xref: /linux/arch/parisc/kernel/irq.c (revision 02680c23d7b3febe45ea3d4f9818c2b2dc89020a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Code to handle x86 style IRQs plus some generic interrupt stuff.
4  *
5  * Copyright (C) 1992 Linus Torvalds
6  * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle
7  * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
8  * Copyright (C) 1999-2000 Grant Grundler
9  * Copyright (c) 2005 Matthew Wilcox
10  */
11 #include <linux/bitops.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/seq_file.h>
17 #include <linux/types.h>
18 #include <asm/io.h>
19 
20 #include <asm/softirq_stack.h>
21 #include <asm/smp.h>
22 #include <asm/ldcw.h>
23 
24 #undef PARISC_IRQ_CR16_COUNTS
25 
26 extern irqreturn_t timer_interrupt(int, void *);
27 extern irqreturn_t ipi_interrupt(int, void *);
28 
29 #define EIEM_MASK(irq)       (1UL<<(CPU_IRQ_MAX - irq))
30 
31 /* Bits in EIEM correlate with cpu_irq_action[].
32 ** Numbered *Big Endian*! (ie bit 0 is MSB)
33 */
34 static volatile unsigned long cpu_eiem = 0;
35 
36 /*
37 ** local ACK bitmap ... habitually set to 1, but reset to zero
38 ** between ->ack() and ->end() of the interrupt to prevent
39 ** re-interruption of a processing interrupt.
40 */
41 static DEFINE_PER_CPU(unsigned long, local_ack_eiem) = ~0UL;
42 
43 static void cpu_mask_irq(struct irq_data *d)
44 {
45 	unsigned long eirr_bit = EIEM_MASK(d->irq);
46 
47 	cpu_eiem &= ~eirr_bit;
48 	/* Do nothing on the other CPUs.  If they get this interrupt,
49 	 * The & cpu_eiem in the do_cpu_irq_mask() ensures they won't
50 	 * handle it, and the set_eiem() at the bottom will ensure it
51 	 * then gets disabled */
52 }
53 
54 static void __cpu_unmask_irq(unsigned int irq)
55 {
56 	unsigned long eirr_bit = EIEM_MASK(irq);
57 
58 	cpu_eiem |= eirr_bit;
59 
60 	/* This is just a simple NOP IPI.  But what it does is cause
61 	 * all the other CPUs to do a set_eiem(cpu_eiem) at the end
62 	 * of the interrupt handler */
63 	smp_send_all_nop();
64 }
65 
66 static void cpu_unmask_irq(struct irq_data *d)
67 {
68 	__cpu_unmask_irq(d->irq);
69 }
70 
71 void cpu_ack_irq(struct irq_data *d)
72 {
73 	unsigned long mask = EIEM_MASK(d->irq);
74 	int cpu = smp_processor_id();
75 
76 	/* Clear in EIEM so we can no longer process */
77 	per_cpu(local_ack_eiem, cpu) &= ~mask;
78 
79 	/* disable the interrupt */
80 	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
81 
82 	/* and now ack it */
83 	mtctl(mask, 23);
84 }
85 
86 void cpu_eoi_irq(struct irq_data *d)
87 {
88 	unsigned long mask = EIEM_MASK(d->irq);
89 	int cpu = smp_processor_id();
90 
91 	/* set it in the eiems---it's no longer in process */
92 	per_cpu(local_ack_eiem, cpu) |= mask;
93 
94 	/* enable the interrupt */
95 	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
96 }
97 
98 #ifdef CONFIG_SMP
99 int cpu_check_affinity(struct irq_data *d, const struct cpumask *dest)
100 {
101 	int cpu_dest;
102 
103 	/* timer and ipi have to always be received on all CPUs */
104 	if (irqd_is_per_cpu(d))
105 		return -EINVAL;
106 
107 	/* whatever mask they set, we just allow one CPU */
108 	cpu_dest = cpumask_next_and(d->irq & (num_online_cpus()-1),
109 					dest, cpu_online_mask);
110 	if (cpu_dest >= nr_cpu_ids)
111 		cpu_dest = cpumask_first_and(dest, cpu_online_mask);
112 
113 	return cpu_dest;
114 }
115 
116 static int cpu_set_affinity_irq(struct irq_data *d, const struct cpumask *dest,
117 				bool force)
118 {
119 	int cpu_dest;
120 
121 	cpu_dest = cpu_check_affinity(d, dest);
122 	if (cpu_dest < 0)
123 		return -1;
124 
125 	cpumask_copy(irq_data_get_affinity_mask(d), dest);
126 
127 	return 0;
128 }
129 #endif
130 
131 static struct irq_chip cpu_interrupt_type = {
132 	.name			= "CPU",
133 	.irq_mask		= cpu_mask_irq,
134 	.irq_unmask		= cpu_unmask_irq,
135 	.irq_ack		= cpu_ack_irq,
136 	.irq_eoi		= cpu_eoi_irq,
137 #ifdef CONFIG_SMP
138 	.irq_set_affinity	= cpu_set_affinity_irq,
139 #endif
140 	/* XXX: Needs to be written.  We managed without it so far, but
141 	 * we really ought to write it.
142 	 */
143 	.irq_retrigger	= NULL,
144 };
145 
146 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
147 #define irq_stats(x)		(&per_cpu(irq_stat, x))
148 
149 /*
150  * /proc/interrupts printing for arch specific interrupts
151  */
152 int arch_show_interrupts(struct seq_file *p, int prec)
153 {
154 	int j;
155 
156 #ifdef CONFIG_DEBUG_STACKOVERFLOW
157 	seq_printf(p, "%*s: ", prec, "STK");
158 	for_each_online_cpu(j)
159 		seq_printf(p, "%10u ", irq_stats(j)->kernel_stack_usage);
160 	seq_puts(p, "  Kernel stack usage\n");
161 # ifdef CONFIG_IRQSTACKS
162 	seq_printf(p, "%*s: ", prec, "IST");
163 	for_each_online_cpu(j)
164 		seq_printf(p, "%10u ", irq_stats(j)->irq_stack_usage);
165 	seq_puts(p, "  Interrupt stack usage\n");
166 # endif
167 #endif
168 #ifdef CONFIG_SMP
169 	if (num_online_cpus() > 1) {
170 		seq_printf(p, "%*s: ", prec, "RES");
171 		for_each_online_cpu(j)
172 			seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
173 		seq_puts(p, "  Rescheduling interrupts\n");
174 		seq_printf(p, "%*s: ", prec, "CAL");
175 		for_each_online_cpu(j)
176 			seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
177 		seq_puts(p, "  Function call interrupts\n");
178 	}
179 #endif
180 	seq_printf(p, "%*s: ", prec, "UAH");
181 	for_each_online_cpu(j)
182 		seq_printf(p, "%10u ", irq_stats(j)->irq_unaligned_count);
183 	seq_puts(p, "  Unaligned access handler traps\n");
184 	seq_printf(p, "%*s: ", prec, "FPA");
185 	for_each_online_cpu(j)
186 		seq_printf(p, "%10u ", irq_stats(j)->irq_fpassist_count);
187 	seq_puts(p, "  Floating point assist traps\n");
188 	seq_printf(p, "%*s: ", prec, "TLB");
189 	for_each_online_cpu(j)
190 		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
191 	seq_puts(p, "  TLB shootdowns\n");
192 	return 0;
193 }
194 
195 int show_interrupts(struct seq_file *p, void *v)
196 {
197 	int i = *(loff_t *) v, j;
198 	unsigned long flags;
199 
200 	if (i == 0) {
201 		seq_puts(p, "    ");
202 		for_each_online_cpu(j)
203 			seq_printf(p, "       CPU%d", j);
204 
205 #ifdef PARISC_IRQ_CR16_COUNTS
206 		seq_printf(p, " [min/avg/max] (CPU cycle counts)");
207 #endif
208 		seq_putc(p, '\n');
209 	}
210 
211 	if (i < NR_IRQS) {
212 		struct irq_desc *desc = irq_to_desc(i);
213 		struct irqaction *action;
214 
215 		raw_spin_lock_irqsave(&desc->lock, flags);
216 		action = desc->action;
217 		if (!action)
218 			goto skip;
219 		seq_printf(p, "%3d: ", i);
220 
221 		for_each_online_cpu(j)
222 			seq_printf(p, "%10u ", irq_desc_kstat_cpu(desc, j));
223 
224 		seq_printf(p, " %14s", irq_desc_get_chip(desc)->name);
225 #ifndef PARISC_IRQ_CR16_COUNTS
226 		seq_printf(p, "  %s", action->name);
227 
228 		while ((action = action->next))
229 			seq_printf(p, ", %s", action->name);
230 #else
231 		for ( ;action; action = action->next) {
232 			unsigned int k, avg, min, max;
233 
234 			min = max = action->cr16_hist[0];
235 
236 			for (avg = k = 0; k < PARISC_CR16_HIST_SIZE; k++) {
237 				int hist = action->cr16_hist[k];
238 
239 				if (hist) {
240 					avg += hist;
241 				} else
242 					break;
243 
244 				if (hist > max) max = hist;
245 				if (hist < min) min = hist;
246 			}
247 
248 			avg /= k;
249 			seq_printf(p, " %s[%d/%d/%d]", action->name,
250 					min,avg,max);
251 		}
252 #endif
253 
254 		seq_putc(p, '\n');
255  skip:
256 		raw_spin_unlock_irqrestore(&desc->lock, flags);
257 	}
258 
259 	if (i == NR_IRQS)
260 		arch_show_interrupts(p, 3);
261 
262 	return 0;
263 }
264 
265 
266 
267 /*
268 ** The following form a "set": Virtual IRQ, Transaction Address, Trans Data.
269 ** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit.
270 **
271 ** To use txn_XXX() interfaces, get a Virtual IRQ first.
272 ** Then use that to get the Transaction address and data.
273 */
274 
275 int cpu_claim_irq(unsigned int irq, struct irq_chip *type, void *data)
276 {
277 	if (irq_has_action(irq))
278 		return -EBUSY;
279 	if (irq_get_chip(irq) != &cpu_interrupt_type)
280 		return -EBUSY;
281 
282 	/* for iosapic interrupts */
283 	if (type) {
284 		irq_set_chip_and_handler(irq, type, handle_percpu_irq);
285 		irq_set_chip_data(irq, data);
286 		__cpu_unmask_irq(irq);
287 	}
288 	return 0;
289 }
290 
291 int txn_claim_irq(int irq)
292 {
293 	return cpu_claim_irq(irq, NULL, NULL) ? -1 : irq;
294 }
295 
296 /*
297  * The bits_wide parameter accommodates the limitations of the HW/SW which
298  * use these bits:
299  * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register)
300  * V-class (EPIC):          6 bits
301  * N/L/A-class (iosapic):   8 bits
302  * PCI 2.2 MSI:            16 bits
303  * Some PCI devices:       32 bits (Symbios SCSI/ATM/HyperFabric)
304  *
305  * On the service provider side:
306  * o PA 1.1 (and PA2.0 narrow mode)     5-bits (width of EIR register)
307  * o PA 2.0 wide mode                   6-bits (per processor)
308  * o IA64                               8-bits (0-256 total)
309  *
310  * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported
311  * by the processor...and the N/L-class I/O subsystem supports more bits than
312  * PA2.0 has. The first case is the problem.
313  */
314 int txn_alloc_irq(unsigned int bits_wide)
315 {
316 	int irq;
317 
318 	/* never return irq 0 cause that's the interval timer */
319 	for (irq = CPU_IRQ_BASE + 1; irq <= CPU_IRQ_MAX; irq++) {
320 		if (cpu_claim_irq(irq, NULL, NULL) < 0)
321 			continue;
322 		if ((irq - CPU_IRQ_BASE) >= (1 << bits_wide))
323 			continue;
324 		return irq;
325 	}
326 
327 	/* unlikely, but be prepared */
328 	return -1;
329 }
330 
331 
332 unsigned long txn_affinity_addr(unsigned int irq, int cpu)
333 {
334 #ifdef CONFIG_SMP
335 	struct irq_data *d = irq_get_irq_data(irq);
336 	cpumask_copy(irq_data_get_affinity_mask(d), cpumask_of(cpu));
337 #endif
338 
339 	return per_cpu(cpu_data, cpu).txn_addr;
340 }
341 
342 
343 unsigned long txn_alloc_addr(unsigned int virt_irq)
344 {
345 	static int next_cpu = -1;
346 
347 	next_cpu++; /* assign to "next" CPU we want this bugger on */
348 
349 	/* validate entry */
350 	while ((next_cpu < nr_cpu_ids) &&
351 		(!per_cpu(cpu_data, next_cpu).txn_addr ||
352 		 !cpu_online(next_cpu)))
353 		next_cpu++;
354 
355 	if (next_cpu >= nr_cpu_ids)
356 		next_cpu = 0;	/* nothing else, assign monarch */
357 
358 	return txn_affinity_addr(virt_irq, next_cpu);
359 }
360 
361 
362 unsigned int txn_alloc_data(unsigned int virt_irq)
363 {
364 	return virt_irq - CPU_IRQ_BASE;
365 }
366 
367 static inline int eirr_to_irq(unsigned long eirr)
368 {
369 	int bit = fls_long(eirr);
370 	return (BITS_PER_LONG - bit) + TIMER_IRQ;
371 }
372 
373 #ifdef CONFIG_IRQSTACKS
374 /*
375  * IRQ STACK - used for irq handler
376  */
377 #ifdef CONFIG_64BIT
378 #define IRQ_STACK_SIZE      (4096 << 4) /* 64k irq stack size */
379 #else
380 #define IRQ_STACK_SIZE      (4096 << 3) /* 32k irq stack size */
381 #endif
382 
383 union irq_stack_union {
384 	unsigned long stack[IRQ_STACK_SIZE/sizeof(unsigned long)];
385 	volatile unsigned int slock[4];
386 	volatile unsigned int lock[1];
387 };
388 
389 DEFINE_PER_CPU(union irq_stack_union, irq_stack_union) = {
390 		.slock = { 1,1,1,1 },
391 	};
392 #endif
393 
394 
395 int sysctl_panic_on_stackoverflow = 1;
396 
397 static inline void stack_overflow_check(struct pt_regs *regs)
398 {
399 #ifdef CONFIG_DEBUG_STACKOVERFLOW
400 	#define STACK_MARGIN	(256*6)
401 
402 	/* Our stack starts directly behind the thread_info struct. */
403 	unsigned long stack_start = (unsigned long) current_thread_info();
404 	unsigned long sp = regs->gr[30];
405 	unsigned long stack_usage;
406 	unsigned int *last_usage;
407 	int cpu = smp_processor_id();
408 
409 	/* if sr7 != 0, we interrupted a userspace process which we do not want
410 	 * to check for stack overflow. We will only check the kernel stack. */
411 	if (regs->sr[7])
412 		return;
413 
414 	/* exit if already in panic */
415 	if (sysctl_panic_on_stackoverflow < 0)
416 		return;
417 
418 	/* calculate kernel stack usage */
419 	stack_usage = sp - stack_start;
420 #ifdef CONFIG_IRQSTACKS
421 	if (likely(stack_usage <= THREAD_SIZE))
422 		goto check_kernel_stack; /* found kernel stack */
423 
424 	/* check irq stack usage */
425 	stack_start = (unsigned long) &per_cpu(irq_stack_union, cpu).stack;
426 	stack_usage = sp - stack_start;
427 
428 	last_usage = &per_cpu(irq_stat.irq_stack_usage, cpu);
429 	if (unlikely(stack_usage > *last_usage))
430 		*last_usage = stack_usage;
431 
432 	if (likely(stack_usage < (IRQ_STACK_SIZE - STACK_MARGIN)))
433 		return;
434 
435 	pr_emerg("stackcheck: %s will most likely overflow irq stack "
436 		 "(sp:%lx, stk bottom-top:%lx-%lx)\n",
437 		current->comm, sp, stack_start, stack_start + IRQ_STACK_SIZE);
438 	goto panic_check;
439 
440 check_kernel_stack:
441 #endif
442 
443 	/* check kernel stack usage */
444 	last_usage = &per_cpu(irq_stat.kernel_stack_usage, cpu);
445 
446 	if (unlikely(stack_usage > *last_usage))
447 		*last_usage = stack_usage;
448 
449 	if (likely(stack_usage < (THREAD_SIZE - STACK_MARGIN)))
450 		return;
451 
452 	pr_emerg("stackcheck: %s will most likely overflow kernel stack "
453 		 "(sp:%lx, stk bottom-top:%lx-%lx)\n",
454 		current->comm, sp, stack_start, stack_start + THREAD_SIZE);
455 
456 #ifdef CONFIG_IRQSTACKS
457 panic_check:
458 #endif
459 	if (sysctl_panic_on_stackoverflow) {
460 		sysctl_panic_on_stackoverflow = -1; /* disable further checks */
461 		panic("low stack detected by irq handler - check messages\n");
462 	}
463 #endif
464 }
465 
466 #ifdef CONFIG_IRQSTACKS
467 /* in entry.S: */
468 void call_on_stack(unsigned long p1, void *func, unsigned long new_stack);
469 
470 static void execute_on_irq_stack(void *func, unsigned long param1)
471 {
472 	union irq_stack_union *union_ptr;
473 	unsigned long irq_stack;
474 	volatile unsigned int *irq_stack_in_use;
475 
476 	union_ptr = &per_cpu(irq_stack_union, smp_processor_id());
477 	irq_stack = (unsigned long) &union_ptr->stack;
478 	irq_stack = ALIGN(irq_stack + sizeof(irq_stack_union.slock),
479 			 64); /* align for stack frame usage */
480 
481 	/* We may be called recursive. If we are already using the irq stack,
482 	 * just continue to use it. Use spinlocks to serialize
483 	 * the irq stack usage.
484 	 */
485 	irq_stack_in_use = (volatile unsigned int *)__ldcw_align(union_ptr);
486 	if (!__ldcw(irq_stack_in_use)) {
487 		void (*direct_call)(unsigned long p1) = func;
488 
489 		/* We are using the IRQ stack already.
490 		 * Do direct call on current stack. */
491 		direct_call(param1);
492 		return;
493 	}
494 
495 	/* This is where we switch to the IRQ stack. */
496 	call_on_stack(param1, func, irq_stack);
497 
498 	/* free up irq stack usage. */
499 	*irq_stack_in_use = 1;
500 }
501 
502 void do_softirq_own_stack(void)
503 {
504 	execute_on_irq_stack(__do_softirq, 0);
505 }
506 #endif /* CONFIG_IRQSTACKS */
507 
508 /* ONLY called from entry.S:intr_extint() */
509 void do_cpu_irq_mask(struct pt_regs *regs)
510 {
511 	struct pt_regs *old_regs;
512 	unsigned long eirr_val;
513 	int irq, cpu = smp_processor_id();
514 	struct irq_data *irq_data;
515 #ifdef CONFIG_SMP
516 	cpumask_t dest;
517 #endif
518 
519 	old_regs = set_irq_regs(regs);
520 	local_irq_disable();
521 	irq_enter();
522 
523 	eirr_val = mfctl(23) & cpu_eiem & per_cpu(local_ack_eiem, cpu);
524 	if (!eirr_val)
525 		goto set_out;
526 	irq = eirr_to_irq(eirr_val);
527 
528 	irq_data = irq_get_irq_data(irq);
529 
530 	/* Filter out spurious interrupts, mostly from serial port at bootup */
531 	if (unlikely(!irq_desc_has_action(irq_data_to_desc(irq_data))))
532 		goto set_out;
533 
534 #ifdef CONFIG_SMP
535 	cpumask_copy(&dest, irq_data_get_affinity_mask(irq_data));
536 	if (irqd_is_per_cpu(irq_data) &&
537 	    !cpumask_test_cpu(smp_processor_id(), &dest)) {
538 		int cpu = cpumask_first(&dest);
539 
540 		printk(KERN_DEBUG "redirecting irq %d from CPU %d to %d\n",
541 		       irq, smp_processor_id(), cpu);
542 		gsc_writel(irq + CPU_IRQ_BASE,
543 			   per_cpu(cpu_data, cpu).hpa);
544 		goto set_out;
545 	}
546 #endif
547 	stack_overflow_check(regs);
548 
549 #ifdef CONFIG_IRQSTACKS
550 	execute_on_irq_stack(&generic_handle_irq, irq);
551 #else
552 	generic_handle_irq(irq);
553 #endif /* CONFIG_IRQSTACKS */
554 
555  out:
556 	irq_exit();
557 	set_irq_regs(old_regs);
558 	return;
559 
560  set_out:
561 	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
562 	goto out;
563 }
564 
565 static void claim_cpu_irqs(void)
566 {
567 	unsigned long flags = IRQF_TIMER | IRQF_PERCPU | IRQF_IRQPOLL;
568 	int i;
569 
570 	for (i = CPU_IRQ_BASE; i <= CPU_IRQ_MAX; i++) {
571 		irq_set_chip_and_handler(i, &cpu_interrupt_type,
572 					 handle_percpu_irq);
573 	}
574 
575 	irq_set_handler(TIMER_IRQ, handle_percpu_irq);
576 	if (request_irq(TIMER_IRQ, timer_interrupt, flags, "timer", NULL))
577 		pr_err("Failed to register timer interrupt\n");
578 #ifdef CONFIG_SMP
579 	irq_set_handler(IPI_IRQ, handle_percpu_irq);
580 	if (request_irq(IPI_IRQ, ipi_interrupt, IRQF_PERCPU, "IPI", NULL))
581 		pr_err("Failed to register IPI interrupt\n");
582 #endif
583 }
584 
585 void __init init_IRQ(void)
586 {
587 	local_irq_disable();	/* PARANOID - should already be disabled */
588 	mtctl(~0UL, 23);	/* EIRR : clear all pending external intr */
589 #ifdef CONFIG_SMP
590 	if (!cpu_eiem) {
591 		claim_cpu_irqs();
592 		cpu_eiem = EIEM_MASK(IPI_IRQ) | EIEM_MASK(TIMER_IRQ);
593 	}
594 #else
595 	claim_cpu_irqs();
596 	cpu_eiem = EIEM_MASK(TIMER_IRQ);
597 #endif
598         set_eiem(cpu_eiem);	/* EIEM : enable all external intr */
599 }
600