xref: /linux/arch/parisc/kernel/kprobes.c (revision a83c29e1d145cca5240952100acd1cd60f25fb5f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch/parisc/kernel/kprobes.c
4  *
5  * PA-RISC kprobes implementation
6  *
7  * Copyright (c) 2019 Sven Schnelle <svens@stackframe.org>
8  * Copyright (c) 2022 Helge Deller <deller@gmx.de>
9  */
10 
11 #include <linux/types.h>
12 #include <linux/kprobes.h>
13 #include <linux/slab.h>
14 #include <asm/cacheflush.h>
15 #include <asm/patch.h>
16 
17 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
18 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
19 
20 int __kprobes arch_prepare_kprobe(struct kprobe *p)
21 {
22 	if ((unsigned long)p->addr & 3UL)
23 		return -EINVAL;
24 
25 	p->ainsn.insn = get_insn_slot();
26 	if (!p->ainsn.insn)
27 		return -ENOMEM;
28 
29 	/*
30 	 * Set up new instructions. Second break instruction will
31 	 * trigger call of parisc_kprobe_ss_handler().
32 	 */
33 	p->opcode = *p->addr;
34 	p->ainsn.insn[0] = p->opcode;
35 	p->ainsn.insn[1] = PARISC_KPROBES_BREAK_INSN2;
36 
37 	flush_insn_slot(p);
38 	return 0;
39 }
40 
41 void __kprobes arch_remove_kprobe(struct kprobe *p)
42 {
43 	if (!p->ainsn.insn)
44 		return;
45 
46 	free_insn_slot(p->ainsn.insn, 0);
47 	p->ainsn.insn = NULL;
48 }
49 
50 void __kprobes arch_arm_kprobe(struct kprobe *p)
51 {
52 	patch_text(p->addr, PARISC_KPROBES_BREAK_INSN);
53 }
54 
55 void __kprobes arch_disarm_kprobe(struct kprobe *p)
56 {
57 	patch_text(p->addr, p->opcode);
58 }
59 
60 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
61 {
62 	kcb->prev_kprobe.kp = kprobe_running();
63 	kcb->prev_kprobe.status = kcb->kprobe_status;
64 }
65 
66 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
67 {
68 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
69 	kcb->kprobe_status = kcb->prev_kprobe.status;
70 }
71 
72 static inline void __kprobes set_current_kprobe(struct kprobe *p)
73 {
74 	__this_cpu_write(current_kprobe, p);
75 }
76 
77 static void __kprobes setup_singlestep(struct kprobe *p,
78 		struct kprobe_ctlblk *kcb, struct pt_regs *regs)
79 {
80 	kcb->iaoq[0] = regs->iaoq[0];
81 	kcb->iaoq[1] = regs->iaoq[1];
82 	instruction_pointer_set(regs, (unsigned long)p->ainsn.insn);
83 }
84 
85 int __kprobes parisc_kprobe_break_handler(struct pt_regs *regs)
86 {
87 	struct kprobe *p;
88 	struct kprobe_ctlblk *kcb;
89 
90 	preempt_disable();
91 
92 	kcb = get_kprobe_ctlblk();
93 	p = get_kprobe((unsigned long *)regs->iaoq[0]);
94 
95 	if (!p) {
96 		preempt_enable_no_resched();
97 		return 0;
98 	}
99 
100 	if (kprobe_running()) {
101 		/*
102 		 * We have reentered the kprobe_handler, since another kprobe
103 		 * was hit while within the handler, we save the original
104 		 * kprobes and single step on the instruction of the new probe
105 		 * without calling any user handlers to avoid recursive
106 		 * kprobes.
107 		 */
108 		save_previous_kprobe(kcb);
109 		set_current_kprobe(p);
110 		kprobes_inc_nmissed_count(p);
111 		setup_singlestep(p, kcb, regs);
112 		kcb->kprobe_status = KPROBE_REENTER;
113 		return 1;
114 	}
115 
116 	set_current_kprobe(p);
117 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
118 
119 	/* If we have no pre-handler or it returned 0, we continue with
120 	 * normal processing. If we have a pre-handler and it returned
121 	 * non-zero - which means user handler setup registers to exit
122 	 * to another instruction, we must skip the single stepping.
123 	 */
124 
125 	if (!p->pre_handler || !p->pre_handler(p, regs)) {
126 		setup_singlestep(p, kcb, regs);
127 		kcb->kprobe_status = KPROBE_HIT_SS;
128 	} else {
129 		reset_current_kprobe();
130 		preempt_enable_no_resched();
131 	}
132 	return 1;
133 }
134 
135 int __kprobes parisc_kprobe_ss_handler(struct pt_regs *regs)
136 {
137 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
138 	struct kprobe *p = kprobe_running();
139 
140 	if (!p)
141 		return 0;
142 
143 	if (regs->iaoq[0] != (unsigned long)p->ainsn.insn+4)
144 		return 0;
145 
146 	/* restore back original saved kprobe variables and continue */
147 	if (kcb->kprobe_status == KPROBE_REENTER) {
148 		restore_previous_kprobe(kcb);
149 		return 1;
150 	}
151 
152 	/* for absolute branch instructions we can copy iaoq_b. for relative
153 	 * branch instructions we need to calculate the new address based on the
154 	 * difference between iaoq_f and iaoq_b. We cannot use iaoq_b without
155 	 * modifications because it's based on our ainsn.insn address.
156 	 */
157 
158 	if (p->post_handler)
159 		p->post_handler(p, regs, 0);
160 
161 	switch (regs->iir >> 26) {
162 	case 0x38: /* BE */
163 	case 0x39: /* BE,L */
164 	case 0x3a: /* BV */
165 	case 0x3b: /* BVE */
166 		/* for absolute branches, regs->iaoq[1] has already the right
167 		 * address
168 		 */
169 		regs->iaoq[0] = kcb->iaoq[1];
170 		break;
171 	default:
172 		regs->iaoq[0] = kcb->iaoq[1];
173 		regs->iaoq[1] = regs->iaoq[0] + 4;
174 		break;
175 	}
176 	kcb->kprobe_status = KPROBE_HIT_SSDONE;
177 	reset_current_kprobe();
178 	return 1;
179 }
180 
181 void __kretprobe_trampoline(void)
182 {
183 	asm volatile("nop");
184 	asm volatile("nop");
185 }
186 
187 static int __kprobes trampoline_probe_handler(struct kprobe *p,
188 					      struct pt_regs *regs);
189 
190 static struct kprobe trampoline_p = {
191 	.pre_handler = trampoline_probe_handler
192 };
193 
194 static int __kprobes trampoline_probe_handler(struct kprobe *p,
195 					      struct pt_regs *regs)
196 {
197 	__kretprobe_trampoline_handler(regs, NULL);
198 
199 	return 1;
200 }
201 
202 void arch_kretprobe_fixup_return(struct pt_regs *regs,
203 				 kprobe_opcode_t *correct_ret_addr)
204 {
205 	regs->gr[2] = (unsigned long)correct_ret_addr;
206 }
207 
208 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
209 				      struct pt_regs *regs)
210 {
211 	ri->ret_addr = (kprobe_opcode_t *)regs->gr[2];
212 	ri->fp = NULL;
213 
214 	/* Replace the return addr with trampoline addr. */
215 	regs->gr[2] = (unsigned long)trampoline_p.addr;
216 }
217 
218 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
219 {
220 	return p->addr == trampoline_p.addr;
221 }
222 
223 int __init arch_init_kprobes(void)
224 {
225 	trampoline_p.addr = (kprobe_opcode_t *)
226 		dereference_function_descriptor(__kretprobe_trampoline);
227 	return register_kprobe(&trampoline_p);
228 }
229