1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Kernel dynamically loadable module help for PARISC. 3 * 4 * The best reference for this stuff is probably the Processor- 5 * Specific ELF Supplement for PA-RISC: 6 * https://parisc.wiki.kernel.org/index.php/File:Elf-pa-hp.pdf 7 * 8 * Linux/PA-RISC Project 9 * Copyright (C) 2003 Randolph Chung <tausq at debian . org> 10 * Copyright (C) 2008 Helge Deller <deller@gmx.de> 11 * 12 * Notes: 13 * - PLT stub handling 14 * On 32bit (and sometimes 64bit) and with big kernel modules like xfs or 15 * ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may 16 * fail to reach their PLT stub if we only create one big stub array for 17 * all sections at the beginning of the core or init section. 18 * Instead we now insert individual PLT stub entries directly in front of 19 * of the code sections where the stubs are actually called. 20 * This reduces the distance between the PCREL location and the stub entry 21 * so that the relocations can be fulfilled. 22 * While calculating the final layout of the kernel module in memory, the 23 * kernel module loader calls arch_mod_section_prepend() to request the 24 * to be reserved amount of memory in front of each individual section. 25 * 26 * - SEGREL32 handling 27 * We are not doing SEGREL32 handling correctly. According to the ABI, we 28 * should do a value offset, like this: 29 * if (in_init(me, (void *)val)) 30 * val -= (uint32_t)me->mem[MOD_INIT_TEXT].base; 31 * else 32 * val -= (uint32_t)me->mem[MOD_TEXT].base; 33 * However, SEGREL32 is used only for PARISC unwind entries, and we want 34 * those entries to have an absolute address, and not just an offset. 35 * 36 * The unwind table mechanism has the ability to specify an offset for 37 * the unwind table; however, because we split off the init functions into 38 * a different piece of memory, it is not possible to do this using a 39 * single offset. Instead, we use the above hack for now. 40 */ 41 42 #include <linux/moduleloader.h> 43 #include <linux/elf.h> 44 #include <linux/fs.h> 45 #include <linux/ftrace.h> 46 #include <linux/string.h> 47 #include <linux/kernel.h> 48 #include <linux/bug.h> 49 #include <linux/mm.h> 50 #include <linux/slab.h> 51 52 #include <asm/unwind.h> 53 #include <asm/sections.h> 54 55 #define RELOC_REACHABLE(val, bits) \ 56 (( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 ) || \ 57 ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \ 58 0 : 1) 59 60 #define CHECK_RELOC(val, bits) \ 61 if (!RELOC_REACHABLE(val, bits)) { \ 62 printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \ 63 me->name, strtab + sym->st_name, (unsigned long)val, bits); \ 64 return -ENOEXEC; \ 65 } 66 67 /* Maximum number of GOT entries. We use a long displacement ldd from 68 * the bottom of the table, which has a maximum signed displacement of 69 * 0x3fff; however, since we're only going forward, this becomes 70 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have 71 * at most 1023 entries. 72 * To overcome this 14bit displacement with some kernel modules, we'll 73 * use instead the unusal 16bit displacement method (see reassemble_16a) 74 * which gives us a maximum positive displacement of 0x7fff, and as such 75 * allows us to allocate up to 4095 GOT entries. */ 76 #define MAX_GOTS 4095 77 78 #ifndef CONFIG_64BIT 79 struct got_entry { 80 Elf32_Addr addr; 81 }; 82 83 struct stub_entry { 84 Elf32_Word insns[2]; /* each stub entry has two insns */ 85 }; 86 #else 87 struct got_entry { 88 Elf64_Addr addr; 89 }; 90 91 struct stub_entry { 92 Elf64_Word insns[4]; /* each stub entry has four insns */ 93 }; 94 #endif 95 96 /* Field selection types defined by hppa */ 97 #define rnd(x) (((x)+0x1000)&~0x1fff) 98 /* fsel: full 32 bits */ 99 #define fsel(v,a) ((v)+(a)) 100 /* lsel: select left 21 bits */ 101 #define lsel(v,a) (((v)+(a))>>11) 102 /* rsel: select right 11 bits */ 103 #define rsel(v,a) (((v)+(a))&0x7ff) 104 /* lrsel with rounding of addend to nearest 8k */ 105 #define lrsel(v,a) (((v)+rnd(a))>>11) 106 /* rrsel with rounding of addend to nearest 8k */ 107 #define rrsel(v,a) ((((v)+rnd(a))&0x7ff)+((a)-rnd(a))) 108 109 #define mask(x,sz) ((x) & ~((1<<(sz))-1)) 110 111 112 /* The reassemble_* functions prepare an immediate value for 113 insertion into an opcode. pa-risc uses all sorts of weird bitfields 114 in the instruction to hold the value. */ 115 static inline int sign_unext(int x, int len) 116 { 117 int len_ones; 118 119 len_ones = (1 << len) - 1; 120 return x & len_ones; 121 } 122 123 static inline int low_sign_unext(int x, int len) 124 { 125 int sign, temp; 126 127 sign = (x >> (len-1)) & 1; 128 temp = sign_unext(x, len-1); 129 return (temp << 1) | sign; 130 } 131 132 static inline int reassemble_14(int as14) 133 { 134 return (((as14 & 0x1fff) << 1) | 135 ((as14 & 0x2000) >> 13)); 136 } 137 138 static inline int reassemble_16a(int as16) 139 { 140 int s, t; 141 142 /* Unusual 16-bit encoding, for wide mode only. */ 143 t = (as16 << 1) & 0xffff; 144 s = (as16 & 0x8000); 145 return (t ^ s ^ (s >> 1)) | (s >> 15); 146 } 147 148 149 static inline int reassemble_17(int as17) 150 { 151 return (((as17 & 0x10000) >> 16) | 152 ((as17 & 0x0f800) << 5) | 153 ((as17 & 0x00400) >> 8) | 154 ((as17 & 0x003ff) << 3)); 155 } 156 157 static inline int reassemble_21(int as21) 158 { 159 return (((as21 & 0x100000) >> 20) | 160 ((as21 & 0x0ffe00) >> 8) | 161 ((as21 & 0x000180) << 7) | 162 ((as21 & 0x00007c) << 14) | 163 ((as21 & 0x000003) << 12)); 164 } 165 166 static inline int reassemble_22(int as22) 167 { 168 return (((as22 & 0x200000) >> 21) | 169 ((as22 & 0x1f0000) << 5) | 170 ((as22 & 0x00f800) << 5) | 171 ((as22 & 0x000400) >> 8) | 172 ((as22 & 0x0003ff) << 3)); 173 } 174 175 #ifndef CONFIG_64BIT 176 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n) 177 { 178 return 0; 179 } 180 181 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n) 182 { 183 return 0; 184 } 185 186 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n) 187 { 188 unsigned long cnt = 0; 189 190 for (; n > 0; n--, rela++) 191 { 192 switch (ELF32_R_TYPE(rela->r_info)) { 193 case R_PARISC_PCREL17F: 194 case R_PARISC_PCREL22F: 195 cnt++; 196 } 197 } 198 199 return cnt; 200 } 201 #else 202 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n) 203 { 204 unsigned long cnt = 0; 205 206 for (; n > 0; n--, rela++) 207 { 208 switch (ELF64_R_TYPE(rela->r_info)) { 209 case R_PARISC_LTOFF21L: 210 case R_PARISC_LTOFF14R: 211 case R_PARISC_PCREL22F: 212 cnt++; 213 } 214 } 215 216 return cnt; 217 } 218 219 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n) 220 { 221 unsigned long cnt = 0; 222 223 for (; n > 0; n--, rela++) 224 { 225 switch (ELF64_R_TYPE(rela->r_info)) { 226 case R_PARISC_FPTR64: 227 cnt++; 228 } 229 } 230 231 return cnt; 232 } 233 234 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n) 235 { 236 unsigned long cnt = 0; 237 238 for (; n > 0; n--, rela++) 239 { 240 switch (ELF64_R_TYPE(rela->r_info)) { 241 case R_PARISC_PCREL22F: 242 cnt++; 243 } 244 } 245 246 return cnt; 247 } 248 #endif 249 250 void module_arch_freeing_init(struct module *mod) 251 { 252 kfree(mod->arch.section); 253 mod->arch.section = NULL; 254 } 255 256 /* Additional bytes needed in front of individual sections */ 257 unsigned int arch_mod_section_prepend(struct module *mod, 258 unsigned int section) 259 { 260 /* size needed for all stubs of this section (including 261 * one additional for correct alignment of the stubs) */ 262 return (mod->arch.section[section].stub_entries + 1) 263 * sizeof(struct stub_entry); 264 } 265 266 #define CONST 267 int module_frob_arch_sections(CONST Elf_Ehdr *hdr, 268 CONST Elf_Shdr *sechdrs, 269 CONST char *secstrings, 270 struct module *me) 271 { 272 unsigned long gots = 0, fdescs = 0, len; 273 unsigned int i; 274 struct module_memory *mod_mem; 275 276 len = hdr->e_shnum * sizeof(me->arch.section[0]); 277 me->arch.section = kzalloc(len, GFP_KERNEL); 278 if (!me->arch.section) 279 return -ENOMEM; 280 281 for (i = 1; i < hdr->e_shnum; i++) { 282 const Elf_Rela *rels = (void *)sechdrs[i].sh_addr; 283 unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels); 284 unsigned int count, s; 285 286 if (strncmp(secstrings + sechdrs[i].sh_name, 287 ".PARISC.unwind", 14) == 0) 288 me->arch.unwind_section = i; 289 290 if (sechdrs[i].sh_type != SHT_RELA) 291 continue; 292 293 /* some of these are not relevant for 32-bit/64-bit 294 * we leave them here to make the code common. the 295 * compiler will do its thing and optimize out the 296 * stuff we don't need 297 */ 298 gots += count_gots(rels, nrels); 299 fdescs += count_fdescs(rels, nrels); 300 301 /* XXX: By sorting the relocs and finding duplicate entries 302 * we could reduce the number of necessary stubs and save 303 * some memory. */ 304 count = count_stubs(rels, nrels); 305 if (!count) 306 continue; 307 308 /* so we need relocation stubs. reserve necessary memory. */ 309 /* sh_info gives the section for which we need to add stubs. */ 310 s = sechdrs[i].sh_info; 311 312 /* each code section should only have one relocation section */ 313 WARN_ON(me->arch.section[s].stub_entries); 314 315 /* store number of stubs we need for this section */ 316 me->arch.section[s].stub_entries += count; 317 } 318 319 mod_mem = &me->mem[MOD_TEXT]; 320 /* align things a bit */ 321 mod_mem->size = ALIGN(mod_mem->size, 16); 322 me->arch.got_offset = mod_mem->size; 323 mod_mem->size += gots * sizeof(struct got_entry); 324 325 mod_mem->size = ALIGN(mod_mem->size, 16); 326 me->arch.fdesc_offset = mod_mem->size; 327 mod_mem->size += fdescs * sizeof(Elf_Fdesc); 328 329 me->arch.got_max = gots; 330 me->arch.fdesc_max = fdescs; 331 332 return 0; 333 } 334 335 #ifdef CONFIG_64BIT 336 static Elf64_Word get_got(struct module *me, unsigned long value, long addend) 337 { 338 unsigned int i; 339 struct got_entry *got; 340 341 value += addend; 342 343 BUG_ON(value == 0); 344 345 got = me->mem[MOD_TEXT].base + me->arch.got_offset; 346 for (i = 0; got[i].addr; i++) 347 if (got[i].addr == value) 348 goto out; 349 350 BUG_ON(++me->arch.got_count > me->arch.got_max); 351 352 got[i].addr = value; 353 out: 354 pr_debug("GOT ENTRY %d[%lx] val %lx\n", i, i*sizeof(struct got_entry), 355 value); 356 return i * sizeof(struct got_entry); 357 } 358 #endif /* CONFIG_64BIT */ 359 360 #ifdef CONFIG_64BIT 361 static Elf_Addr get_fdesc(struct module *me, unsigned long value) 362 { 363 Elf_Fdesc *fdesc = me->mem[MOD_TEXT].base + me->arch.fdesc_offset; 364 365 if (!value) { 366 printk(KERN_ERR "%s: zero OPD requested!\n", me->name); 367 return 0; 368 } 369 370 /* Look for existing fdesc entry. */ 371 while (fdesc->addr) { 372 if (fdesc->addr == value) 373 return (Elf_Addr)fdesc; 374 fdesc++; 375 } 376 377 BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max); 378 379 /* Create new one */ 380 fdesc->addr = value; 381 fdesc->gp = (Elf_Addr)me->mem[MOD_TEXT].base + me->arch.got_offset; 382 return (Elf_Addr)fdesc; 383 } 384 #endif /* CONFIG_64BIT */ 385 386 enum elf_stub_type { 387 ELF_STUB_GOT, 388 ELF_STUB_MILLI, 389 ELF_STUB_DIRECT, 390 }; 391 392 static Elf_Addr get_stub(struct module *me, unsigned long value, long addend, 393 enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec) 394 { 395 struct stub_entry *stub; 396 int __maybe_unused d; 397 398 /* initialize stub_offset to point in front of the section */ 399 if (!me->arch.section[targetsec].stub_offset) { 400 loc0 -= (me->arch.section[targetsec].stub_entries + 1) * 401 sizeof(struct stub_entry); 402 /* get correct alignment for the stubs */ 403 loc0 = ALIGN(loc0, sizeof(struct stub_entry)); 404 me->arch.section[targetsec].stub_offset = loc0; 405 } 406 407 /* get address of stub entry */ 408 stub = (void *) me->arch.section[targetsec].stub_offset; 409 me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry); 410 411 /* do not write outside available stub area */ 412 BUG_ON(0 == me->arch.section[targetsec].stub_entries--); 413 414 415 #ifndef CONFIG_64BIT 416 /* for 32-bit the stub looks like this: 417 * ldil L'XXX,%r1 418 * be,n R'XXX(%sr4,%r1) 419 */ 420 //value = *(unsigned long *)((value + addend) & ~3); /* why? */ 421 422 stub->insns[0] = 0x20200000; /* ldil L'XXX,%r1 */ 423 stub->insns[1] = 0xe0202002; /* be,n R'XXX(%sr4,%r1) */ 424 425 stub->insns[0] |= reassemble_21(lrsel(value, addend)); 426 stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4); 427 428 #else 429 /* for 64-bit we have three kinds of stubs: 430 * for normal function calls: 431 * ldd 0(%dp),%dp 432 * ldd 10(%dp), %r1 433 * bve (%r1) 434 * ldd 18(%dp), %dp 435 * 436 * for millicode: 437 * ldil 0, %r1 438 * ldo 0(%r1), %r1 439 * ldd 10(%r1), %r1 440 * bve,n (%r1) 441 * 442 * for direct branches (jumps between different section of the 443 * same module): 444 * ldil 0, %r1 445 * ldo 0(%r1), %r1 446 * bve,n (%r1) 447 */ 448 switch (stub_type) { 449 case ELF_STUB_GOT: 450 d = get_got(me, value, addend); 451 if (d <= 15) { 452 /* Format 5 */ 453 stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp */ 454 stub->insns[0] |= low_sign_unext(d, 5) << 16; 455 } else { 456 /* Format 3 */ 457 stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp */ 458 stub->insns[0] |= reassemble_16a(d); 459 } 460 stub->insns[1] = 0x53610020; /* ldd 10(%dp),%r1 */ 461 stub->insns[2] = 0xe820d000; /* bve (%r1) */ 462 stub->insns[3] = 0x537b0030; /* ldd 18(%dp),%dp */ 463 break; 464 case ELF_STUB_MILLI: 465 stub->insns[0] = 0x20200000; /* ldil 0,%r1 */ 466 stub->insns[1] = 0x34210000; /* ldo 0(%r1), %r1 */ 467 stub->insns[2] = 0x50210020; /* ldd 10(%r1),%r1 */ 468 stub->insns[3] = 0xe820d002; /* bve,n (%r1) */ 469 470 stub->insns[0] |= reassemble_21(lrsel(value, addend)); 471 stub->insns[1] |= reassemble_14(rrsel(value, addend)); 472 break; 473 case ELF_STUB_DIRECT: 474 stub->insns[0] = 0x20200000; /* ldil 0,%r1 */ 475 stub->insns[1] = 0x34210000; /* ldo 0(%r1), %r1 */ 476 stub->insns[2] = 0xe820d002; /* bve,n (%r1) */ 477 478 stub->insns[0] |= reassemble_21(lrsel(value, addend)); 479 stub->insns[1] |= reassemble_14(rrsel(value, addend)); 480 break; 481 } 482 483 #endif 484 485 return (Elf_Addr)stub; 486 } 487 488 #ifndef CONFIG_64BIT 489 int apply_relocate_add(Elf_Shdr *sechdrs, 490 const char *strtab, 491 unsigned int symindex, 492 unsigned int relsec, 493 struct module *me) 494 { 495 int i; 496 Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr; 497 Elf32_Sym *sym; 498 Elf32_Word *loc; 499 Elf32_Addr val; 500 Elf32_Sword addend; 501 Elf32_Addr dot; 502 Elf_Addr loc0; 503 unsigned int targetsec = sechdrs[relsec].sh_info; 504 //unsigned long dp = (unsigned long)$global$; 505 register unsigned long dp asm ("r27"); 506 507 pr_debug("Applying relocate section %u to %u\n", relsec, 508 targetsec); 509 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { 510 /* This is where to make the change */ 511 loc = (void *)sechdrs[targetsec].sh_addr 512 + rel[i].r_offset; 513 /* This is the start of the target section */ 514 loc0 = sechdrs[targetsec].sh_addr; 515 /* This is the symbol it is referring to */ 516 sym = (Elf32_Sym *)sechdrs[symindex].sh_addr 517 + ELF32_R_SYM(rel[i].r_info); 518 if (!sym->st_value) { 519 printk(KERN_WARNING "%s: Unknown symbol %s\n", 520 me->name, strtab + sym->st_name); 521 return -ENOENT; 522 } 523 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03; 524 dot = (Elf32_Addr)loc & ~0x03; 525 526 val = sym->st_value; 527 addend = rel[i].r_addend; 528 529 #if 0 530 #define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t : 531 pr_debug("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n", 532 strtab + sym->st_name, 533 (uint32_t)loc, val, addend, 534 r(R_PARISC_PLABEL32) 535 r(R_PARISC_DIR32) 536 r(R_PARISC_DIR21L) 537 r(R_PARISC_DIR14R) 538 r(R_PARISC_SEGREL32) 539 r(R_PARISC_DPREL21L) 540 r(R_PARISC_DPREL14R) 541 r(R_PARISC_PCREL17F) 542 r(R_PARISC_PCREL22F) 543 "UNKNOWN"); 544 #undef r 545 #endif 546 547 switch (ELF32_R_TYPE(rel[i].r_info)) { 548 case R_PARISC_PLABEL32: 549 /* 32-bit function address */ 550 /* no function descriptors... */ 551 *loc = fsel(val, addend); 552 break; 553 case R_PARISC_DIR32: 554 /* direct 32-bit ref */ 555 *loc = fsel(val, addend); 556 break; 557 case R_PARISC_DIR21L: 558 /* left 21 bits of effective address */ 559 val = lrsel(val, addend); 560 *loc = mask(*loc, 21) | reassemble_21(val); 561 break; 562 case R_PARISC_DIR14R: 563 /* right 14 bits of effective address */ 564 val = rrsel(val, addend); 565 *loc = mask(*loc, 14) | reassemble_14(val); 566 break; 567 case R_PARISC_SEGREL32: 568 /* 32-bit segment relative address */ 569 /* See note about special handling of SEGREL32 at 570 * the beginning of this file. 571 */ 572 *loc = fsel(val, addend); 573 break; 574 case R_PARISC_SECREL32: 575 /* 32-bit section relative address. */ 576 *loc = fsel(val, addend); 577 break; 578 case R_PARISC_DPREL21L: 579 /* left 21 bit of relative address */ 580 val = lrsel(val - dp, addend); 581 *loc = mask(*loc, 21) | reassemble_21(val); 582 break; 583 case R_PARISC_DPREL14R: 584 /* right 14 bit of relative address */ 585 val = rrsel(val - dp, addend); 586 *loc = mask(*loc, 14) | reassemble_14(val); 587 break; 588 case R_PARISC_PCREL17F: 589 /* 17-bit PC relative address */ 590 /* calculate direct call offset */ 591 val += addend; 592 val = (val - dot - 8)/4; 593 if (!RELOC_REACHABLE(val, 17)) { 594 /* direct distance too far, create 595 * stub entry instead */ 596 val = get_stub(me, sym->st_value, addend, 597 ELF_STUB_DIRECT, loc0, targetsec); 598 val = (val - dot - 8)/4; 599 CHECK_RELOC(val, 17); 600 } 601 *loc = (*loc & ~0x1f1ffd) | reassemble_17(val); 602 break; 603 case R_PARISC_PCREL22F: 604 /* 22-bit PC relative address; only defined for pa20 */ 605 /* calculate direct call offset */ 606 val += addend; 607 val = (val - dot - 8)/4; 608 if (!RELOC_REACHABLE(val, 22)) { 609 /* direct distance too far, create 610 * stub entry instead */ 611 val = get_stub(me, sym->st_value, addend, 612 ELF_STUB_DIRECT, loc0, targetsec); 613 val = (val - dot - 8)/4; 614 CHECK_RELOC(val, 22); 615 } 616 *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val); 617 break; 618 case R_PARISC_PCREL32: 619 /* 32-bit PC relative address */ 620 *loc = val - dot - 8 + addend; 621 break; 622 623 default: 624 printk(KERN_ERR "module %s: Unknown relocation: %u\n", 625 me->name, ELF32_R_TYPE(rel[i].r_info)); 626 return -ENOEXEC; 627 } 628 } 629 630 return 0; 631 } 632 633 #else 634 int apply_relocate_add(Elf_Shdr *sechdrs, 635 const char *strtab, 636 unsigned int symindex, 637 unsigned int relsec, 638 struct module *me) 639 { 640 int i; 641 Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr; 642 Elf64_Sym *sym; 643 Elf64_Word *loc; 644 Elf64_Xword *loc64; 645 Elf64_Addr val; 646 Elf64_Sxword addend; 647 Elf64_Addr dot; 648 Elf_Addr loc0; 649 unsigned int targetsec = sechdrs[relsec].sh_info; 650 651 pr_debug("Applying relocate section %u to %u\n", relsec, 652 targetsec); 653 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { 654 /* This is where to make the change */ 655 loc = (void *)sechdrs[targetsec].sh_addr 656 + rel[i].r_offset; 657 /* This is the start of the target section */ 658 loc0 = sechdrs[targetsec].sh_addr; 659 /* This is the symbol it is referring to */ 660 sym = (Elf64_Sym *)sechdrs[symindex].sh_addr 661 + ELF64_R_SYM(rel[i].r_info); 662 if (!sym->st_value) { 663 printk(KERN_WARNING "%s: Unknown symbol %s\n", 664 me->name, strtab + sym->st_name); 665 return -ENOENT; 666 } 667 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03; 668 dot = (Elf64_Addr)loc & ~0x03; 669 loc64 = (Elf64_Xword *)loc; 670 671 val = sym->st_value; 672 addend = rel[i].r_addend; 673 674 #if 0 675 #define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t : 676 printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n", 677 strtab + sym->st_name, 678 loc, val, addend, 679 r(R_PARISC_LTOFF14R) 680 r(R_PARISC_LTOFF21L) 681 r(R_PARISC_PCREL22F) 682 r(R_PARISC_DIR64) 683 r(R_PARISC_SEGREL32) 684 r(R_PARISC_FPTR64) 685 "UNKNOWN"); 686 #undef r 687 #endif 688 689 switch (ELF64_R_TYPE(rel[i].r_info)) { 690 case R_PARISC_LTOFF21L: 691 /* LT-relative; left 21 bits */ 692 val = get_got(me, val, addend); 693 pr_debug("LTOFF21L Symbol %s loc %p val %llx\n", 694 strtab + sym->st_name, 695 loc, val); 696 val = lrsel(val, 0); 697 *loc = mask(*loc, 21) | reassemble_21(val); 698 break; 699 case R_PARISC_LTOFF14R: 700 /* L(ltoff(val+addend)) */ 701 /* LT-relative; right 14 bits */ 702 val = get_got(me, val, addend); 703 val = rrsel(val, 0); 704 pr_debug("LTOFF14R Symbol %s loc %p val %llx\n", 705 strtab + sym->st_name, 706 loc, val); 707 *loc = mask(*loc, 14) | reassemble_14(val); 708 break; 709 case R_PARISC_PCREL22F: 710 /* PC-relative; 22 bits */ 711 pr_debug("PCREL22F Symbol %s loc %p val %llx\n", 712 strtab + sym->st_name, 713 loc, val); 714 val += addend; 715 /* can we reach it locally? */ 716 if (within_module(val, me)) { 717 /* this is the case where the symbol is local 718 * to the module, but in a different section, 719 * so stub the jump in case it's more than 22 720 * bits away */ 721 val = (val - dot - 8)/4; 722 if (!RELOC_REACHABLE(val, 22)) { 723 /* direct distance too far, create 724 * stub entry instead */ 725 val = get_stub(me, sym->st_value, 726 addend, ELF_STUB_DIRECT, 727 loc0, targetsec); 728 } else { 729 /* Ok, we can reach it directly. */ 730 val = sym->st_value; 731 val += addend; 732 } 733 } else { 734 val = sym->st_value; 735 if (strncmp(strtab + sym->st_name, "$$", 2) 736 == 0) 737 val = get_stub(me, val, addend, ELF_STUB_MILLI, 738 loc0, targetsec); 739 else 740 val = get_stub(me, val, addend, ELF_STUB_GOT, 741 loc0, targetsec); 742 } 743 pr_debug("STUB FOR %s loc %px, val %llx+%llx at %llx\n", 744 strtab + sym->st_name, loc, sym->st_value, 745 addend, val); 746 val = (val - dot - 8)/4; 747 CHECK_RELOC(val, 22); 748 *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val); 749 break; 750 case R_PARISC_PCREL32: 751 /* 32-bit PC relative address */ 752 *loc = val - dot - 8 + addend; 753 break; 754 case R_PARISC_PCREL64: 755 /* 64-bit PC relative address */ 756 *loc64 = val - dot - 8 + addend; 757 break; 758 case R_PARISC_DIR64: 759 /* 64-bit effective address */ 760 *loc64 = val + addend; 761 break; 762 case R_PARISC_SEGREL32: 763 /* 32-bit segment relative address */ 764 /* See note about special handling of SEGREL32 at 765 * the beginning of this file. 766 */ 767 *loc = fsel(val, addend); 768 break; 769 case R_PARISC_SECREL32: 770 /* 32-bit section relative address. */ 771 *loc = fsel(val, addend); 772 break; 773 case R_PARISC_FPTR64: 774 /* 64-bit function address */ 775 if (within_module(val + addend, me)) { 776 *loc64 = get_fdesc(me, val+addend); 777 pr_debug("FDESC for %s at %llx points to %llx\n", 778 strtab + sym->st_name, *loc64, 779 ((Elf_Fdesc *)*loc64)->addr); 780 } else { 781 /* if the symbol is not local to this 782 * module then val+addend is a pointer 783 * to the function descriptor */ 784 pr_debug("Non local FPTR64 Symbol %s loc %p val %llx\n", 785 strtab + sym->st_name, 786 loc, val); 787 *loc64 = val + addend; 788 } 789 break; 790 791 default: 792 printk(KERN_ERR "module %s: Unknown relocation: %Lu\n", 793 me->name, ELF64_R_TYPE(rel[i].r_info)); 794 return -ENOEXEC; 795 } 796 } 797 return 0; 798 } 799 #endif 800 801 static void 802 register_unwind_table(struct module *me, 803 const Elf_Shdr *sechdrs) 804 { 805 unsigned char *table, *end; 806 unsigned long gp; 807 808 if (!me->arch.unwind_section) 809 return; 810 811 table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr; 812 end = table + sechdrs[me->arch.unwind_section].sh_size; 813 gp = (Elf_Addr)me->mem[MOD_TEXT].base + me->arch.got_offset; 814 815 pr_debug("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n", 816 me->arch.unwind_section, table, end, gp); 817 me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end); 818 } 819 820 static void 821 deregister_unwind_table(struct module *me) 822 { 823 if (me->arch.unwind) 824 unwind_table_remove(me->arch.unwind); 825 } 826 827 int module_finalize(const Elf_Ehdr *hdr, 828 const Elf_Shdr *sechdrs, 829 struct module *me) 830 { 831 int i; 832 unsigned long nsyms; 833 const char *strtab = NULL; 834 const Elf_Shdr *s; 835 char *secstrings; 836 int symindex __maybe_unused = -1; 837 Elf_Sym *newptr, *oldptr; 838 Elf_Shdr *symhdr = NULL; 839 #ifdef DEBUG 840 Elf_Fdesc *entry; 841 u32 *addr; 842 843 entry = (Elf_Fdesc *)me->init; 844 printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry, 845 entry->gp, entry->addr); 846 addr = (u32 *)entry->addr; 847 printk("INSNS: %x %x %x %x\n", 848 addr[0], addr[1], addr[2], addr[3]); 849 printk("got entries used %ld, gots max %ld\n" 850 "fdescs used %ld, fdescs max %ld\n", 851 me->arch.got_count, me->arch.got_max, 852 me->arch.fdesc_count, me->arch.fdesc_max); 853 #endif 854 855 register_unwind_table(me, sechdrs); 856 857 /* haven't filled in me->symtab yet, so have to find it 858 * ourselves */ 859 for (i = 1; i < hdr->e_shnum; i++) { 860 if(sechdrs[i].sh_type == SHT_SYMTAB 861 && (sechdrs[i].sh_flags & SHF_ALLOC)) { 862 int strindex = sechdrs[i].sh_link; 863 symindex = i; 864 /* FIXME: AWFUL HACK 865 * The cast is to drop the const from 866 * the sechdrs pointer */ 867 symhdr = (Elf_Shdr *)&sechdrs[i]; 868 strtab = (char *)sechdrs[strindex].sh_addr; 869 break; 870 } 871 } 872 873 pr_debug("module %s: strtab %p, symhdr %p\n", 874 me->name, strtab, symhdr); 875 876 if(me->arch.got_count > MAX_GOTS) { 877 printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n", 878 me->name, me->arch.got_count, MAX_GOTS); 879 return -EINVAL; 880 } 881 882 kfree(me->arch.section); 883 me->arch.section = NULL; 884 885 /* no symbol table */ 886 if(symhdr == NULL) 887 return 0; 888 889 oldptr = (void *)symhdr->sh_addr; 890 newptr = oldptr + 1; /* we start counting at 1 */ 891 nsyms = symhdr->sh_size / sizeof(Elf_Sym); 892 pr_debug("OLD num_symtab %lu\n", nsyms); 893 894 for (i = 1; i < nsyms; i++) { 895 oldptr++; /* note, count starts at 1 so preincrement */ 896 if(strncmp(strtab + oldptr->st_name, 897 ".L", 2) == 0) 898 continue; 899 900 if(newptr != oldptr) 901 *newptr++ = *oldptr; 902 else 903 newptr++; 904 905 } 906 nsyms = newptr - (Elf_Sym *)symhdr->sh_addr; 907 pr_debug("NEW num_symtab %lu\n", nsyms); 908 symhdr->sh_size = nsyms * sizeof(Elf_Sym); 909 910 /* find .altinstructions section */ 911 secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; 912 for (s = sechdrs; s < sechdrs + hdr->e_shnum; s++) { 913 void *aseg = (void *) s->sh_addr; 914 char *secname = secstrings + s->sh_name; 915 916 if (!strcmp(".altinstructions", secname)) 917 /* patch .altinstructions */ 918 apply_alternatives(aseg, aseg + s->sh_size, me->name); 919 920 #ifdef CONFIG_DYNAMIC_FTRACE 921 /* For 32 bit kernels we're compiling modules with 922 * -ffunction-sections so we must relocate the addresses in the 923 * ftrace callsite section. 924 */ 925 if (symindex != -1 && !strcmp(secname, FTRACE_CALLSITE_SECTION)) { 926 int err; 927 if (s->sh_type == SHT_REL) 928 err = apply_relocate((Elf_Shdr *)sechdrs, 929 strtab, symindex, 930 s - sechdrs, me); 931 else if (s->sh_type == SHT_RELA) 932 err = apply_relocate_add((Elf_Shdr *)sechdrs, 933 strtab, symindex, 934 s - sechdrs, me); 935 if (err) 936 return err; 937 } 938 #endif 939 } 940 return 0; 941 } 942 943 void module_arch_cleanup(struct module *mod) 944 { 945 deregister_unwind_table(mod); 946 } 947 948 #ifdef CONFIG_64BIT 949 void *dereference_module_function_descriptor(struct module *mod, void *ptr) 950 { 951 unsigned long start_opd = (Elf64_Addr)mod->mem[MOD_TEXT].base + 952 mod->arch.fdesc_offset; 953 unsigned long end_opd = start_opd + 954 mod->arch.fdesc_count * sizeof(Elf64_Fdesc); 955 956 if (ptr < (void *)start_opd || ptr >= (void *)end_opd) 957 return ptr; 958 959 return dereference_function_descriptor(ptr); 960 } 961 #endif 962