1 /* Kernel dynamically loadable module help for PARISC. 2 * 3 * The best reference for this stuff is probably the Processor- 4 * Specific ELF Supplement for PA-RISC: 5 * http://ftp.parisc-linux.org/docs/arch/elf-pa-hp.pdf 6 * 7 * Linux/PA-RISC Project (http://www.parisc-linux.org/) 8 * Copyright (C) 2003 Randolph Chung <tausq at debian . org> 9 * Copyright (C) 2008 Helge Deller <deller@gmx.de> 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 25 * 26 * 27 * Notes: 28 * - PLT stub handling 29 * On 32bit (and sometimes 64bit) and with big kernel modules like xfs or 30 * ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may 31 * fail to reach their PLT stub if we only create one big stub array for 32 * all sections at the beginning of the core or init section. 33 * Instead we now insert individual PLT stub entries directly in front of 34 * of the code sections where the stubs are actually called. 35 * This reduces the distance between the PCREL location and the stub entry 36 * so that the relocations can be fulfilled. 37 * While calculating the final layout of the kernel module in memory, the 38 * kernel module loader calls arch_mod_section_prepend() to request the 39 * to be reserved amount of memory in front of each individual section. 40 * 41 * - SEGREL32 handling 42 * We are not doing SEGREL32 handling correctly. According to the ABI, we 43 * should do a value offset, like this: 44 * if (in_init(me, (void *)val)) 45 * val -= (uint32_t)me->module_init; 46 * else 47 * val -= (uint32_t)me->module_core; 48 * However, SEGREL32 is used only for PARISC unwind entries, and we want 49 * those entries to have an absolute address, and not just an offset. 50 * 51 * The unwind table mechanism has the ability to specify an offset for 52 * the unwind table; however, because we split off the init functions into 53 * a different piece of memory, it is not possible to do this using a 54 * single offset. Instead, we use the above hack for now. 55 */ 56 57 #include <linux/moduleloader.h> 58 #include <linux/elf.h> 59 #include <linux/vmalloc.h> 60 #include <linux/fs.h> 61 #include <linux/string.h> 62 #include <linux/kernel.h> 63 #include <linux/bug.h> 64 #include <linux/uaccess.h> 65 66 #include <asm/sections.h> 67 #include <asm/unwind.h> 68 69 #if 0 70 #define DEBUGP printk 71 #else 72 #define DEBUGP(fmt...) 73 #endif 74 75 #define RELOC_REACHABLE(val, bits) \ 76 (( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 ) || \ 77 ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \ 78 0 : 1) 79 80 #define CHECK_RELOC(val, bits) \ 81 if (!RELOC_REACHABLE(val, bits)) { \ 82 printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \ 83 me->name, strtab + sym->st_name, (unsigned long)val, bits); \ 84 return -ENOEXEC; \ 85 } 86 87 /* Maximum number of GOT entries. We use a long displacement ldd from 88 * the bottom of the table, which has a maximum signed displacement of 89 * 0x3fff; however, since we're only going forward, this becomes 90 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have 91 * at most 1023 entries */ 92 #define MAX_GOTS 1023 93 94 /* three functions to determine where in the module core 95 * or init pieces the location is */ 96 static inline int in_init(struct module *me, void *loc) 97 { 98 return (loc >= me->module_init && 99 loc <= (me->module_init + me->init_size)); 100 } 101 102 static inline int in_core(struct module *me, void *loc) 103 { 104 return (loc >= me->module_core && 105 loc <= (me->module_core + me->core_size)); 106 } 107 108 static inline int in_local(struct module *me, void *loc) 109 { 110 return in_init(me, loc) || in_core(me, loc); 111 } 112 113 #ifndef CONFIG_64BIT 114 struct got_entry { 115 Elf32_Addr addr; 116 }; 117 118 #define Elf_Fdesc Elf32_Fdesc 119 120 struct stub_entry { 121 Elf32_Word insns[2]; /* each stub entry has two insns */ 122 }; 123 #else 124 struct got_entry { 125 Elf64_Addr addr; 126 }; 127 128 #define Elf_Fdesc Elf64_Fdesc 129 130 struct stub_entry { 131 Elf64_Word insns[4]; /* each stub entry has four insns */ 132 }; 133 #endif 134 135 /* Field selection types defined by hppa */ 136 #define rnd(x) (((x)+0x1000)&~0x1fff) 137 /* fsel: full 32 bits */ 138 #define fsel(v,a) ((v)+(a)) 139 /* lsel: select left 21 bits */ 140 #define lsel(v,a) (((v)+(a))>>11) 141 /* rsel: select right 11 bits */ 142 #define rsel(v,a) (((v)+(a))&0x7ff) 143 /* lrsel with rounding of addend to nearest 8k */ 144 #define lrsel(v,a) (((v)+rnd(a))>>11) 145 /* rrsel with rounding of addend to nearest 8k */ 146 #define rrsel(v,a) ((((v)+rnd(a))&0x7ff)+((a)-rnd(a))) 147 148 #define mask(x,sz) ((x) & ~((1<<(sz))-1)) 149 150 151 /* The reassemble_* functions prepare an immediate value for 152 insertion into an opcode. pa-risc uses all sorts of weird bitfields 153 in the instruction to hold the value. */ 154 static inline int reassemble_14(int as14) 155 { 156 return (((as14 & 0x1fff) << 1) | 157 ((as14 & 0x2000) >> 13)); 158 } 159 160 static inline int reassemble_17(int as17) 161 { 162 return (((as17 & 0x10000) >> 16) | 163 ((as17 & 0x0f800) << 5) | 164 ((as17 & 0x00400) >> 8) | 165 ((as17 & 0x003ff) << 3)); 166 } 167 168 static inline int reassemble_21(int as21) 169 { 170 return (((as21 & 0x100000) >> 20) | 171 ((as21 & 0x0ffe00) >> 8) | 172 ((as21 & 0x000180) << 7) | 173 ((as21 & 0x00007c) << 14) | 174 ((as21 & 0x000003) << 12)); 175 } 176 177 static inline int reassemble_22(int as22) 178 { 179 return (((as22 & 0x200000) >> 21) | 180 ((as22 & 0x1f0000) << 5) | 181 ((as22 & 0x00f800) << 5) | 182 ((as22 & 0x000400) >> 8) | 183 ((as22 & 0x0003ff) << 3)); 184 } 185 186 void *module_alloc(unsigned long size) 187 { 188 if (size == 0) 189 return NULL; 190 return vmalloc(size); 191 } 192 193 #ifndef CONFIG_64BIT 194 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n) 195 { 196 return 0; 197 } 198 199 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n) 200 { 201 return 0; 202 } 203 204 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n) 205 { 206 unsigned long cnt = 0; 207 208 for (; n > 0; n--, rela++) 209 { 210 switch (ELF32_R_TYPE(rela->r_info)) { 211 case R_PARISC_PCREL17F: 212 case R_PARISC_PCREL22F: 213 cnt++; 214 } 215 } 216 217 return cnt; 218 } 219 #else 220 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n) 221 { 222 unsigned long cnt = 0; 223 224 for (; n > 0; n--, rela++) 225 { 226 switch (ELF64_R_TYPE(rela->r_info)) { 227 case R_PARISC_LTOFF21L: 228 case R_PARISC_LTOFF14R: 229 case R_PARISC_PCREL22F: 230 cnt++; 231 } 232 } 233 234 return cnt; 235 } 236 237 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n) 238 { 239 unsigned long cnt = 0; 240 241 for (; n > 0; n--, rela++) 242 { 243 switch (ELF64_R_TYPE(rela->r_info)) { 244 case R_PARISC_FPTR64: 245 cnt++; 246 } 247 } 248 249 return cnt; 250 } 251 252 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n) 253 { 254 unsigned long cnt = 0; 255 256 for (; n > 0; n--, rela++) 257 { 258 switch (ELF64_R_TYPE(rela->r_info)) { 259 case R_PARISC_PCREL22F: 260 cnt++; 261 } 262 } 263 264 return cnt; 265 } 266 #endif 267 268 269 /* Free memory returned from module_alloc */ 270 void module_free(struct module *mod, void *module_region) 271 { 272 kfree(mod->arch.section); 273 mod->arch.section = NULL; 274 275 vfree(module_region); 276 /* FIXME: If module_region == mod->init_region, trim exception 277 table entries. */ 278 } 279 280 /* Additional bytes needed in front of individual sections */ 281 unsigned int arch_mod_section_prepend(struct module *mod, 282 unsigned int section) 283 { 284 /* size needed for all stubs of this section (including 285 * one additional for correct alignment of the stubs) */ 286 return (mod->arch.section[section].stub_entries + 1) 287 * sizeof(struct stub_entry); 288 } 289 290 #define CONST 291 int module_frob_arch_sections(CONST Elf_Ehdr *hdr, 292 CONST Elf_Shdr *sechdrs, 293 CONST char *secstrings, 294 struct module *me) 295 { 296 unsigned long gots = 0, fdescs = 0, len; 297 unsigned int i; 298 299 len = hdr->e_shnum * sizeof(me->arch.section[0]); 300 me->arch.section = kzalloc(len, GFP_KERNEL); 301 if (!me->arch.section) 302 return -ENOMEM; 303 304 for (i = 1; i < hdr->e_shnum; i++) { 305 const Elf_Rela *rels = (void *)sechdrs[i].sh_addr; 306 unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels); 307 unsigned int count, s; 308 309 if (strncmp(secstrings + sechdrs[i].sh_name, 310 ".PARISC.unwind", 14) == 0) 311 me->arch.unwind_section = i; 312 313 if (sechdrs[i].sh_type != SHT_RELA) 314 continue; 315 316 /* some of these are not relevant for 32-bit/64-bit 317 * we leave them here to make the code common. the 318 * compiler will do its thing and optimize out the 319 * stuff we don't need 320 */ 321 gots += count_gots(rels, nrels); 322 fdescs += count_fdescs(rels, nrels); 323 324 /* XXX: By sorting the relocs and finding duplicate entries 325 * we could reduce the number of necessary stubs and save 326 * some memory. */ 327 count = count_stubs(rels, nrels); 328 if (!count) 329 continue; 330 331 /* so we need relocation stubs. reserve necessary memory. */ 332 /* sh_info gives the section for which we need to add stubs. */ 333 s = sechdrs[i].sh_info; 334 335 /* each code section should only have one relocation section */ 336 WARN_ON(me->arch.section[s].stub_entries); 337 338 /* store number of stubs we need for this section */ 339 me->arch.section[s].stub_entries += count; 340 } 341 342 /* align things a bit */ 343 me->core_size = ALIGN(me->core_size, 16); 344 me->arch.got_offset = me->core_size; 345 me->core_size += gots * sizeof(struct got_entry); 346 347 me->core_size = ALIGN(me->core_size, 16); 348 me->arch.fdesc_offset = me->core_size; 349 me->core_size += fdescs * sizeof(Elf_Fdesc); 350 351 me->arch.got_max = gots; 352 me->arch.fdesc_max = fdescs; 353 354 return 0; 355 } 356 357 #ifdef CONFIG_64BIT 358 static Elf64_Word get_got(struct module *me, unsigned long value, long addend) 359 { 360 unsigned int i; 361 struct got_entry *got; 362 363 value += addend; 364 365 BUG_ON(value == 0); 366 367 got = me->module_core + me->arch.got_offset; 368 for (i = 0; got[i].addr; i++) 369 if (got[i].addr == value) 370 goto out; 371 372 BUG_ON(++me->arch.got_count > me->arch.got_max); 373 374 got[i].addr = value; 375 out: 376 DEBUGP("GOT ENTRY %d[%x] val %lx\n", i, i*sizeof(struct got_entry), 377 value); 378 return i * sizeof(struct got_entry); 379 } 380 #endif /* CONFIG_64BIT */ 381 382 #ifdef CONFIG_64BIT 383 static Elf_Addr get_fdesc(struct module *me, unsigned long value) 384 { 385 Elf_Fdesc *fdesc = me->module_core + me->arch.fdesc_offset; 386 387 if (!value) { 388 printk(KERN_ERR "%s: zero OPD requested!\n", me->name); 389 return 0; 390 } 391 392 /* Look for existing fdesc entry. */ 393 while (fdesc->addr) { 394 if (fdesc->addr == value) 395 return (Elf_Addr)fdesc; 396 fdesc++; 397 } 398 399 BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max); 400 401 /* Create new one */ 402 fdesc->addr = value; 403 fdesc->gp = (Elf_Addr)me->module_core + me->arch.got_offset; 404 return (Elf_Addr)fdesc; 405 } 406 #endif /* CONFIG_64BIT */ 407 408 enum elf_stub_type { 409 ELF_STUB_GOT, 410 ELF_STUB_MILLI, 411 ELF_STUB_DIRECT, 412 }; 413 414 static Elf_Addr get_stub(struct module *me, unsigned long value, long addend, 415 enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec) 416 { 417 struct stub_entry *stub; 418 419 /* initialize stub_offset to point in front of the section */ 420 if (!me->arch.section[targetsec].stub_offset) { 421 loc0 -= (me->arch.section[targetsec].stub_entries + 1) * 422 sizeof(struct stub_entry); 423 /* get correct alignment for the stubs */ 424 loc0 = ALIGN(loc0, sizeof(struct stub_entry)); 425 me->arch.section[targetsec].stub_offset = loc0; 426 } 427 428 /* get address of stub entry */ 429 stub = (void *) me->arch.section[targetsec].stub_offset; 430 me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry); 431 432 /* do not write outside available stub area */ 433 BUG_ON(0 == me->arch.section[targetsec].stub_entries--); 434 435 436 #ifndef CONFIG_64BIT 437 /* for 32-bit the stub looks like this: 438 * ldil L'XXX,%r1 439 * be,n R'XXX(%sr4,%r1) 440 */ 441 //value = *(unsigned long *)((value + addend) & ~3); /* why? */ 442 443 stub->insns[0] = 0x20200000; /* ldil L'XXX,%r1 */ 444 stub->insns[1] = 0xe0202002; /* be,n R'XXX(%sr4,%r1) */ 445 446 stub->insns[0] |= reassemble_21(lrsel(value, addend)); 447 stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4); 448 449 #else 450 /* for 64-bit we have three kinds of stubs: 451 * for normal function calls: 452 * ldd 0(%dp),%dp 453 * ldd 10(%dp), %r1 454 * bve (%r1) 455 * ldd 18(%dp), %dp 456 * 457 * for millicode: 458 * ldil 0, %r1 459 * ldo 0(%r1), %r1 460 * ldd 10(%r1), %r1 461 * bve,n (%r1) 462 * 463 * for direct branches (jumps between different section of the 464 * same module): 465 * ldil 0, %r1 466 * ldo 0(%r1), %r1 467 * bve,n (%r1) 468 */ 469 switch (stub_type) { 470 case ELF_STUB_GOT: 471 stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp */ 472 stub->insns[1] = 0x53610020; /* ldd 10(%dp),%r1 */ 473 stub->insns[2] = 0xe820d000; /* bve (%r1) */ 474 stub->insns[3] = 0x537b0030; /* ldd 18(%dp),%dp */ 475 476 stub->insns[0] |= reassemble_14(get_got(me, value, addend) & 0x3fff); 477 break; 478 case ELF_STUB_MILLI: 479 stub->insns[0] = 0x20200000; /* ldil 0,%r1 */ 480 stub->insns[1] = 0x34210000; /* ldo 0(%r1), %r1 */ 481 stub->insns[2] = 0x50210020; /* ldd 10(%r1),%r1 */ 482 stub->insns[3] = 0xe820d002; /* bve,n (%r1) */ 483 484 stub->insns[0] |= reassemble_21(lrsel(value, addend)); 485 stub->insns[1] |= reassemble_14(rrsel(value, addend)); 486 break; 487 case ELF_STUB_DIRECT: 488 stub->insns[0] = 0x20200000; /* ldil 0,%r1 */ 489 stub->insns[1] = 0x34210000; /* ldo 0(%r1), %r1 */ 490 stub->insns[2] = 0xe820d002; /* bve,n (%r1) */ 491 492 stub->insns[0] |= reassemble_21(lrsel(value, addend)); 493 stub->insns[1] |= reassemble_14(rrsel(value, addend)); 494 break; 495 } 496 497 #endif 498 499 return (Elf_Addr)stub; 500 } 501 502 int apply_relocate(Elf_Shdr *sechdrs, 503 const char *strtab, 504 unsigned int symindex, 505 unsigned int relsec, 506 struct module *me) 507 { 508 /* parisc should not need this ... */ 509 printk(KERN_ERR "module %s: RELOCATION unsupported\n", 510 me->name); 511 return -ENOEXEC; 512 } 513 514 #ifndef CONFIG_64BIT 515 int apply_relocate_add(Elf_Shdr *sechdrs, 516 const char *strtab, 517 unsigned int symindex, 518 unsigned int relsec, 519 struct module *me) 520 { 521 int i; 522 Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr; 523 Elf32_Sym *sym; 524 Elf32_Word *loc; 525 Elf32_Addr val; 526 Elf32_Sword addend; 527 Elf32_Addr dot; 528 Elf_Addr loc0; 529 unsigned int targetsec = sechdrs[relsec].sh_info; 530 //unsigned long dp = (unsigned long)$global$; 531 register unsigned long dp asm ("r27"); 532 533 DEBUGP("Applying relocate section %u to %u\n", relsec, 534 targetsec); 535 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { 536 /* This is where to make the change */ 537 loc = (void *)sechdrs[targetsec].sh_addr 538 + rel[i].r_offset; 539 /* This is the start of the target section */ 540 loc0 = sechdrs[targetsec].sh_addr; 541 /* This is the symbol it is referring to */ 542 sym = (Elf32_Sym *)sechdrs[symindex].sh_addr 543 + ELF32_R_SYM(rel[i].r_info); 544 if (!sym->st_value) { 545 printk(KERN_WARNING "%s: Unknown symbol %s\n", 546 me->name, strtab + sym->st_name); 547 return -ENOENT; 548 } 549 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03; 550 dot = (Elf32_Addr)loc & ~0x03; 551 552 val = sym->st_value; 553 addend = rel[i].r_addend; 554 555 #if 0 556 #define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t : 557 DEBUGP("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n", 558 strtab + sym->st_name, 559 (uint32_t)loc, val, addend, 560 r(R_PARISC_PLABEL32) 561 r(R_PARISC_DIR32) 562 r(R_PARISC_DIR21L) 563 r(R_PARISC_DIR14R) 564 r(R_PARISC_SEGREL32) 565 r(R_PARISC_DPREL21L) 566 r(R_PARISC_DPREL14R) 567 r(R_PARISC_PCREL17F) 568 r(R_PARISC_PCREL22F) 569 "UNKNOWN"); 570 #undef r 571 #endif 572 573 switch (ELF32_R_TYPE(rel[i].r_info)) { 574 case R_PARISC_PLABEL32: 575 /* 32-bit function address */ 576 /* no function descriptors... */ 577 *loc = fsel(val, addend); 578 break; 579 case R_PARISC_DIR32: 580 /* direct 32-bit ref */ 581 *loc = fsel(val, addend); 582 break; 583 case R_PARISC_DIR21L: 584 /* left 21 bits of effective address */ 585 val = lrsel(val, addend); 586 *loc = mask(*loc, 21) | reassemble_21(val); 587 break; 588 case R_PARISC_DIR14R: 589 /* right 14 bits of effective address */ 590 val = rrsel(val, addend); 591 *loc = mask(*loc, 14) | reassemble_14(val); 592 break; 593 case R_PARISC_SEGREL32: 594 /* 32-bit segment relative address */ 595 /* See note about special handling of SEGREL32 at 596 * the beginning of this file. 597 */ 598 *loc = fsel(val, addend); 599 break; 600 case R_PARISC_DPREL21L: 601 /* left 21 bit of relative address */ 602 val = lrsel(val - dp, addend); 603 *loc = mask(*loc, 21) | reassemble_21(val); 604 break; 605 case R_PARISC_DPREL14R: 606 /* right 14 bit of relative address */ 607 val = rrsel(val - dp, addend); 608 *loc = mask(*loc, 14) | reassemble_14(val); 609 break; 610 case R_PARISC_PCREL17F: 611 /* 17-bit PC relative address */ 612 /* calculate direct call offset */ 613 val += addend; 614 val = (val - dot - 8)/4; 615 if (!RELOC_REACHABLE(val, 17)) { 616 /* direct distance too far, create 617 * stub entry instead */ 618 val = get_stub(me, sym->st_value, addend, 619 ELF_STUB_DIRECT, loc0, targetsec); 620 val = (val - dot - 8)/4; 621 CHECK_RELOC(val, 17); 622 } 623 *loc = (*loc & ~0x1f1ffd) | reassemble_17(val); 624 break; 625 case R_PARISC_PCREL22F: 626 /* 22-bit PC relative address; only defined for pa20 */ 627 /* calculate direct call offset */ 628 val += addend; 629 val = (val - dot - 8)/4; 630 if (!RELOC_REACHABLE(val, 22)) { 631 /* direct distance too far, create 632 * stub entry instead */ 633 val = get_stub(me, sym->st_value, addend, 634 ELF_STUB_DIRECT, loc0, targetsec); 635 val = (val - dot - 8)/4; 636 CHECK_RELOC(val, 22); 637 } 638 *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val); 639 break; 640 641 default: 642 printk(KERN_ERR "module %s: Unknown relocation: %u\n", 643 me->name, ELF32_R_TYPE(rel[i].r_info)); 644 return -ENOEXEC; 645 } 646 } 647 648 return 0; 649 } 650 651 #else 652 int apply_relocate_add(Elf_Shdr *sechdrs, 653 const char *strtab, 654 unsigned int symindex, 655 unsigned int relsec, 656 struct module *me) 657 { 658 int i; 659 Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr; 660 Elf64_Sym *sym; 661 Elf64_Word *loc; 662 Elf64_Xword *loc64; 663 Elf64_Addr val; 664 Elf64_Sxword addend; 665 Elf64_Addr dot; 666 Elf_Addr loc0; 667 unsigned int targetsec = sechdrs[relsec].sh_info; 668 669 DEBUGP("Applying relocate section %u to %u\n", relsec, 670 targetsec); 671 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { 672 /* This is where to make the change */ 673 loc = (void *)sechdrs[targetsec].sh_addr 674 + rel[i].r_offset; 675 /* This is the start of the target section */ 676 loc0 = sechdrs[targetsec].sh_addr; 677 /* This is the symbol it is referring to */ 678 sym = (Elf64_Sym *)sechdrs[symindex].sh_addr 679 + ELF64_R_SYM(rel[i].r_info); 680 if (!sym->st_value) { 681 printk(KERN_WARNING "%s: Unknown symbol %s\n", 682 me->name, strtab + sym->st_name); 683 return -ENOENT; 684 } 685 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03; 686 dot = (Elf64_Addr)loc & ~0x03; 687 loc64 = (Elf64_Xword *)loc; 688 689 val = sym->st_value; 690 addend = rel[i].r_addend; 691 692 #if 0 693 #define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t : 694 printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n", 695 strtab + sym->st_name, 696 loc, val, addend, 697 r(R_PARISC_LTOFF14R) 698 r(R_PARISC_LTOFF21L) 699 r(R_PARISC_PCREL22F) 700 r(R_PARISC_DIR64) 701 r(R_PARISC_SEGREL32) 702 r(R_PARISC_FPTR64) 703 "UNKNOWN"); 704 #undef r 705 #endif 706 707 switch (ELF64_R_TYPE(rel[i].r_info)) { 708 case R_PARISC_LTOFF21L: 709 /* LT-relative; left 21 bits */ 710 val = get_got(me, val, addend); 711 DEBUGP("LTOFF21L Symbol %s loc %p val %lx\n", 712 strtab + sym->st_name, 713 loc, val); 714 val = lrsel(val, 0); 715 *loc = mask(*loc, 21) | reassemble_21(val); 716 break; 717 case R_PARISC_LTOFF14R: 718 /* L(ltoff(val+addend)) */ 719 /* LT-relative; right 14 bits */ 720 val = get_got(me, val, addend); 721 val = rrsel(val, 0); 722 DEBUGP("LTOFF14R Symbol %s loc %p val %lx\n", 723 strtab + sym->st_name, 724 loc, val); 725 *loc = mask(*loc, 14) | reassemble_14(val); 726 break; 727 case R_PARISC_PCREL22F: 728 /* PC-relative; 22 bits */ 729 DEBUGP("PCREL22F Symbol %s loc %p val %lx\n", 730 strtab + sym->st_name, 731 loc, val); 732 val += addend; 733 /* can we reach it locally? */ 734 if (in_local(me, (void *)val)) { 735 /* this is the case where the symbol is local 736 * to the module, but in a different section, 737 * so stub the jump in case it's more than 22 738 * bits away */ 739 val = (val - dot - 8)/4; 740 if (!RELOC_REACHABLE(val, 22)) { 741 /* direct distance too far, create 742 * stub entry instead */ 743 val = get_stub(me, sym->st_value, 744 addend, ELF_STUB_DIRECT, 745 loc0, targetsec); 746 } else { 747 /* Ok, we can reach it directly. */ 748 val = sym->st_value; 749 val += addend; 750 } 751 } else { 752 val = sym->st_value; 753 if (strncmp(strtab + sym->st_name, "$$", 2) 754 == 0) 755 val = get_stub(me, val, addend, ELF_STUB_MILLI, 756 loc0, targetsec); 757 else 758 val = get_stub(me, val, addend, ELF_STUB_GOT, 759 loc0, targetsec); 760 } 761 DEBUGP("STUB FOR %s loc %lx, val %lx+%lx at %lx\n", 762 strtab + sym->st_name, loc, sym->st_value, 763 addend, val); 764 val = (val - dot - 8)/4; 765 CHECK_RELOC(val, 22); 766 *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val); 767 break; 768 case R_PARISC_DIR64: 769 /* 64-bit effective address */ 770 *loc64 = val + addend; 771 break; 772 case R_PARISC_SEGREL32: 773 /* 32-bit segment relative address */ 774 /* See note about special handling of SEGREL32 at 775 * the beginning of this file. 776 */ 777 *loc = fsel(val, addend); 778 break; 779 case R_PARISC_FPTR64: 780 /* 64-bit function address */ 781 if(in_local(me, (void *)(val + addend))) { 782 *loc64 = get_fdesc(me, val+addend); 783 DEBUGP("FDESC for %s at %p points to %lx\n", 784 strtab + sym->st_name, *loc64, 785 ((Elf_Fdesc *)*loc64)->addr); 786 } else { 787 /* if the symbol is not local to this 788 * module then val+addend is a pointer 789 * to the function descriptor */ 790 DEBUGP("Non local FPTR64 Symbol %s loc %p val %lx\n", 791 strtab + sym->st_name, 792 loc, val); 793 *loc64 = val + addend; 794 } 795 break; 796 797 default: 798 printk(KERN_ERR "module %s: Unknown relocation: %Lu\n", 799 me->name, ELF64_R_TYPE(rel[i].r_info)); 800 return -ENOEXEC; 801 } 802 } 803 return 0; 804 } 805 #endif 806 807 static void 808 register_unwind_table(struct module *me, 809 const Elf_Shdr *sechdrs) 810 { 811 unsigned char *table, *end; 812 unsigned long gp; 813 814 if (!me->arch.unwind_section) 815 return; 816 817 table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr; 818 end = table + sechdrs[me->arch.unwind_section].sh_size; 819 gp = (Elf_Addr)me->module_core + me->arch.got_offset; 820 821 DEBUGP("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n", 822 me->arch.unwind_section, table, end, gp); 823 me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end); 824 } 825 826 static void 827 deregister_unwind_table(struct module *me) 828 { 829 if (me->arch.unwind) 830 unwind_table_remove(me->arch.unwind); 831 } 832 833 int module_finalize(const Elf_Ehdr *hdr, 834 const Elf_Shdr *sechdrs, 835 struct module *me) 836 { 837 int i; 838 unsigned long nsyms; 839 const char *strtab = NULL; 840 Elf_Sym *newptr, *oldptr; 841 Elf_Shdr *symhdr = NULL; 842 #ifdef DEBUG 843 Elf_Fdesc *entry; 844 u32 *addr; 845 846 entry = (Elf_Fdesc *)me->init; 847 printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry, 848 entry->gp, entry->addr); 849 addr = (u32 *)entry->addr; 850 printk("INSNS: %x %x %x %x\n", 851 addr[0], addr[1], addr[2], addr[3]); 852 printk("got entries used %ld, gots max %ld\n" 853 "fdescs used %ld, fdescs max %ld\n", 854 me->arch.got_count, me->arch.got_max, 855 me->arch.fdesc_count, me->arch.fdesc_max); 856 #endif 857 858 register_unwind_table(me, sechdrs); 859 860 /* haven't filled in me->symtab yet, so have to find it 861 * ourselves */ 862 for (i = 1; i < hdr->e_shnum; i++) { 863 if(sechdrs[i].sh_type == SHT_SYMTAB 864 && (sechdrs[i].sh_type & SHF_ALLOC)) { 865 int strindex = sechdrs[i].sh_link; 866 /* FIXME: AWFUL HACK 867 * The cast is to drop the const from 868 * the sechdrs pointer */ 869 symhdr = (Elf_Shdr *)&sechdrs[i]; 870 strtab = (char *)sechdrs[strindex].sh_addr; 871 break; 872 } 873 } 874 875 DEBUGP("module %s: strtab %p, symhdr %p\n", 876 me->name, strtab, symhdr); 877 878 if(me->arch.got_count > MAX_GOTS) { 879 printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n", 880 me->name, me->arch.got_count, MAX_GOTS); 881 return -EINVAL; 882 } 883 884 kfree(me->arch.section); 885 me->arch.section = NULL; 886 887 /* no symbol table */ 888 if(symhdr == NULL) 889 return 0; 890 891 oldptr = (void *)symhdr->sh_addr; 892 newptr = oldptr + 1; /* we start counting at 1 */ 893 nsyms = symhdr->sh_size / sizeof(Elf_Sym); 894 DEBUGP("OLD num_symtab %lu\n", nsyms); 895 896 for (i = 1; i < nsyms; i++) { 897 oldptr++; /* note, count starts at 1 so preincrement */ 898 if(strncmp(strtab + oldptr->st_name, 899 ".L", 2) == 0) 900 continue; 901 902 if(newptr != oldptr) 903 *newptr++ = *oldptr; 904 else 905 newptr++; 906 907 } 908 nsyms = newptr - (Elf_Sym *)symhdr->sh_addr; 909 DEBUGP("NEW num_symtab %lu\n", nsyms); 910 symhdr->sh_size = nsyms * sizeof(Elf_Sym); 911 return module_bug_finalize(hdr, sechdrs, me); 912 } 913 914 void module_arch_cleanup(struct module *mod) 915 { 916 deregister_unwind_table(mod); 917 module_bug_cleanup(mod); 918 } 919 920 #ifdef CONFIG_64BIT 921 void *dereference_function_descriptor(void *ptr) 922 { 923 Elf64_Fdesc *desc = ptr; 924 void *p; 925 926 if (!probe_kernel_address(&desc->addr, p)) 927 ptr = p; 928 return ptr; 929 } 930 #endif 931