xref: /linux/arch/parisc/kernel/irq.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * Code to handle x86 style IRQs plus some generic interrupt stuff.
3  *
4  * Copyright (C) 1992 Linus Torvalds
5  * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle
6  * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
7  * Copyright (C) 1999-2000 Grant Grundler
8  * Copyright (c) 2005 Matthew Wilcox
9  *
10  *    This program is free software; you can redistribute it and/or modify
11  *    it under the terms of the GNU General Public License as published by
12  *    the Free Software Foundation; either version 2, or (at your option)
13  *    any later version.
14  *
15  *    This program is distributed in the hope that it will be useful,
16  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
17  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  *    GNU General Public License for more details.
19  *
20  *    You should have received a copy of the GNU General Public License
21  *    along with this program; if not, write to the Free Software
22  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 #include <linux/bitops.h>
25 #include <linux/errno.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/seq_file.h>
30 #include <linux/spinlock.h>
31 #include <linux/types.h>
32 #include <asm/io.h>
33 
34 #include <asm/smp.h>
35 
36 #undef PARISC_IRQ_CR16_COUNTS
37 
38 extern irqreturn_t timer_interrupt(int, void *, struct pt_regs *);
39 extern irqreturn_t ipi_interrupt(int, void *, struct pt_regs *);
40 
41 #define EIEM_MASK(irq)       (1UL<<(CPU_IRQ_MAX - irq))
42 
43 /* Bits in EIEM correlate with cpu_irq_action[].
44 ** Numbered *Big Endian*! (ie bit 0 is MSB)
45 */
46 static volatile unsigned long cpu_eiem = 0;
47 
48 static void cpu_disable_irq(unsigned int irq)
49 {
50 	unsigned long eirr_bit = EIEM_MASK(irq);
51 
52 	cpu_eiem &= ~eirr_bit;
53 	/* Do nothing on the other CPUs.  If they get this interrupt,
54 	 * The & cpu_eiem in the do_cpu_irq_mask() ensures they won't
55 	 * handle it, and the set_eiem() at the bottom will ensure it
56 	 * then gets disabled */
57 }
58 
59 static void cpu_enable_irq(unsigned int irq)
60 {
61 	unsigned long eirr_bit = EIEM_MASK(irq);
62 
63 	cpu_eiem |= eirr_bit;
64 
65 	/* FIXME: while our interrupts aren't nested, we cannot reset
66 	 * the eiem mask if we're already in an interrupt.  Once we
67 	 * implement nested interrupts, this can go away
68 	 */
69 	if (!in_interrupt())
70 		set_eiem(cpu_eiem);
71 
72 	/* This is just a simple NOP IPI.  But what it does is cause
73 	 * all the other CPUs to do a set_eiem(cpu_eiem) at the end
74 	 * of the interrupt handler */
75 	smp_send_all_nop();
76 }
77 
78 static unsigned int cpu_startup_irq(unsigned int irq)
79 {
80 	cpu_enable_irq(irq);
81 	return 0;
82 }
83 
84 void no_ack_irq(unsigned int irq) { }
85 void no_end_irq(unsigned int irq) { }
86 
87 #ifdef CONFIG_SMP
88 int cpu_check_affinity(unsigned int irq, cpumask_t *dest)
89 {
90 	int cpu_dest;
91 
92 	/* timer and ipi have to always be received on all CPUs */
93 	if (irq == TIMER_IRQ || irq == IPI_IRQ) {
94 		/* Bad linux design decision.  The mask has already
95 		 * been set; we must reset it */
96 		irq_desc[irq].affinity = CPU_MASK_ALL;
97 		return -EINVAL;
98 	}
99 
100 	/* whatever mask they set, we just allow one CPU */
101 	cpu_dest = first_cpu(*dest);
102 	*dest = cpumask_of_cpu(cpu_dest);
103 
104 	return 0;
105 }
106 
107 static void cpu_set_affinity_irq(unsigned int irq, cpumask_t dest)
108 {
109 	if (cpu_check_affinity(irq, &dest))
110 		return;
111 
112 	irq_desc[irq].affinity = dest;
113 }
114 #endif
115 
116 static struct hw_interrupt_type cpu_interrupt_type = {
117 	.typename	= "CPU",
118 	.startup	= cpu_startup_irq,
119 	.shutdown	= cpu_disable_irq,
120 	.enable		= cpu_enable_irq,
121 	.disable	= cpu_disable_irq,
122 	.ack		= no_ack_irq,
123 	.end		= no_end_irq,
124 #ifdef CONFIG_SMP
125 	.set_affinity	= cpu_set_affinity_irq,
126 #endif
127 	/* XXX: Needs to be written.  We managed without it so far, but
128 	 * we really ought to write it.
129 	 */
130 	.retrigger	= NULL,
131 };
132 
133 int show_interrupts(struct seq_file *p, void *v)
134 {
135 	int i = *(loff_t *) v, j;
136 	unsigned long flags;
137 
138 	if (i == 0) {
139 		seq_puts(p, "    ");
140 		for_each_online_cpu(j)
141 			seq_printf(p, "       CPU%d", j);
142 
143 #ifdef PARISC_IRQ_CR16_COUNTS
144 		seq_printf(p, " [min/avg/max] (CPU cycle counts)");
145 #endif
146 		seq_putc(p, '\n');
147 	}
148 
149 	if (i < NR_IRQS) {
150 		struct irqaction *action;
151 
152 		spin_lock_irqsave(&irq_desc[i].lock, flags);
153 		action = irq_desc[i].action;
154 		if (!action)
155 			goto skip;
156 		seq_printf(p, "%3d: ", i);
157 #ifdef CONFIG_SMP
158 		for_each_online_cpu(j)
159 			seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
160 #else
161 		seq_printf(p, "%10u ", kstat_irqs(i));
162 #endif
163 
164 		seq_printf(p, " %14s", irq_desc[i].chip->typename);
165 #ifndef PARISC_IRQ_CR16_COUNTS
166 		seq_printf(p, "  %s", action->name);
167 
168 		while ((action = action->next))
169 			seq_printf(p, ", %s", action->name);
170 #else
171 		for ( ;action; action = action->next) {
172 			unsigned int k, avg, min, max;
173 
174 			min = max = action->cr16_hist[0];
175 
176 			for (avg = k = 0; k < PARISC_CR16_HIST_SIZE; k++) {
177 				int hist = action->cr16_hist[k];
178 
179 				if (hist) {
180 					avg += hist;
181 				} else
182 					break;
183 
184 				if (hist > max) max = hist;
185 				if (hist < min) min = hist;
186 			}
187 
188 			avg /= k;
189 			seq_printf(p, " %s[%d/%d/%d]", action->name,
190 					min,avg,max);
191 		}
192 #endif
193 
194 		seq_putc(p, '\n');
195  skip:
196 		spin_unlock_irqrestore(&irq_desc[i].lock, flags);
197 	}
198 
199 	return 0;
200 }
201 
202 
203 
204 /*
205 ** The following form a "set": Virtual IRQ, Transaction Address, Trans Data.
206 ** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit.
207 **
208 ** To use txn_XXX() interfaces, get a Virtual IRQ first.
209 ** Then use that to get the Transaction address and data.
210 */
211 
212 int cpu_claim_irq(unsigned int irq, struct hw_interrupt_type *type, void *data)
213 {
214 	if (irq_desc[irq].action)
215 		return -EBUSY;
216 	if (irq_desc[irq].chip != &cpu_interrupt_type)
217 		return -EBUSY;
218 
219 	if (type) {
220 		irq_desc[irq].chip = type;
221 		irq_desc[irq].chip_data = data;
222 		cpu_interrupt_type.enable(irq);
223 	}
224 	return 0;
225 }
226 
227 int txn_claim_irq(int irq)
228 {
229 	return cpu_claim_irq(irq, NULL, NULL) ? -1 : irq;
230 }
231 
232 /*
233  * The bits_wide parameter accommodates the limitations of the HW/SW which
234  * use these bits:
235  * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register)
236  * V-class (EPIC):          6 bits
237  * N/L/A-class (iosapic):   8 bits
238  * PCI 2.2 MSI:            16 bits
239  * Some PCI devices:       32 bits (Symbios SCSI/ATM/HyperFabric)
240  *
241  * On the service provider side:
242  * o PA 1.1 (and PA2.0 narrow mode)     5-bits (width of EIR register)
243  * o PA 2.0 wide mode                   6-bits (per processor)
244  * o IA64                               8-bits (0-256 total)
245  *
246  * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported
247  * by the processor...and the N/L-class I/O subsystem supports more bits than
248  * PA2.0 has. The first case is the problem.
249  */
250 int txn_alloc_irq(unsigned int bits_wide)
251 {
252 	int irq;
253 
254 	/* never return irq 0 cause that's the interval timer */
255 	for (irq = CPU_IRQ_BASE + 1; irq <= CPU_IRQ_MAX; irq++) {
256 		if (cpu_claim_irq(irq, NULL, NULL) < 0)
257 			continue;
258 		if ((irq - CPU_IRQ_BASE) >= (1 << bits_wide))
259 			continue;
260 		return irq;
261 	}
262 
263 	/* unlikely, but be prepared */
264 	return -1;
265 }
266 
267 
268 unsigned long txn_affinity_addr(unsigned int irq, int cpu)
269 {
270 #ifdef CONFIG_SMP
271 	irq_desc[irq].affinity = cpumask_of_cpu(cpu);
272 #endif
273 
274 	return cpu_data[cpu].txn_addr;
275 }
276 
277 
278 unsigned long txn_alloc_addr(unsigned int virt_irq)
279 {
280 	static int next_cpu = -1;
281 
282 	next_cpu++; /* assign to "next" CPU we want this bugger on */
283 
284 	/* validate entry */
285 	while ((next_cpu < NR_CPUS) && (!cpu_data[next_cpu].txn_addr ||
286 		!cpu_online(next_cpu)))
287 		next_cpu++;
288 
289 	if (next_cpu >= NR_CPUS)
290 		next_cpu = 0;	/* nothing else, assign monarch */
291 
292 	return txn_affinity_addr(virt_irq, next_cpu);
293 }
294 
295 
296 unsigned int txn_alloc_data(unsigned int virt_irq)
297 {
298 	return virt_irq - CPU_IRQ_BASE;
299 }
300 
301 /* ONLY called from entry.S:intr_extint() */
302 void do_cpu_irq_mask(struct pt_regs *regs)
303 {
304 	unsigned long eirr_val;
305 
306 	irq_enter();
307 
308 	/*
309 	 * Don't allow TIMER or IPI nested interrupts.
310 	 * Allowing any single interrupt to nest can lead to that CPU
311 	 * handling interrupts with all enabled interrupts unmasked.
312 	 */
313 	set_eiem(0UL);
314 
315 	/* 1) only process IRQs that are enabled/unmasked (cpu_eiem)
316 	 * 2) We loop here on EIRR contents in order to avoid
317 	 *    nested interrupts or having to take another interrupt
318 	 *    when we could have just handled it right away.
319 	 */
320 	for (;;) {
321 		unsigned long bit = (1UL << (BITS_PER_LONG - 1));
322 		unsigned int irq;
323 		eirr_val = mfctl(23) & cpu_eiem;
324 		if (!eirr_val)
325 			break;
326 
327 		mtctl(eirr_val, 23); /* reset bits we are going to process */
328 
329 		/* Work our way from MSb to LSb...same order we alloc EIRs */
330 		for (irq = TIMER_IRQ; eirr_val && bit; bit>>=1, irq++) {
331 #ifdef CONFIG_SMP
332 			cpumask_t dest = irq_desc[irq].affinity;
333 #endif
334 			if (!(bit & eirr_val))
335 				continue;
336 
337 			/* clear bit in mask - can exit loop sooner */
338 			eirr_val &= ~bit;
339 
340 #ifdef CONFIG_SMP
341 			/* FIXME: because generic set affinity mucks
342 			 * with the affinity before sending it to us
343 			 * we can get the situation where the affinity is
344 			 * wrong for our CPU type interrupts */
345 			if (irq != TIMER_IRQ && irq != IPI_IRQ &&
346 			    !cpu_isset(smp_processor_id(), dest)) {
347 				int cpu = first_cpu(dest);
348 
349 				printk(KERN_DEBUG "redirecting irq %d from CPU %d to %d\n",
350 				       irq, smp_processor_id(), cpu);
351 				gsc_writel(irq + CPU_IRQ_BASE,
352 					   cpu_data[cpu].hpa);
353 				continue;
354 			}
355 #endif
356 
357 			__do_IRQ(irq, regs);
358 		}
359 	}
360 
361 	set_eiem(cpu_eiem);	/* restore original mask */
362 	irq_exit();
363 }
364 
365 
366 static struct irqaction timer_action = {
367 	.handler = timer_interrupt,
368 	.name = "timer",
369 	.flags = IRQF_DISABLED,
370 };
371 
372 #ifdef CONFIG_SMP
373 static struct irqaction ipi_action = {
374 	.handler = ipi_interrupt,
375 	.name = "IPI",
376 	.flags = IRQF_DISABLED,
377 };
378 #endif
379 
380 static void claim_cpu_irqs(void)
381 {
382 	int i;
383 	for (i = CPU_IRQ_BASE; i <= CPU_IRQ_MAX; i++) {
384 		irq_desc[i].chip = &cpu_interrupt_type;
385 	}
386 
387 	irq_desc[TIMER_IRQ].action = &timer_action;
388 	irq_desc[TIMER_IRQ].status |= IRQ_PER_CPU;
389 #ifdef CONFIG_SMP
390 	irq_desc[IPI_IRQ].action = &ipi_action;
391 	irq_desc[IPI_IRQ].status = IRQ_PER_CPU;
392 #endif
393 }
394 
395 void __init init_IRQ(void)
396 {
397 	local_irq_disable();	/* PARANOID - should already be disabled */
398 	mtctl(~0UL, 23);	/* EIRR : clear all pending external intr */
399 	claim_cpu_irqs();
400 #ifdef CONFIG_SMP
401 	if (!cpu_eiem)
402 		cpu_eiem = EIEM_MASK(IPI_IRQ) | EIEM_MASK(TIMER_IRQ);
403 #else
404 	cpu_eiem = EIEM_MASK(TIMER_IRQ);
405 #endif
406         set_eiem(cpu_eiem);	/* EIEM : enable all external intr */
407 
408 }
409 
410 void ack_bad_irq(unsigned int irq)
411 {
412 	printk("unexpected IRQ %d\n", irq);
413 }
414