1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Kernel dynamically loadable module help for PARISC. 3 * 4 * The best reference for this stuff is probably the Processor- 5 * Specific ELF Supplement for PA-RISC: 6 * https://parisc.wiki.kernel.org/index.php/File:Elf-pa-hp.pdf 7 * 8 * Linux/PA-RISC Project 9 * Copyright (C) 2003 Randolph Chung <tausq at debian . org> 10 * Copyright (C) 2008 Helge Deller <deller@gmx.de> 11 * 12 * Notes: 13 * - PLT stub handling 14 * On 32bit (and sometimes 64bit) and with big kernel modules like xfs or 15 * ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may 16 * fail to reach their PLT stub if we only create one big stub array for 17 * all sections at the beginning of the core or init section. 18 * Instead we now insert individual PLT stub entries directly in front of 19 * of the code sections where the stubs are actually called. 20 * This reduces the distance between the PCREL location and the stub entry 21 * so that the relocations can be fulfilled. 22 * While calculating the final layout of the kernel module in memory, the 23 * kernel module loader calls arch_mod_section_prepend() to request the 24 * to be reserved amount of memory in front of each individual section. 25 * 26 * - SEGREL32 handling 27 * We are not doing SEGREL32 handling correctly. According to the ABI, we 28 * should do a value offset, like this: 29 * if (in_init(me, (void *)val)) 30 * val -= (uint32_t)me->mem[MOD_INIT_TEXT].base; 31 * else 32 * val -= (uint32_t)me->mem[MOD_TEXT].base; 33 * However, SEGREL32 is used only for PARISC unwind entries, and we want 34 * those entries to have an absolute address, and not just an offset. 35 * 36 * The unwind table mechanism has the ability to specify an offset for 37 * the unwind table; however, because we split off the init functions into 38 * a different piece of memory, it is not possible to do this using a 39 * single offset. Instead, we use the above hack for now. 40 */ 41 42 #include <linux/moduleloader.h> 43 #include <linux/elf.h> 44 #include <linux/vmalloc.h> 45 #include <linux/fs.h> 46 #include <linux/ftrace.h> 47 #include <linux/string.h> 48 #include <linux/kernel.h> 49 #include <linux/bug.h> 50 #include <linux/mm.h> 51 #include <linux/slab.h> 52 53 #include <asm/unwind.h> 54 #include <asm/sections.h> 55 56 #define RELOC_REACHABLE(val, bits) \ 57 (( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 ) || \ 58 ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \ 59 0 : 1) 60 61 #define CHECK_RELOC(val, bits) \ 62 if (!RELOC_REACHABLE(val, bits)) { \ 63 printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \ 64 me->name, strtab + sym->st_name, (unsigned long)val, bits); \ 65 return -ENOEXEC; \ 66 } 67 68 /* Maximum number of GOT entries. We use a long displacement ldd from 69 * the bottom of the table, which has a maximum signed displacement of 70 * 0x3fff; however, since we're only going forward, this becomes 71 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have 72 * at most 1023 entries. 73 * To overcome this 14bit displacement with some kernel modules, we'll 74 * use instead the unusal 16bit displacement method (see reassemble_16a) 75 * which gives us a maximum positive displacement of 0x7fff, and as such 76 * allows us to allocate up to 4095 GOT entries. */ 77 #define MAX_GOTS 4095 78 79 #ifndef CONFIG_64BIT 80 struct got_entry { 81 Elf32_Addr addr; 82 }; 83 84 struct stub_entry { 85 Elf32_Word insns[2]; /* each stub entry has two insns */ 86 }; 87 #else 88 struct got_entry { 89 Elf64_Addr addr; 90 }; 91 92 struct stub_entry { 93 Elf64_Word insns[4]; /* each stub entry has four insns */ 94 }; 95 #endif 96 97 /* Field selection types defined by hppa */ 98 #define rnd(x) (((x)+0x1000)&~0x1fff) 99 /* fsel: full 32 bits */ 100 #define fsel(v,a) ((v)+(a)) 101 /* lsel: select left 21 bits */ 102 #define lsel(v,a) (((v)+(a))>>11) 103 /* rsel: select right 11 bits */ 104 #define rsel(v,a) (((v)+(a))&0x7ff) 105 /* lrsel with rounding of addend to nearest 8k */ 106 #define lrsel(v,a) (((v)+rnd(a))>>11) 107 /* rrsel with rounding of addend to nearest 8k */ 108 #define rrsel(v,a) ((((v)+rnd(a))&0x7ff)+((a)-rnd(a))) 109 110 #define mask(x,sz) ((x) & ~((1<<(sz))-1)) 111 112 113 /* The reassemble_* functions prepare an immediate value for 114 insertion into an opcode. pa-risc uses all sorts of weird bitfields 115 in the instruction to hold the value. */ 116 static inline int sign_unext(int x, int len) 117 { 118 int len_ones; 119 120 len_ones = (1 << len) - 1; 121 return x & len_ones; 122 } 123 124 static inline int low_sign_unext(int x, int len) 125 { 126 int sign, temp; 127 128 sign = (x >> (len-1)) & 1; 129 temp = sign_unext(x, len-1); 130 return (temp << 1) | sign; 131 } 132 133 static inline int reassemble_14(int as14) 134 { 135 return (((as14 & 0x1fff) << 1) | 136 ((as14 & 0x2000) >> 13)); 137 } 138 139 static inline int reassemble_16a(int as16) 140 { 141 int s, t; 142 143 /* Unusual 16-bit encoding, for wide mode only. */ 144 t = (as16 << 1) & 0xffff; 145 s = (as16 & 0x8000); 146 return (t ^ s ^ (s >> 1)) | (s >> 15); 147 } 148 149 150 static inline int reassemble_17(int as17) 151 { 152 return (((as17 & 0x10000) >> 16) | 153 ((as17 & 0x0f800) << 5) | 154 ((as17 & 0x00400) >> 8) | 155 ((as17 & 0x003ff) << 3)); 156 } 157 158 static inline int reassemble_21(int as21) 159 { 160 return (((as21 & 0x100000) >> 20) | 161 ((as21 & 0x0ffe00) >> 8) | 162 ((as21 & 0x000180) << 7) | 163 ((as21 & 0x00007c) << 14) | 164 ((as21 & 0x000003) << 12)); 165 } 166 167 static inline int reassemble_22(int as22) 168 { 169 return (((as22 & 0x200000) >> 21) | 170 ((as22 & 0x1f0000) << 5) | 171 ((as22 & 0x00f800) << 5) | 172 ((as22 & 0x000400) >> 8) | 173 ((as22 & 0x0003ff) << 3)); 174 } 175 176 void *module_alloc(unsigned long size) 177 { 178 /* using RWX means less protection for modules, but it's 179 * easier than trying to map the text, data, init_text and 180 * init_data correctly */ 181 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 182 GFP_KERNEL, 183 PAGE_KERNEL_RWX, 0, NUMA_NO_NODE, 184 __builtin_return_address(0)); 185 } 186 187 #ifndef CONFIG_64BIT 188 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n) 189 { 190 return 0; 191 } 192 193 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n) 194 { 195 return 0; 196 } 197 198 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n) 199 { 200 unsigned long cnt = 0; 201 202 for (; n > 0; n--, rela++) 203 { 204 switch (ELF32_R_TYPE(rela->r_info)) { 205 case R_PARISC_PCREL17F: 206 case R_PARISC_PCREL22F: 207 cnt++; 208 } 209 } 210 211 return cnt; 212 } 213 #else 214 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n) 215 { 216 unsigned long cnt = 0; 217 218 for (; n > 0; n--, rela++) 219 { 220 switch (ELF64_R_TYPE(rela->r_info)) { 221 case R_PARISC_LTOFF21L: 222 case R_PARISC_LTOFF14R: 223 case R_PARISC_PCREL22F: 224 cnt++; 225 } 226 } 227 228 return cnt; 229 } 230 231 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n) 232 { 233 unsigned long cnt = 0; 234 235 for (; n > 0; n--, rela++) 236 { 237 switch (ELF64_R_TYPE(rela->r_info)) { 238 case R_PARISC_FPTR64: 239 cnt++; 240 } 241 } 242 243 return cnt; 244 } 245 246 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n) 247 { 248 unsigned long cnt = 0; 249 250 for (; n > 0; n--, rela++) 251 { 252 switch (ELF64_R_TYPE(rela->r_info)) { 253 case R_PARISC_PCREL22F: 254 cnt++; 255 } 256 } 257 258 return cnt; 259 } 260 #endif 261 262 void module_arch_freeing_init(struct module *mod) 263 { 264 kfree(mod->arch.section); 265 mod->arch.section = NULL; 266 } 267 268 /* Additional bytes needed in front of individual sections */ 269 unsigned int arch_mod_section_prepend(struct module *mod, 270 unsigned int section) 271 { 272 /* size needed for all stubs of this section (including 273 * one additional for correct alignment of the stubs) */ 274 return (mod->arch.section[section].stub_entries + 1) 275 * sizeof(struct stub_entry); 276 } 277 278 #define CONST 279 int module_frob_arch_sections(CONST Elf_Ehdr *hdr, 280 CONST Elf_Shdr *sechdrs, 281 CONST char *secstrings, 282 struct module *me) 283 { 284 unsigned long gots = 0, fdescs = 0, len; 285 unsigned int i; 286 struct module_memory *mod_mem; 287 288 len = hdr->e_shnum * sizeof(me->arch.section[0]); 289 me->arch.section = kzalloc(len, GFP_KERNEL); 290 if (!me->arch.section) 291 return -ENOMEM; 292 293 for (i = 1; i < hdr->e_shnum; i++) { 294 const Elf_Rela *rels = (void *)sechdrs[i].sh_addr; 295 unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels); 296 unsigned int count, s; 297 298 if (strncmp(secstrings + sechdrs[i].sh_name, 299 ".PARISC.unwind", 14) == 0) 300 me->arch.unwind_section = i; 301 302 if (sechdrs[i].sh_type != SHT_RELA) 303 continue; 304 305 /* some of these are not relevant for 32-bit/64-bit 306 * we leave them here to make the code common. the 307 * compiler will do its thing and optimize out the 308 * stuff we don't need 309 */ 310 gots += count_gots(rels, nrels); 311 fdescs += count_fdescs(rels, nrels); 312 313 /* XXX: By sorting the relocs and finding duplicate entries 314 * we could reduce the number of necessary stubs and save 315 * some memory. */ 316 count = count_stubs(rels, nrels); 317 if (!count) 318 continue; 319 320 /* so we need relocation stubs. reserve necessary memory. */ 321 /* sh_info gives the section for which we need to add stubs. */ 322 s = sechdrs[i].sh_info; 323 324 /* each code section should only have one relocation section */ 325 WARN_ON(me->arch.section[s].stub_entries); 326 327 /* store number of stubs we need for this section */ 328 me->arch.section[s].stub_entries += count; 329 } 330 331 mod_mem = &me->mem[MOD_TEXT]; 332 /* align things a bit */ 333 mod_mem->size = ALIGN(mod_mem->size, 16); 334 me->arch.got_offset = mod_mem->size; 335 mod_mem->size += gots * sizeof(struct got_entry); 336 337 mod_mem->size = ALIGN(mod_mem->size, 16); 338 me->arch.fdesc_offset = mod_mem->size; 339 mod_mem->size += fdescs * sizeof(Elf_Fdesc); 340 341 me->arch.got_max = gots; 342 me->arch.fdesc_max = fdescs; 343 344 return 0; 345 } 346 347 #ifdef CONFIG_64BIT 348 static Elf64_Word get_got(struct module *me, unsigned long value, long addend) 349 { 350 unsigned int i; 351 struct got_entry *got; 352 353 value += addend; 354 355 BUG_ON(value == 0); 356 357 got = me->mem[MOD_TEXT].base + me->arch.got_offset; 358 for (i = 0; got[i].addr; i++) 359 if (got[i].addr == value) 360 goto out; 361 362 BUG_ON(++me->arch.got_count > me->arch.got_max); 363 364 got[i].addr = value; 365 out: 366 pr_debug("GOT ENTRY %d[%lx] val %lx\n", i, i*sizeof(struct got_entry), 367 value); 368 return i * sizeof(struct got_entry); 369 } 370 #endif /* CONFIG_64BIT */ 371 372 #ifdef CONFIG_64BIT 373 static Elf_Addr get_fdesc(struct module *me, unsigned long value) 374 { 375 Elf_Fdesc *fdesc = me->mem[MOD_TEXT].base + me->arch.fdesc_offset; 376 377 if (!value) { 378 printk(KERN_ERR "%s: zero OPD requested!\n", me->name); 379 return 0; 380 } 381 382 /* Look for existing fdesc entry. */ 383 while (fdesc->addr) { 384 if (fdesc->addr == value) 385 return (Elf_Addr)fdesc; 386 fdesc++; 387 } 388 389 BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max); 390 391 /* Create new one */ 392 fdesc->addr = value; 393 fdesc->gp = (Elf_Addr)me->mem[MOD_TEXT].base + me->arch.got_offset; 394 return (Elf_Addr)fdesc; 395 } 396 #endif /* CONFIG_64BIT */ 397 398 enum elf_stub_type { 399 ELF_STUB_GOT, 400 ELF_STUB_MILLI, 401 ELF_STUB_DIRECT, 402 }; 403 404 static Elf_Addr get_stub(struct module *me, unsigned long value, long addend, 405 enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec) 406 { 407 struct stub_entry *stub; 408 int __maybe_unused d; 409 410 /* initialize stub_offset to point in front of the section */ 411 if (!me->arch.section[targetsec].stub_offset) { 412 loc0 -= (me->arch.section[targetsec].stub_entries + 1) * 413 sizeof(struct stub_entry); 414 /* get correct alignment for the stubs */ 415 loc0 = ALIGN(loc0, sizeof(struct stub_entry)); 416 me->arch.section[targetsec].stub_offset = loc0; 417 } 418 419 /* get address of stub entry */ 420 stub = (void *) me->arch.section[targetsec].stub_offset; 421 me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry); 422 423 /* do not write outside available stub area */ 424 BUG_ON(0 == me->arch.section[targetsec].stub_entries--); 425 426 427 #ifndef CONFIG_64BIT 428 /* for 32-bit the stub looks like this: 429 * ldil L'XXX,%r1 430 * be,n R'XXX(%sr4,%r1) 431 */ 432 //value = *(unsigned long *)((value + addend) & ~3); /* why? */ 433 434 stub->insns[0] = 0x20200000; /* ldil L'XXX,%r1 */ 435 stub->insns[1] = 0xe0202002; /* be,n R'XXX(%sr4,%r1) */ 436 437 stub->insns[0] |= reassemble_21(lrsel(value, addend)); 438 stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4); 439 440 #else 441 /* for 64-bit we have three kinds of stubs: 442 * for normal function calls: 443 * ldd 0(%dp),%dp 444 * ldd 10(%dp), %r1 445 * bve (%r1) 446 * ldd 18(%dp), %dp 447 * 448 * for millicode: 449 * ldil 0, %r1 450 * ldo 0(%r1), %r1 451 * ldd 10(%r1), %r1 452 * bve,n (%r1) 453 * 454 * for direct branches (jumps between different section of the 455 * same module): 456 * ldil 0, %r1 457 * ldo 0(%r1), %r1 458 * bve,n (%r1) 459 */ 460 switch (stub_type) { 461 case ELF_STUB_GOT: 462 d = get_got(me, value, addend); 463 if (d <= 15) { 464 /* Format 5 */ 465 stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp */ 466 stub->insns[0] |= low_sign_unext(d, 5) << 16; 467 } else { 468 /* Format 3 */ 469 stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp */ 470 stub->insns[0] |= reassemble_16a(d); 471 } 472 stub->insns[1] = 0x53610020; /* ldd 10(%dp),%r1 */ 473 stub->insns[2] = 0xe820d000; /* bve (%r1) */ 474 stub->insns[3] = 0x537b0030; /* ldd 18(%dp),%dp */ 475 break; 476 case ELF_STUB_MILLI: 477 stub->insns[0] = 0x20200000; /* ldil 0,%r1 */ 478 stub->insns[1] = 0x34210000; /* ldo 0(%r1), %r1 */ 479 stub->insns[2] = 0x50210020; /* ldd 10(%r1),%r1 */ 480 stub->insns[3] = 0xe820d002; /* bve,n (%r1) */ 481 482 stub->insns[0] |= reassemble_21(lrsel(value, addend)); 483 stub->insns[1] |= reassemble_14(rrsel(value, addend)); 484 break; 485 case ELF_STUB_DIRECT: 486 stub->insns[0] = 0x20200000; /* ldil 0,%r1 */ 487 stub->insns[1] = 0x34210000; /* ldo 0(%r1), %r1 */ 488 stub->insns[2] = 0xe820d002; /* bve,n (%r1) */ 489 490 stub->insns[0] |= reassemble_21(lrsel(value, addend)); 491 stub->insns[1] |= reassemble_14(rrsel(value, addend)); 492 break; 493 } 494 495 #endif 496 497 return (Elf_Addr)stub; 498 } 499 500 #ifndef CONFIG_64BIT 501 int apply_relocate_add(Elf_Shdr *sechdrs, 502 const char *strtab, 503 unsigned int symindex, 504 unsigned int relsec, 505 struct module *me) 506 { 507 int i; 508 Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr; 509 Elf32_Sym *sym; 510 Elf32_Word *loc; 511 Elf32_Addr val; 512 Elf32_Sword addend; 513 Elf32_Addr dot; 514 Elf_Addr loc0; 515 unsigned int targetsec = sechdrs[relsec].sh_info; 516 //unsigned long dp = (unsigned long)$global$; 517 register unsigned long dp asm ("r27"); 518 519 pr_debug("Applying relocate section %u to %u\n", relsec, 520 targetsec); 521 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { 522 /* This is where to make the change */ 523 loc = (void *)sechdrs[targetsec].sh_addr 524 + rel[i].r_offset; 525 /* This is the start of the target section */ 526 loc0 = sechdrs[targetsec].sh_addr; 527 /* This is the symbol it is referring to */ 528 sym = (Elf32_Sym *)sechdrs[symindex].sh_addr 529 + ELF32_R_SYM(rel[i].r_info); 530 if (!sym->st_value) { 531 printk(KERN_WARNING "%s: Unknown symbol %s\n", 532 me->name, strtab + sym->st_name); 533 return -ENOENT; 534 } 535 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03; 536 dot = (Elf32_Addr)loc & ~0x03; 537 538 val = sym->st_value; 539 addend = rel[i].r_addend; 540 541 #if 0 542 #define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t : 543 pr_debug("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n", 544 strtab + sym->st_name, 545 (uint32_t)loc, val, addend, 546 r(R_PARISC_PLABEL32) 547 r(R_PARISC_DIR32) 548 r(R_PARISC_DIR21L) 549 r(R_PARISC_DIR14R) 550 r(R_PARISC_SEGREL32) 551 r(R_PARISC_DPREL21L) 552 r(R_PARISC_DPREL14R) 553 r(R_PARISC_PCREL17F) 554 r(R_PARISC_PCREL22F) 555 "UNKNOWN"); 556 #undef r 557 #endif 558 559 switch (ELF32_R_TYPE(rel[i].r_info)) { 560 case R_PARISC_PLABEL32: 561 /* 32-bit function address */ 562 /* no function descriptors... */ 563 *loc = fsel(val, addend); 564 break; 565 case R_PARISC_DIR32: 566 /* direct 32-bit ref */ 567 *loc = fsel(val, addend); 568 break; 569 case R_PARISC_DIR21L: 570 /* left 21 bits of effective address */ 571 val = lrsel(val, addend); 572 *loc = mask(*loc, 21) | reassemble_21(val); 573 break; 574 case R_PARISC_DIR14R: 575 /* right 14 bits of effective address */ 576 val = rrsel(val, addend); 577 *loc = mask(*loc, 14) | reassemble_14(val); 578 break; 579 case R_PARISC_SEGREL32: 580 /* 32-bit segment relative address */ 581 /* See note about special handling of SEGREL32 at 582 * the beginning of this file. 583 */ 584 *loc = fsel(val, addend); 585 break; 586 case R_PARISC_SECREL32: 587 /* 32-bit section relative address. */ 588 *loc = fsel(val, addend); 589 break; 590 case R_PARISC_DPREL21L: 591 /* left 21 bit of relative address */ 592 val = lrsel(val - dp, addend); 593 *loc = mask(*loc, 21) | reassemble_21(val); 594 break; 595 case R_PARISC_DPREL14R: 596 /* right 14 bit of relative address */ 597 val = rrsel(val - dp, addend); 598 *loc = mask(*loc, 14) | reassemble_14(val); 599 break; 600 case R_PARISC_PCREL17F: 601 /* 17-bit PC relative address */ 602 /* calculate direct call offset */ 603 val += addend; 604 val = (val - dot - 8)/4; 605 if (!RELOC_REACHABLE(val, 17)) { 606 /* direct distance too far, create 607 * stub entry instead */ 608 val = get_stub(me, sym->st_value, addend, 609 ELF_STUB_DIRECT, loc0, targetsec); 610 val = (val - dot - 8)/4; 611 CHECK_RELOC(val, 17); 612 } 613 *loc = (*loc & ~0x1f1ffd) | reassemble_17(val); 614 break; 615 case R_PARISC_PCREL22F: 616 /* 22-bit PC relative address; only defined for pa20 */ 617 /* calculate direct call offset */ 618 val += addend; 619 val = (val - dot - 8)/4; 620 if (!RELOC_REACHABLE(val, 22)) { 621 /* direct distance too far, create 622 * stub entry instead */ 623 val = get_stub(me, sym->st_value, addend, 624 ELF_STUB_DIRECT, loc0, targetsec); 625 val = (val - dot - 8)/4; 626 CHECK_RELOC(val, 22); 627 } 628 *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val); 629 break; 630 case R_PARISC_PCREL32: 631 /* 32-bit PC relative address */ 632 *loc = val - dot - 8 + addend; 633 break; 634 635 default: 636 printk(KERN_ERR "module %s: Unknown relocation: %u\n", 637 me->name, ELF32_R_TYPE(rel[i].r_info)); 638 return -ENOEXEC; 639 } 640 } 641 642 return 0; 643 } 644 645 #else 646 int apply_relocate_add(Elf_Shdr *sechdrs, 647 const char *strtab, 648 unsigned int symindex, 649 unsigned int relsec, 650 struct module *me) 651 { 652 int i; 653 Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr; 654 Elf64_Sym *sym; 655 Elf64_Word *loc; 656 Elf64_Xword *loc64; 657 Elf64_Addr val; 658 Elf64_Sxword addend; 659 Elf64_Addr dot; 660 Elf_Addr loc0; 661 unsigned int targetsec = sechdrs[relsec].sh_info; 662 663 pr_debug("Applying relocate section %u to %u\n", relsec, 664 targetsec); 665 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { 666 /* This is where to make the change */ 667 loc = (void *)sechdrs[targetsec].sh_addr 668 + rel[i].r_offset; 669 /* This is the start of the target section */ 670 loc0 = sechdrs[targetsec].sh_addr; 671 /* This is the symbol it is referring to */ 672 sym = (Elf64_Sym *)sechdrs[symindex].sh_addr 673 + ELF64_R_SYM(rel[i].r_info); 674 if (!sym->st_value) { 675 printk(KERN_WARNING "%s: Unknown symbol %s\n", 676 me->name, strtab + sym->st_name); 677 return -ENOENT; 678 } 679 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03; 680 dot = (Elf64_Addr)loc & ~0x03; 681 loc64 = (Elf64_Xword *)loc; 682 683 val = sym->st_value; 684 addend = rel[i].r_addend; 685 686 #if 0 687 #define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t : 688 printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n", 689 strtab + sym->st_name, 690 loc, val, addend, 691 r(R_PARISC_LTOFF14R) 692 r(R_PARISC_LTOFF21L) 693 r(R_PARISC_PCREL22F) 694 r(R_PARISC_DIR64) 695 r(R_PARISC_SEGREL32) 696 r(R_PARISC_FPTR64) 697 "UNKNOWN"); 698 #undef r 699 #endif 700 701 switch (ELF64_R_TYPE(rel[i].r_info)) { 702 case R_PARISC_LTOFF21L: 703 /* LT-relative; left 21 bits */ 704 val = get_got(me, val, addend); 705 pr_debug("LTOFF21L Symbol %s loc %p val %llx\n", 706 strtab + sym->st_name, 707 loc, val); 708 val = lrsel(val, 0); 709 *loc = mask(*loc, 21) | reassemble_21(val); 710 break; 711 case R_PARISC_LTOFF14R: 712 /* L(ltoff(val+addend)) */ 713 /* LT-relative; right 14 bits */ 714 val = get_got(me, val, addend); 715 val = rrsel(val, 0); 716 pr_debug("LTOFF14R Symbol %s loc %p val %llx\n", 717 strtab + sym->st_name, 718 loc, val); 719 *loc = mask(*loc, 14) | reassemble_14(val); 720 break; 721 case R_PARISC_PCREL22F: 722 /* PC-relative; 22 bits */ 723 pr_debug("PCREL22F Symbol %s loc %p val %llx\n", 724 strtab + sym->st_name, 725 loc, val); 726 val += addend; 727 /* can we reach it locally? */ 728 if (within_module(val, me)) { 729 /* this is the case where the symbol is local 730 * to the module, but in a different section, 731 * so stub the jump in case it's more than 22 732 * bits away */ 733 val = (val - dot - 8)/4; 734 if (!RELOC_REACHABLE(val, 22)) { 735 /* direct distance too far, create 736 * stub entry instead */ 737 val = get_stub(me, sym->st_value, 738 addend, ELF_STUB_DIRECT, 739 loc0, targetsec); 740 } else { 741 /* Ok, we can reach it directly. */ 742 val = sym->st_value; 743 val += addend; 744 } 745 } else { 746 val = sym->st_value; 747 if (strncmp(strtab + sym->st_name, "$$", 2) 748 == 0) 749 val = get_stub(me, val, addend, ELF_STUB_MILLI, 750 loc0, targetsec); 751 else 752 val = get_stub(me, val, addend, ELF_STUB_GOT, 753 loc0, targetsec); 754 } 755 pr_debug("STUB FOR %s loc %px, val %llx+%llx at %llx\n", 756 strtab + sym->st_name, loc, sym->st_value, 757 addend, val); 758 val = (val - dot - 8)/4; 759 CHECK_RELOC(val, 22); 760 *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val); 761 break; 762 case R_PARISC_PCREL32: 763 /* 32-bit PC relative address */ 764 *loc = val - dot - 8 + addend; 765 break; 766 case R_PARISC_PCREL64: 767 /* 64-bit PC relative address */ 768 *loc64 = val - dot - 8 + addend; 769 break; 770 case R_PARISC_DIR64: 771 /* 64-bit effective address */ 772 *loc64 = val + addend; 773 break; 774 case R_PARISC_SEGREL32: 775 /* 32-bit segment relative address */ 776 /* See note about special handling of SEGREL32 at 777 * the beginning of this file. 778 */ 779 *loc = fsel(val, addend); 780 break; 781 case R_PARISC_SECREL32: 782 /* 32-bit section relative address. */ 783 *loc = fsel(val, addend); 784 break; 785 case R_PARISC_FPTR64: 786 /* 64-bit function address */ 787 if (within_module(val + addend, me)) { 788 *loc64 = get_fdesc(me, val+addend); 789 pr_debug("FDESC for %s at %llx points to %llx\n", 790 strtab + sym->st_name, *loc64, 791 ((Elf_Fdesc *)*loc64)->addr); 792 } else { 793 /* if the symbol is not local to this 794 * module then val+addend is a pointer 795 * to the function descriptor */ 796 pr_debug("Non local FPTR64 Symbol %s loc %p val %llx\n", 797 strtab + sym->st_name, 798 loc, val); 799 *loc64 = val + addend; 800 } 801 break; 802 803 default: 804 printk(KERN_ERR "module %s: Unknown relocation: %Lu\n", 805 me->name, ELF64_R_TYPE(rel[i].r_info)); 806 return -ENOEXEC; 807 } 808 } 809 return 0; 810 } 811 #endif 812 813 static void 814 register_unwind_table(struct module *me, 815 const Elf_Shdr *sechdrs) 816 { 817 unsigned char *table, *end; 818 unsigned long gp; 819 820 if (!me->arch.unwind_section) 821 return; 822 823 table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr; 824 end = table + sechdrs[me->arch.unwind_section].sh_size; 825 gp = (Elf_Addr)me->mem[MOD_TEXT].base + me->arch.got_offset; 826 827 pr_debug("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n", 828 me->arch.unwind_section, table, end, gp); 829 me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end); 830 } 831 832 static void 833 deregister_unwind_table(struct module *me) 834 { 835 if (me->arch.unwind) 836 unwind_table_remove(me->arch.unwind); 837 } 838 839 int module_finalize(const Elf_Ehdr *hdr, 840 const Elf_Shdr *sechdrs, 841 struct module *me) 842 { 843 int i; 844 unsigned long nsyms; 845 const char *strtab = NULL; 846 const Elf_Shdr *s; 847 char *secstrings; 848 int symindex __maybe_unused = -1; 849 Elf_Sym *newptr, *oldptr; 850 Elf_Shdr *symhdr = NULL; 851 #ifdef DEBUG 852 Elf_Fdesc *entry; 853 u32 *addr; 854 855 entry = (Elf_Fdesc *)me->init; 856 printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry, 857 entry->gp, entry->addr); 858 addr = (u32 *)entry->addr; 859 printk("INSNS: %x %x %x %x\n", 860 addr[0], addr[1], addr[2], addr[3]); 861 printk("got entries used %ld, gots max %ld\n" 862 "fdescs used %ld, fdescs max %ld\n", 863 me->arch.got_count, me->arch.got_max, 864 me->arch.fdesc_count, me->arch.fdesc_max); 865 #endif 866 867 register_unwind_table(me, sechdrs); 868 869 /* haven't filled in me->symtab yet, so have to find it 870 * ourselves */ 871 for (i = 1; i < hdr->e_shnum; i++) { 872 if(sechdrs[i].sh_type == SHT_SYMTAB 873 && (sechdrs[i].sh_flags & SHF_ALLOC)) { 874 int strindex = sechdrs[i].sh_link; 875 symindex = i; 876 /* FIXME: AWFUL HACK 877 * The cast is to drop the const from 878 * the sechdrs pointer */ 879 symhdr = (Elf_Shdr *)&sechdrs[i]; 880 strtab = (char *)sechdrs[strindex].sh_addr; 881 break; 882 } 883 } 884 885 pr_debug("module %s: strtab %p, symhdr %p\n", 886 me->name, strtab, symhdr); 887 888 if(me->arch.got_count > MAX_GOTS) { 889 printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n", 890 me->name, me->arch.got_count, MAX_GOTS); 891 return -EINVAL; 892 } 893 894 kfree(me->arch.section); 895 me->arch.section = NULL; 896 897 /* no symbol table */ 898 if(symhdr == NULL) 899 return 0; 900 901 oldptr = (void *)symhdr->sh_addr; 902 newptr = oldptr + 1; /* we start counting at 1 */ 903 nsyms = symhdr->sh_size / sizeof(Elf_Sym); 904 pr_debug("OLD num_symtab %lu\n", nsyms); 905 906 for (i = 1; i < nsyms; i++) { 907 oldptr++; /* note, count starts at 1 so preincrement */ 908 if(strncmp(strtab + oldptr->st_name, 909 ".L", 2) == 0) 910 continue; 911 912 if(newptr != oldptr) 913 *newptr++ = *oldptr; 914 else 915 newptr++; 916 917 } 918 nsyms = newptr - (Elf_Sym *)symhdr->sh_addr; 919 pr_debug("NEW num_symtab %lu\n", nsyms); 920 symhdr->sh_size = nsyms * sizeof(Elf_Sym); 921 922 /* find .altinstructions section */ 923 secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; 924 for (s = sechdrs; s < sechdrs + hdr->e_shnum; s++) { 925 void *aseg = (void *) s->sh_addr; 926 char *secname = secstrings + s->sh_name; 927 928 if (!strcmp(".altinstructions", secname)) 929 /* patch .altinstructions */ 930 apply_alternatives(aseg, aseg + s->sh_size, me->name); 931 932 #ifdef CONFIG_DYNAMIC_FTRACE 933 /* For 32 bit kernels we're compiling modules with 934 * -ffunction-sections so we must relocate the addresses in the 935 * ftrace callsite section. 936 */ 937 if (symindex != -1 && !strcmp(secname, FTRACE_CALLSITE_SECTION)) { 938 int err; 939 if (s->sh_type == SHT_REL) 940 err = apply_relocate((Elf_Shdr *)sechdrs, 941 strtab, symindex, 942 s - sechdrs, me); 943 else if (s->sh_type == SHT_RELA) 944 err = apply_relocate_add((Elf_Shdr *)sechdrs, 945 strtab, symindex, 946 s - sechdrs, me); 947 if (err) 948 return err; 949 } 950 #endif 951 } 952 return 0; 953 } 954 955 void module_arch_cleanup(struct module *mod) 956 { 957 deregister_unwind_table(mod); 958 } 959 960 #ifdef CONFIG_64BIT 961 void *dereference_module_function_descriptor(struct module *mod, void *ptr) 962 { 963 unsigned long start_opd = (Elf64_Addr)mod->mem[MOD_TEXT].base + 964 mod->arch.fdesc_offset; 965 unsigned long end_opd = start_opd + 966 mod->arch.fdesc_count * sizeof(Elf64_Fdesc); 967 968 if (ptr < (void *)start_opd || ptr >= (void *)end_opd) 969 return ptr; 970 971 return dereference_function_descriptor(ptr); 972 } 973 #endif 974