) {
695 			if (cpu_data[i].cpuid != NO_PROC_ID) {
696 				switch(cpu_data[i].state) {
697 					case STATE_RENDEZVOUS:
698 						printk("RENDEZVS");break;
699 					case STATE_RUNNING:
700 						printk((current_pid(i)!=0) ? "RUNNING " : "IDLING");
701 						break;
702 					case STATE_STOPPED:
703 						printk("STOPPED ");break;
704 					case STATE_HALTED:
705 						printk("HALTED  ");break;
706 					default:
707 				}
708 				printk("  %5d\n",i);
709 			}
710 		}
711 #else
712 		printk("\n%s    CPU0",(current->pid==0)?"RUNNING ":"IDLING  ");
713 #endif
714 	} else {
715 		printk("sys_cpus:Unknown request\n");
716 		return (-1);
717 	}
718 	return 0;
719 }
720 #endif /* ENTRY_SYS_CPUS */
721 
722 #ifdef CONFIG_PROC_FS
723 int __init
724 setup_profiling_timer(unsigned int multiplier)
725 {
726 	return -EINVAL;
727 }
728 #endif
729