1 /* 2 * PARISC Architecture-dependent parts of process handling 3 * based on the work for i386 4 * 5 * Copyright (C) 1999-2003 Matthew Wilcox <willy at parisc-linux.org> 6 * Copyright (C) 2000 Martin K Petersen <mkp at mkp.net> 7 * Copyright (C) 2000 John Marvin <jsm at parisc-linux.org> 8 * Copyright (C) 2000 David Huggins-Daines <dhd with pobox.org> 9 * Copyright (C) 2000-2003 Paul Bame <bame at parisc-linux.org> 10 * Copyright (C) 2000 Philipp Rumpf <prumpf with tux.org> 11 * Copyright (C) 2000 David Kennedy <dkennedy with linuxcare.com> 12 * Copyright (C) 2000 Richard Hirst <rhirst with parisc-linux.org> 13 * Copyright (C) 2000 Grant Grundler <grundler with parisc-linux.org> 14 * Copyright (C) 2001 Alan Modra <amodra at parisc-linux.org> 15 * Copyright (C) 2001-2002 Ryan Bradetich <rbrad at parisc-linux.org> 16 * Copyright (C) 2001-2002 Helge Deller <deller at parisc-linux.org> 17 * Copyright (C) 2002 Randolph Chung <tausq with parisc-linux.org> 18 * 19 * 20 * This program is free software; you can redistribute it and/or modify 21 * it under the terms of the GNU General Public License as published by 22 * the Free Software Foundation; either version 2 of the License, or 23 * (at your option) any later version. 24 * 25 * This program is distributed in the hope that it will be useful, 26 * but WITHOUT ANY WARRANTY; without even the implied warranty of 27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 28 * GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with this program; if not, write to the Free Software 32 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 33 */ 34 35 #include <stdarg.h> 36 37 #include <linux/elf.h> 38 #include <linux/errno.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/module.h> 42 #include <linux/personality.h> 43 #include <linux/ptrace.h> 44 #include <linux/sched.h> 45 #include <linux/stddef.h> 46 #include <linux/unistd.h> 47 #include <linux/kallsyms.h> 48 49 #include <asm/io.h> 50 #include <asm/asm-offsets.h> 51 #include <asm/pdc.h> 52 #include <asm/pdc_chassis.h> 53 #include <asm/pgalloc.h> 54 #include <asm/uaccess.h> 55 #include <asm/unwind.h> 56 57 void default_idle(void) 58 { 59 barrier(); 60 } 61 62 /* 63 * The idle thread. There's no useful work to be 64 * done, so just try to conserve power and have a 65 * low exit latency (ie sit in a loop waiting for 66 * somebody to say that they'd like to reschedule) 67 */ 68 void cpu_idle(void) 69 { 70 set_thread_flag(TIF_POLLING_NRFLAG); 71 72 /* endless idle loop with no priority at all */ 73 while (1) { 74 while (!need_resched()) 75 barrier(); 76 preempt_enable_no_resched(); 77 schedule(); 78 preempt_disable(); 79 check_pgt_cache(); 80 } 81 } 82 83 84 #define COMMAND_GLOBAL F_EXTEND(0xfffe0030) 85 #define CMD_RESET 5 /* reset any module */ 86 87 /* 88 ** The Wright Brothers and Gecko systems have a H/W problem 89 ** (Lasi...'nuf said) may cause a broadcast reset to lockup 90 ** the system. An HVERSION dependent PDC call was developed 91 ** to perform a "safe", platform specific broadcast reset instead 92 ** of kludging up all the code. 93 ** 94 ** Older machines which do not implement PDC_BROADCAST_RESET will 95 ** return (with an error) and the regular broadcast reset can be 96 ** issued. Obviously, if the PDC does implement PDC_BROADCAST_RESET 97 ** the PDC call will not return (the system will be reset). 98 */ 99 void machine_restart(char *cmd) 100 { 101 #ifdef FASTBOOT_SELFTEST_SUPPORT 102 /* 103 ** If user has modified the Firmware Selftest Bitmap, 104 ** run the tests specified in the bitmap after the 105 ** system is rebooted w/PDC_DO_RESET. 106 ** 107 ** ftc_bitmap = 0x1AUL "Skip destructive memory tests" 108 ** 109 ** Using "directed resets" at each processor with the MEM_TOC 110 ** vector cleared will also avoid running destructive 111 ** memory self tests. (Not implemented yet) 112 */ 113 if (ftc_bitmap) { 114 pdc_do_firm_test_reset(ftc_bitmap); 115 } 116 #endif 117 /* set up a new led state on systems shipped with a LED State panel */ 118 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_SHUTDOWN); 119 120 /* "Normal" system reset */ 121 pdc_do_reset(); 122 123 /* Nope...box should reset with just CMD_RESET now */ 124 gsc_writel(CMD_RESET, COMMAND_GLOBAL); 125 126 /* Wait for RESET to lay us to rest. */ 127 while (1) ; 128 129 } 130 131 void machine_halt(void) 132 { 133 /* 134 ** The LED/ChassisCodes are updated by the led_halt() 135 ** function, called by the reboot notifier chain. 136 */ 137 } 138 139 void (*chassis_power_off)(void); 140 141 /* 142 * This routine is called from sys_reboot to actually turn off the 143 * machine 144 */ 145 void machine_power_off(void) 146 { 147 /* If there is a registered power off handler, call it. */ 148 if (chassis_power_off) 149 chassis_power_off(); 150 151 /* Put the soft power button back under hardware control. 152 * If the user had already pressed the power button, the 153 * following call will immediately power off. */ 154 pdc_soft_power_button(0); 155 156 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_SHUTDOWN); 157 158 /* It seems we have no way to power the system off via 159 * software. The user has to press the button himself. */ 160 161 printk(KERN_EMERG "System shut down completed.\n" 162 KERN_EMERG "Please power this system off now."); 163 } 164 165 void (*pm_power_off)(void) = machine_power_off; 166 EXPORT_SYMBOL(pm_power_off); 167 168 /* 169 * Create a kernel thread 170 */ 171 172 extern pid_t __kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 173 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 174 { 175 176 /* 177 * FIXME: Once we are sure we don't need any debug here, 178 * kernel_thread can become a #define. 179 */ 180 181 return __kernel_thread(fn, arg, flags); 182 } 183 EXPORT_SYMBOL(kernel_thread); 184 185 /* 186 * Free current thread data structures etc.. 187 */ 188 void exit_thread(void) 189 { 190 } 191 192 void flush_thread(void) 193 { 194 /* Only needs to handle fpu stuff or perf monitors. 195 ** REVISIT: several arches implement a "lazy fpu state". 196 */ 197 set_fs(USER_DS); 198 } 199 200 void release_thread(struct task_struct *dead_task) 201 { 202 } 203 204 /* 205 * Fill in the FPU structure for a core dump. 206 */ 207 208 int dump_fpu (struct pt_regs * regs, elf_fpregset_t *r) 209 { 210 if (regs == NULL) 211 return 0; 212 213 memcpy(r, regs->fr, sizeof *r); 214 return 1; 215 } 216 217 int dump_task_fpu (struct task_struct *tsk, elf_fpregset_t *r) 218 { 219 memcpy(r, tsk->thread.regs.fr, sizeof(*r)); 220 return 1; 221 } 222 223 /* Note that "fork()" is implemented in terms of clone, with 224 parameters (SIGCHLD, regs->gr[30], regs). */ 225 int 226 sys_clone(unsigned long clone_flags, unsigned long usp, 227 struct pt_regs *regs) 228 { 229 /* Arugments from userspace are: 230 r26 = Clone flags. 231 r25 = Child stack. 232 r24 = parent_tidptr. 233 r23 = Is the TLS storage descriptor 234 r22 = child_tidptr 235 236 However, these last 3 args are only examined 237 if the proper flags are set. */ 238 int __user *child_tidptr; 239 int __user *parent_tidptr; 240 241 /* usp must be word aligned. This also prevents users from 242 * passing in the value 1 (which is the signal for a special 243 * return for a kernel thread) */ 244 usp = ALIGN(usp, 4); 245 246 /* A zero value for usp means use the current stack */ 247 if (usp == 0) 248 usp = regs->gr[30]; 249 250 if (clone_flags & CLONE_PARENT_SETTID) 251 parent_tidptr = (int __user *)regs->gr[24]; 252 else 253 parent_tidptr = NULL; 254 255 if (clone_flags & (CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID)) 256 child_tidptr = (int __user *)regs->gr[22]; 257 else 258 child_tidptr = NULL; 259 260 return do_fork(clone_flags, usp, regs, 0, parent_tidptr, child_tidptr); 261 } 262 263 int 264 sys_vfork(struct pt_regs *regs) 265 { 266 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gr[30], regs, 0, NULL, NULL); 267 } 268 269 int 270 copy_thread(int nr, unsigned long clone_flags, unsigned long usp, 271 unsigned long unused, /* in ia64 this is "user_stack_size" */ 272 struct task_struct * p, struct pt_regs * pregs) 273 { 274 struct pt_regs * cregs = &(p->thread.regs); 275 void *stack = task_stack_page(p); 276 277 /* We have to use void * instead of a function pointer, because 278 * function pointers aren't a pointer to the function on 64-bit. 279 * Make them const so the compiler knows they live in .text */ 280 extern void * const ret_from_kernel_thread; 281 extern void * const child_return; 282 #ifdef CONFIG_HPUX 283 extern void * const hpux_child_return; 284 #endif 285 286 *cregs = *pregs; 287 288 /* Set the return value for the child. Note that this is not 289 actually restored by the syscall exit path, but we put it 290 here for consistency in case of signals. */ 291 cregs->gr[28] = 0; /* child */ 292 293 /* 294 * We need to differentiate between a user fork and a 295 * kernel fork. We can't use user_mode, because the 296 * the syscall path doesn't save iaoq. Right now 297 * We rely on the fact that kernel_thread passes 298 * in zero for usp. 299 */ 300 if (usp == 1) { 301 /* kernel thread */ 302 cregs->ksp = (unsigned long)stack + THREAD_SZ_ALGN; 303 /* Must exit via ret_from_kernel_thread in order 304 * to call schedule_tail() 305 */ 306 cregs->kpc = (unsigned long) &ret_from_kernel_thread; 307 /* 308 * Copy function and argument to be called from 309 * ret_from_kernel_thread. 310 */ 311 #ifdef __LP64__ 312 cregs->gr[27] = pregs->gr[27]; 313 #endif 314 cregs->gr[26] = pregs->gr[26]; 315 cregs->gr[25] = pregs->gr[25]; 316 } else { 317 /* user thread */ 318 /* 319 * Note that the fork wrappers are responsible 320 * for setting gr[21]. 321 */ 322 323 /* Use same stack depth as parent */ 324 cregs->ksp = (unsigned long)stack 325 + (pregs->gr[21] & (THREAD_SIZE - 1)); 326 cregs->gr[30] = usp; 327 if (p->personality == PER_HPUX) { 328 #ifdef CONFIG_HPUX 329 cregs->kpc = (unsigned long) &hpux_child_return; 330 #else 331 BUG(); 332 #endif 333 } else { 334 cregs->kpc = (unsigned long) &child_return; 335 } 336 /* Setup thread TLS area from the 4th parameter in clone */ 337 if (clone_flags & CLONE_SETTLS) 338 cregs->cr27 = pregs->gr[23]; 339 340 } 341 342 return 0; 343 } 344 345 unsigned long thread_saved_pc(struct task_struct *t) 346 { 347 return t->thread.regs.kpc; 348 } 349 350 /* 351 * sys_execve() executes a new program. 352 */ 353 354 asmlinkage int sys_execve(struct pt_regs *regs) 355 { 356 int error; 357 char *filename; 358 359 filename = getname((const char __user *) regs->gr[26]); 360 error = PTR_ERR(filename); 361 if (IS_ERR(filename)) 362 goto out; 363 error = do_execve(filename, (char __user **) regs->gr[25], 364 (char __user **) regs->gr[24], regs); 365 if (error == 0) { 366 task_lock(current); 367 current->ptrace &= ~PT_DTRACE; 368 task_unlock(current); 369 } 370 putname(filename); 371 out: 372 373 return error; 374 } 375 376 unsigned long 377 get_wchan(struct task_struct *p) 378 { 379 struct unwind_frame_info info; 380 unsigned long ip; 381 int count = 0; 382 /* 383 * These bracket the sleeping functions.. 384 */ 385 386 unwind_frame_init_from_blocked_task(&info, p); 387 do { 388 if (unwind_once(&info) < 0) 389 return 0; 390 ip = info.ip; 391 if (!in_sched_functions(ip)) 392 return ip; 393 } while (count++ < 16); 394 return 0; 395 } 396