1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Code to handle x86 style IRQs plus some generic interrupt stuff. 4 * 5 * Copyright (C) 1992 Linus Torvalds 6 * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle 7 * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org) 8 * Copyright (C) 1999-2000 Grant Grundler 9 * Copyright (c) 2005 Matthew Wilcox 10 */ 11 #include <linux/bitops.h> 12 #include <linux/errno.h> 13 #include <linux/init.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/seq_file.h> 17 #include <linux/types.h> 18 #include <asm/io.h> 19 20 #include <asm/softirq_stack.h> 21 #include <asm/smp.h> 22 #include <asm/ldcw.h> 23 24 #undef PARISC_IRQ_CR16_COUNTS 25 26 extern irqreturn_t timer_interrupt(int, void *); 27 extern irqreturn_t ipi_interrupt(int, void *); 28 29 #define EIEM_MASK(irq) (1UL<<(CPU_IRQ_MAX - irq)) 30 31 /* Bits in EIEM correlate with cpu_irq_action[]. 32 ** Numbered *Big Endian*! (ie bit 0 is MSB) 33 */ 34 static volatile unsigned long cpu_eiem = 0; 35 36 /* 37 ** local ACK bitmap ... habitually set to 1, but reset to zero 38 ** between ->ack() and ->end() of the interrupt to prevent 39 ** re-interruption of a processing interrupt. 40 */ 41 static DEFINE_PER_CPU(unsigned long, local_ack_eiem) = ~0UL; 42 43 static void cpu_mask_irq(struct irq_data *d) 44 { 45 unsigned long eirr_bit = EIEM_MASK(d->irq); 46 47 cpu_eiem &= ~eirr_bit; 48 /* Do nothing on the other CPUs. If they get this interrupt, 49 * The & cpu_eiem in the do_cpu_irq_mask() ensures they won't 50 * handle it, and the set_eiem() at the bottom will ensure it 51 * then gets disabled */ 52 } 53 54 static void __cpu_unmask_irq(unsigned int irq) 55 { 56 unsigned long eirr_bit = EIEM_MASK(irq); 57 58 cpu_eiem |= eirr_bit; 59 60 /* This is just a simple NOP IPI. But what it does is cause 61 * all the other CPUs to do a set_eiem(cpu_eiem) at the end 62 * of the interrupt handler */ 63 smp_send_all_nop(); 64 } 65 66 static void cpu_unmask_irq(struct irq_data *d) 67 { 68 __cpu_unmask_irq(d->irq); 69 } 70 71 void cpu_ack_irq(struct irq_data *d) 72 { 73 unsigned long mask = EIEM_MASK(d->irq); 74 int cpu = smp_processor_id(); 75 76 /* Clear in EIEM so we can no longer process */ 77 per_cpu(local_ack_eiem, cpu) &= ~mask; 78 79 /* disable the interrupt */ 80 set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu)); 81 82 /* and now ack it */ 83 mtctl(mask, 23); 84 } 85 86 void cpu_eoi_irq(struct irq_data *d) 87 { 88 unsigned long mask = EIEM_MASK(d->irq); 89 int cpu = smp_processor_id(); 90 91 /* set it in the eiems---it's no longer in process */ 92 per_cpu(local_ack_eiem, cpu) |= mask; 93 94 /* enable the interrupt */ 95 set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu)); 96 } 97 98 #ifdef CONFIG_SMP 99 int cpu_check_affinity(struct irq_data *d, const struct cpumask *dest) 100 { 101 int cpu_dest; 102 103 /* timer and ipi have to always be received on all CPUs */ 104 if (irqd_is_per_cpu(d)) 105 return -EINVAL; 106 107 /* whatever mask they set, we just allow one CPU */ 108 cpu_dest = cpumask_next_and(d->irq & (num_online_cpus()-1), 109 dest, cpu_online_mask); 110 if (cpu_dest >= nr_cpu_ids) 111 cpu_dest = cpumask_first_and(dest, cpu_online_mask); 112 113 return cpu_dest; 114 } 115 116 static int cpu_set_affinity_irq(struct irq_data *d, const struct cpumask *dest, 117 bool force) 118 { 119 int cpu_dest; 120 121 cpu_dest = cpu_check_affinity(d, dest); 122 if (cpu_dest < 0) 123 return -1; 124 125 cpumask_copy(irq_data_get_affinity_mask(d), dest); 126 127 return 0; 128 } 129 #endif 130 131 static struct irq_chip cpu_interrupt_type = { 132 .name = "CPU", 133 .irq_mask = cpu_mask_irq, 134 .irq_unmask = cpu_unmask_irq, 135 .irq_ack = cpu_ack_irq, 136 .irq_eoi = cpu_eoi_irq, 137 #ifdef CONFIG_SMP 138 .irq_set_affinity = cpu_set_affinity_irq, 139 #endif 140 /* XXX: Needs to be written. We managed without it so far, but 141 * we really ought to write it. 142 */ 143 .irq_retrigger = NULL, 144 }; 145 146 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat); 147 #define irq_stats(x) (&per_cpu(irq_stat, x)) 148 149 /* 150 * /proc/interrupts printing for arch specific interrupts 151 */ 152 int arch_show_interrupts(struct seq_file *p, int prec) 153 { 154 int j; 155 156 #ifdef CONFIG_DEBUG_STACKOVERFLOW 157 seq_printf(p, "%*s: ", prec, "STK"); 158 for_each_online_cpu(j) 159 seq_printf(p, "%10u ", irq_stats(j)->kernel_stack_usage); 160 seq_puts(p, " Kernel stack usage\n"); 161 # ifdef CONFIG_IRQSTACKS 162 seq_printf(p, "%*s: ", prec, "IST"); 163 for_each_online_cpu(j) 164 seq_printf(p, "%10u ", irq_stats(j)->irq_stack_usage); 165 seq_puts(p, " Interrupt stack usage\n"); 166 # endif 167 #endif 168 #ifdef CONFIG_SMP 169 if (num_online_cpus() > 1) { 170 seq_printf(p, "%*s: ", prec, "RES"); 171 for_each_online_cpu(j) 172 seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count); 173 seq_puts(p, " Rescheduling interrupts\n"); 174 seq_printf(p, "%*s: ", prec, "CAL"); 175 for_each_online_cpu(j) 176 seq_printf(p, "%10u ", irq_stats(j)->irq_call_count); 177 seq_puts(p, " Function call interrupts\n"); 178 } 179 #endif 180 seq_printf(p, "%*s: ", prec, "UAH"); 181 for_each_online_cpu(j) 182 seq_printf(p, "%10u ", irq_stats(j)->irq_unaligned_count); 183 seq_puts(p, " Unaligned access handler traps\n"); 184 seq_printf(p, "%*s: ", prec, "FPA"); 185 for_each_online_cpu(j) 186 seq_printf(p, "%10u ", irq_stats(j)->irq_fpassist_count); 187 seq_puts(p, " Floating point assist traps\n"); 188 seq_printf(p, "%*s: ", prec, "TLB"); 189 for_each_online_cpu(j) 190 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count); 191 seq_puts(p, " TLB shootdowns\n"); 192 return 0; 193 } 194 195 int show_interrupts(struct seq_file *p, void *v) 196 { 197 int i = *(loff_t *) v, j; 198 unsigned long flags; 199 200 if (i == 0) { 201 seq_puts(p, " "); 202 for_each_online_cpu(j) 203 seq_printf(p, " CPU%d", j); 204 205 #ifdef PARISC_IRQ_CR16_COUNTS 206 seq_printf(p, " [min/avg/max] (CPU cycle counts)"); 207 #endif 208 seq_putc(p, '\n'); 209 } 210 211 if (i < NR_IRQS) { 212 struct irq_desc *desc = irq_to_desc(i); 213 struct irqaction *action; 214 215 raw_spin_lock_irqsave(&desc->lock, flags); 216 action = desc->action; 217 if (!action) 218 goto skip; 219 seq_printf(p, "%3d: ", i); 220 221 for_each_online_cpu(j) 222 seq_printf(p, "%10u ", irq_desc_kstat_cpu(desc, j)); 223 224 seq_printf(p, " %14s", irq_desc_get_chip(desc)->name); 225 #ifndef PARISC_IRQ_CR16_COUNTS 226 seq_printf(p, " %s", action->name); 227 228 while ((action = action->next)) 229 seq_printf(p, ", %s", action->name); 230 #else 231 for ( ;action; action = action->next) { 232 unsigned int k, avg, min, max; 233 234 min = max = action->cr16_hist[0]; 235 236 for (avg = k = 0; k < PARISC_CR16_HIST_SIZE; k++) { 237 int hist = action->cr16_hist[k]; 238 239 if (hist) { 240 avg += hist; 241 } else 242 break; 243 244 if (hist > max) max = hist; 245 if (hist < min) min = hist; 246 } 247 248 avg /= k; 249 seq_printf(p, " %s[%d/%d/%d]", action->name, 250 min,avg,max); 251 } 252 #endif 253 254 seq_putc(p, '\n'); 255 skip: 256 raw_spin_unlock_irqrestore(&desc->lock, flags); 257 } 258 259 if (i == NR_IRQS) 260 arch_show_interrupts(p, 3); 261 262 return 0; 263 } 264 265 266 267 /* 268 ** The following form a "set": Virtual IRQ, Transaction Address, Trans Data. 269 ** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit. 270 ** 271 ** To use txn_XXX() interfaces, get a Virtual IRQ first. 272 ** Then use that to get the Transaction address and data. 273 */ 274 275 int cpu_claim_irq(unsigned int irq, struct irq_chip *type, void *data) 276 { 277 if (irq_has_action(irq)) 278 return -EBUSY; 279 if (irq_get_chip(irq) != &cpu_interrupt_type) 280 return -EBUSY; 281 282 /* for iosapic interrupts */ 283 if (type) { 284 irq_set_chip_and_handler(irq, type, handle_percpu_irq); 285 irq_set_chip_data(irq, data); 286 __cpu_unmask_irq(irq); 287 } 288 return 0; 289 } 290 291 int txn_claim_irq(int irq) 292 { 293 return cpu_claim_irq(irq, NULL, NULL) ? -1 : irq; 294 } 295 296 /* 297 * The bits_wide parameter accommodates the limitations of the HW/SW which 298 * use these bits: 299 * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register) 300 * V-class (EPIC): 6 bits 301 * N/L/A-class (iosapic): 8 bits 302 * PCI 2.2 MSI: 16 bits 303 * Some PCI devices: 32 bits (Symbios SCSI/ATM/HyperFabric) 304 * 305 * On the service provider side: 306 * o PA 1.1 (and PA2.0 narrow mode) 5-bits (width of EIR register) 307 * o PA 2.0 wide mode 6-bits (per processor) 308 * o IA64 8-bits (0-256 total) 309 * 310 * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported 311 * by the processor...and the N/L-class I/O subsystem supports more bits than 312 * PA2.0 has. The first case is the problem. 313 */ 314 int txn_alloc_irq(unsigned int bits_wide) 315 { 316 int irq; 317 318 /* never return irq 0 cause that's the interval timer */ 319 for (irq = CPU_IRQ_BASE + 1; irq <= CPU_IRQ_MAX; irq++) { 320 if (cpu_claim_irq(irq, NULL, NULL) < 0) 321 continue; 322 if ((irq - CPU_IRQ_BASE) >= (1 << bits_wide)) 323 continue; 324 return irq; 325 } 326 327 /* unlikely, but be prepared */ 328 return -1; 329 } 330 331 332 unsigned long txn_affinity_addr(unsigned int irq, int cpu) 333 { 334 #ifdef CONFIG_SMP 335 struct irq_data *d = irq_get_irq_data(irq); 336 cpumask_copy(irq_data_get_affinity_mask(d), cpumask_of(cpu)); 337 #endif 338 339 return per_cpu(cpu_data, cpu).txn_addr; 340 } 341 342 343 unsigned long txn_alloc_addr(unsigned int virt_irq) 344 { 345 static int next_cpu = -1; 346 347 next_cpu++; /* assign to "next" CPU we want this bugger on */ 348 349 /* validate entry */ 350 while ((next_cpu < nr_cpu_ids) && 351 (!per_cpu(cpu_data, next_cpu).txn_addr || 352 !cpu_online(next_cpu))) 353 next_cpu++; 354 355 if (next_cpu >= nr_cpu_ids) 356 next_cpu = 0; /* nothing else, assign monarch */ 357 358 return txn_affinity_addr(virt_irq, next_cpu); 359 } 360 361 362 unsigned int txn_alloc_data(unsigned int virt_irq) 363 { 364 return virt_irq - CPU_IRQ_BASE; 365 } 366 367 static inline int eirr_to_irq(unsigned long eirr) 368 { 369 int bit = fls_long(eirr); 370 return (BITS_PER_LONG - bit) + TIMER_IRQ; 371 } 372 373 #ifdef CONFIG_IRQSTACKS 374 /* 375 * IRQ STACK - used for irq handler 376 */ 377 #ifdef CONFIG_64BIT 378 #define IRQ_STACK_SIZE (4096 << 4) /* 64k irq stack size */ 379 #else 380 #define IRQ_STACK_SIZE (4096 << 3) /* 32k irq stack size */ 381 #endif 382 383 union irq_stack_union { 384 unsigned long stack[IRQ_STACK_SIZE/sizeof(unsigned long)]; 385 volatile unsigned int slock[4]; 386 volatile unsigned int lock[1]; 387 }; 388 389 DEFINE_PER_CPU(union irq_stack_union, irq_stack_union) = { 390 .slock = { 1,1,1,1 }, 391 }; 392 #endif 393 394 395 int sysctl_panic_on_stackoverflow = 1; 396 397 static inline void stack_overflow_check(struct pt_regs *regs) 398 { 399 #ifdef CONFIG_DEBUG_STACKOVERFLOW 400 #define STACK_MARGIN (256*6) 401 402 /* Our stack starts directly behind the thread_info struct. */ 403 unsigned long stack_start = (unsigned long) current_thread_info(); 404 unsigned long sp = regs->gr[30]; 405 unsigned long stack_usage; 406 unsigned int *last_usage; 407 int cpu = smp_processor_id(); 408 409 /* if sr7 != 0, we interrupted a userspace process which we do not want 410 * to check for stack overflow. We will only check the kernel stack. */ 411 if (regs->sr[7]) 412 return; 413 414 /* exit if already in panic */ 415 if (sysctl_panic_on_stackoverflow < 0) 416 return; 417 418 /* calculate kernel stack usage */ 419 stack_usage = sp - stack_start; 420 #ifdef CONFIG_IRQSTACKS 421 if (likely(stack_usage <= THREAD_SIZE)) 422 goto check_kernel_stack; /* found kernel stack */ 423 424 /* check irq stack usage */ 425 stack_start = (unsigned long) &per_cpu(irq_stack_union, cpu).stack; 426 stack_usage = sp - stack_start; 427 428 last_usage = &per_cpu(irq_stat.irq_stack_usage, cpu); 429 if (unlikely(stack_usage > *last_usage)) 430 *last_usage = stack_usage; 431 432 if (likely(stack_usage < (IRQ_STACK_SIZE - STACK_MARGIN))) 433 return; 434 435 pr_emerg("stackcheck: %s will most likely overflow irq stack " 436 "(sp:%lx, stk bottom-top:%lx-%lx)\n", 437 current->comm, sp, stack_start, stack_start + IRQ_STACK_SIZE); 438 goto panic_check; 439 440 check_kernel_stack: 441 #endif 442 443 /* check kernel stack usage */ 444 last_usage = &per_cpu(irq_stat.kernel_stack_usage, cpu); 445 446 if (unlikely(stack_usage > *last_usage)) 447 *last_usage = stack_usage; 448 449 if (likely(stack_usage < (THREAD_SIZE - STACK_MARGIN))) 450 return; 451 452 pr_emerg("stackcheck: %s will most likely overflow kernel stack " 453 "(sp:%lx, stk bottom-top:%lx-%lx)\n", 454 current->comm, sp, stack_start, stack_start + THREAD_SIZE); 455 456 #ifdef CONFIG_IRQSTACKS 457 panic_check: 458 #endif 459 if (sysctl_panic_on_stackoverflow) { 460 sysctl_panic_on_stackoverflow = -1; /* disable further checks */ 461 panic("low stack detected by irq handler - check messages\n"); 462 } 463 #endif 464 } 465 466 #ifdef CONFIG_IRQSTACKS 467 /* in entry.S: */ 468 void call_on_stack(unsigned long p1, void *func, unsigned long new_stack); 469 470 static void execute_on_irq_stack(void *func, unsigned long param1) 471 { 472 union irq_stack_union *union_ptr; 473 unsigned long irq_stack; 474 volatile unsigned int *irq_stack_in_use; 475 476 union_ptr = &per_cpu(irq_stack_union, smp_processor_id()); 477 irq_stack = (unsigned long) &union_ptr->stack; 478 irq_stack = ALIGN(irq_stack + sizeof(irq_stack_union.slock), 479 64); /* align for stack frame usage */ 480 481 /* We may be called recursive. If we are already using the irq stack, 482 * just continue to use it. Use spinlocks to serialize 483 * the irq stack usage. 484 */ 485 irq_stack_in_use = (volatile unsigned int *)__ldcw_align(union_ptr); 486 if (!__ldcw(irq_stack_in_use)) { 487 void (*direct_call)(unsigned long p1) = func; 488 489 /* We are using the IRQ stack already. 490 * Do direct call on current stack. */ 491 direct_call(param1); 492 return; 493 } 494 495 /* This is where we switch to the IRQ stack. */ 496 call_on_stack(param1, func, irq_stack); 497 498 /* free up irq stack usage. */ 499 *irq_stack_in_use = 1; 500 } 501 502 void do_softirq_own_stack(void) 503 { 504 execute_on_irq_stack(__do_softirq, 0); 505 } 506 #endif /* CONFIG_IRQSTACKS */ 507 508 /* ONLY called from entry.S:intr_extint() */ 509 void do_cpu_irq_mask(struct pt_regs *regs) 510 { 511 struct pt_regs *old_regs; 512 unsigned long eirr_val; 513 int irq, cpu = smp_processor_id(); 514 struct irq_data *irq_data; 515 #ifdef CONFIG_SMP 516 cpumask_t dest; 517 #endif 518 519 old_regs = set_irq_regs(regs); 520 local_irq_disable(); 521 irq_enter(); 522 523 eirr_val = mfctl(23) & cpu_eiem & per_cpu(local_ack_eiem, cpu); 524 if (!eirr_val) 525 goto set_out; 526 irq = eirr_to_irq(eirr_val); 527 528 irq_data = irq_get_irq_data(irq); 529 530 /* Filter out spurious interrupts, mostly from serial port at bootup */ 531 if (unlikely(!irq_desc_has_action(irq_data_to_desc(irq_data)))) 532 goto set_out; 533 534 #ifdef CONFIG_SMP 535 cpumask_copy(&dest, irq_data_get_affinity_mask(irq_data)); 536 if (irqd_is_per_cpu(irq_data) && 537 !cpumask_test_cpu(smp_processor_id(), &dest)) { 538 int cpu = cpumask_first(&dest); 539 540 printk(KERN_DEBUG "redirecting irq %d from CPU %d to %d\n", 541 irq, smp_processor_id(), cpu); 542 gsc_writel(irq + CPU_IRQ_BASE, 543 per_cpu(cpu_data, cpu).hpa); 544 goto set_out; 545 } 546 #endif 547 stack_overflow_check(regs); 548 549 #ifdef CONFIG_IRQSTACKS 550 execute_on_irq_stack(&generic_handle_irq, irq); 551 #else 552 generic_handle_irq(irq); 553 #endif /* CONFIG_IRQSTACKS */ 554 555 out: 556 irq_exit(); 557 set_irq_regs(old_regs); 558 return; 559 560 set_out: 561 set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu)); 562 goto out; 563 } 564 565 static void claim_cpu_irqs(void) 566 { 567 unsigned long flags = IRQF_TIMER | IRQF_PERCPU | IRQF_IRQPOLL; 568 int i; 569 570 for (i = CPU_IRQ_BASE; i <= CPU_IRQ_MAX; i++) { 571 irq_set_chip_and_handler(i, &cpu_interrupt_type, 572 handle_percpu_irq); 573 } 574 575 irq_set_handler(TIMER_IRQ, handle_percpu_irq); 576 if (request_irq(TIMER_IRQ, timer_interrupt, flags, "timer", NULL)) 577 pr_err("Failed to register timer interrupt\n"); 578 #ifdef CONFIG_SMP 579 irq_set_handler(IPI_IRQ, handle_percpu_irq); 580 if (request_irq(IPI_IRQ, ipi_interrupt, IRQF_PERCPU, "IPI", NULL)) 581 pr_err("Failed to register IPI interrupt\n"); 582 #endif 583 } 584 585 void __init init_IRQ(void) 586 { 587 local_irq_disable(); /* PARANOID - should already be disabled */ 588 mtctl(~0UL, 23); /* EIRR : clear all pending external intr */ 589 #ifdef CONFIG_SMP 590 if (!cpu_eiem) { 591 claim_cpu_irqs(); 592 cpu_eiem = EIEM_MASK(IPI_IRQ) | EIEM_MASK(TIMER_IRQ); 593 } 594 #else 595 claim_cpu_irqs(); 596 cpu_eiem = EIEM_MASK(TIMER_IRQ); 597 #endif 598 set_eiem(cpu_eiem); /* EIEM : enable all external intr */ 599 } 600