1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * arch/parisc/kernel/firmware.c - safe PDC access routines 4 * 5 * PDC == Processor Dependent Code 6 * 7 * See PDC documentation at 8 * https://parisc.wiki.kernel.org/index.php/Technical_Documentation 9 * for documentation describing the entry points and calling 10 * conventions defined below. 11 * 12 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org) 13 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy) 14 * Copyright 2003 Grant Grundler <grundler parisc-linux org> 15 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org> 16 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org> 17 */ 18 19 /* I think it would be in everyone's best interest to follow this 20 * guidelines when writing PDC wrappers: 21 * 22 * - the name of the pdc wrapper should match one of the macros 23 * used for the first two arguments 24 * - don't use caps for random parts of the name 25 * - use the static PDC result buffers and "copyout" to structs 26 * supplied by the caller to encapsulate alignment restrictions 27 * - hold pdc_lock while in PDC or using static result buffers 28 * - use __pa() to convert virtual (kernel) pointers to physical 29 * ones. 30 * - the name of the struct used for pdc return values should equal 31 * one of the macros used for the first two arguments to the 32 * corresponding PDC call 33 * - keep the order of arguments 34 * - don't be smart (setting trailing NUL bytes for strings, return 35 * something useful even if the call failed) unless you are sure 36 * it's not going to affect functionality or performance 37 * 38 * Example: 39 * int pdc_cache_info(struct pdc_cache_info *cache_info ) 40 * { 41 * int retval; 42 * 43 * spin_lock_irq(&pdc_lock); 44 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0); 45 * convert_to_wide(pdc_result); 46 * memcpy(cache_info, pdc_result, sizeof(*cache_info)); 47 * spin_unlock_irq(&pdc_lock); 48 * 49 * return retval; 50 * } 51 * prumpf 991016 52 */ 53 54 #include <linux/stdarg.h> 55 56 #include <linux/delay.h> 57 #include <linux/init.h> 58 #include <linux/kernel.h> 59 #include <linux/module.h> 60 #include <linux/string.h> 61 #include <linux/spinlock.h> 62 63 #include <asm/page.h> 64 #include <asm/pdc.h> 65 #include <asm/pdcpat.h> 66 #include <asm/processor.h> /* for boot_cpu_data */ 67 68 #if defined(BOOTLOADER) 69 # undef spin_lock_irqsave 70 # define spin_lock_irqsave(a, b) { b = 1; } 71 # undef spin_unlock_irqrestore 72 # define spin_unlock_irqrestore(a, b) 73 #else 74 static DEFINE_SPINLOCK(pdc_lock); 75 #endif 76 77 extern unsigned long pdc_result[NUM_PDC_RESULT]; 78 extern unsigned long pdc_result2[NUM_PDC_RESULT]; 79 80 #ifdef CONFIG_64BIT 81 #define WIDE_FIRMWARE 0x1 82 #define NARROW_FIRMWARE 0x2 83 84 /* Firmware needs to be initially set to narrow to determine the 85 * actual firmware width. */ 86 int parisc_narrow_firmware __ro_after_init = 1; 87 #endif 88 89 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls 90 * and MEM_PDC calls are always the same width as the OS. 91 * Some PAT boxes may have 64-bit IODC I/O. 92 * 93 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow 94 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls. 95 * This allowed wide kernels to run on Cxxx boxes. 96 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode 97 * when running a 64-bit kernel on such boxes (e.g. C200 or C360). 98 */ 99 100 #ifdef CONFIG_64BIT 101 long real64_call(unsigned long function, ...); 102 #endif 103 long real32_call(unsigned long function, ...); 104 105 #ifdef CONFIG_64BIT 106 # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc 107 # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args) 108 #else 109 # define MEM_PDC (unsigned long)PAGE0->mem_pdc 110 # define mem_pdc_call(args...) real32_call(MEM_PDC, args) 111 #endif 112 113 114 /** 115 * f_extend - Convert PDC addresses to kernel addresses. 116 * @address: Address returned from PDC. 117 * 118 * This function is used to convert PDC addresses into kernel addresses 119 * when the PDC address size and kernel address size are different. 120 */ 121 static unsigned long f_extend(unsigned long address) 122 { 123 #ifdef CONFIG_64BIT 124 if(unlikely(parisc_narrow_firmware)) { 125 if((address & 0xff000000) == 0xf0000000) 126 return 0xf0f0f0f000000000UL | (u32)address; 127 128 if((address & 0xf0000000) == 0xf0000000) 129 return 0xffffffff00000000UL | (u32)address; 130 } 131 #endif 132 return address; 133 } 134 135 /** 136 * convert_to_wide - Convert the return buffer addresses into kernel addresses. 137 * @address: The return buffer from PDC. 138 * 139 * This function is used to convert the return buffer addresses retrieved from PDC 140 * into kernel addresses when the PDC address size and kernel address size are 141 * different. 142 */ 143 static void convert_to_wide(unsigned long *addr) 144 { 145 #ifdef CONFIG_64BIT 146 int i; 147 unsigned int *p = (unsigned int *)addr; 148 149 if (unlikely(parisc_narrow_firmware)) { 150 for (i = (NUM_PDC_RESULT-1); i >= 0; --i) 151 addr[i] = p[i]; 152 } 153 #endif 154 } 155 156 #ifdef CONFIG_64BIT 157 void set_firmware_width_unlocked(void) 158 { 159 int ret; 160 161 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, 162 __pa(pdc_result), 0); 163 convert_to_wide(pdc_result); 164 if (pdc_result[0] != NARROW_FIRMWARE) 165 parisc_narrow_firmware = 0; 166 } 167 168 /** 169 * set_firmware_width - Determine if the firmware is wide or narrow. 170 * 171 * This function must be called before any pdc_* function that uses the 172 * convert_to_wide function. 173 */ 174 void set_firmware_width(void) 175 { 176 unsigned long flags; 177 spin_lock_irqsave(&pdc_lock, flags); 178 set_firmware_width_unlocked(); 179 spin_unlock_irqrestore(&pdc_lock, flags); 180 } 181 #else 182 void set_firmware_width_unlocked(void) 183 { 184 return; 185 } 186 187 void set_firmware_width(void) 188 { 189 return; 190 } 191 #endif /*CONFIG_64BIT*/ 192 193 194 #if !defined(BOOTLOADER) 195 /** 196 * pdc_emergency_unlock - Unlock the linux pdc lock 197 * 198 * This call unlocks the linux pdc lock in case we need some PDC functions 199 * (like pdc_add_valid) during kernel stack dump. 200 */ 201 void pdc_emergency_unlock(void) 202 { 203 /* Spinlock DEBUG code freaks out if we unconditionally unlock */ 204 if (spin_is_locked(&pdc_lock)) 205 spin_unlock(&pdc_lock); 206 } 207 208 209 /** 210 * pdc_add_valid - Verify address can be accessed without causing a HPMC. 211 * @address: Address to be verified. 212 * 213 * This PDC call attempts to read from the specified address and verifies 214 * if the address is valid. 215 * 216 * The return value is PDC_OK (0) in case accessing this address is valid. 217 */ 218 int pdc_add_valid(unsigned long address) 219 { 220 int retval; 221 unsigned long flags; 222 223 spin_lock_irqsave(&pdc_lock, flags); 224 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address); 225 spin_unlock_irqrestore(&pdc_lock, flags); 226 227 return retval; 228 } 229 EXPORT_SYMBOL(pdc_add_valid); 230 231 /** 232 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler. 233 * @instr: Pointer to variable which will get instruction opcode. 234 * 235 * The return value is PDC_OK (0) in case call succeeded. 236 */ 237 int __init pdc_instr(unsigned int *instr) 238 { 239 int retval; 240 unsigned long flags; 241 242 spin_lock_irqsave(&pdc_lock, flags); 243 retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result)); 244 convert_to_wide(pdc_result); 245 *instr = pdc_result[0]; 246 spin_unlock_irqrestore(&pdc_lock, flags); 247 248 return retval; 249 } 250 251 /** 252 * pdc_chassis_info - Return chassis information. 253 * @result: The return buffer. 254 * @chassis_info: The memory buffer address. 255 * @len: The size of the memory buffer address. 256 * 257 * An HVERSION dependent call for returning the chassis information. 258 */ 259 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len) 260 { 261 int retval; 262 unsigned long flags; 263 264 spin_lock_irqsave(&pdc_lock, flags); 265 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info)); 266 memcpy(&pdc_result2, led_info, len); 267 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO, 268 __pa(pdc_result), __pa(pdc_result2), len); 269 memcpy(chassis_info, pdc_result, sizeof(*chassis_info)); 270 memcpy(led_info, pdc_result2, len); 271 spin_unlock_irqrestore(&pdc_lock, flags); 272 273 return retval; 274 } 275 276 /** 277 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message. 278 * @retval: -1 on error, 0 on success. Other value are PDC errors 279 * 280 * Must be correctly formatted or expect system crash 281 */ 282 #ifdef CONFIG_64BIT 283 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data) 284 { 285 int retval = 0; 286 unsigned long flags; 287 288 if (!is_pdc_pat()) 289 return -1; 290 291 spin_lock_irqsave(&pdc_lock, flags); 292 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data)); 293 spin_unlock_irqrestore(&pdc_lock, flags); 294 295 return retval; 296 } 297 #endif 298 299 /** 300 * pdc_chassis_disp - Updates chassis code 301 * @retval: -1 on error, 0 on success 302 */ 303 int pdc_chassis_disp(unsigned long disp) 304 { 305 int retval = 0; 306 unsigned long flags; 307 308 spin_lock_irqsave(&pdc_lock, flags); 309 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp); 310 spin_unlock_irqrestore(&pdc_lock, flags); 311 312 return retval; 313 } 314 315 /** 316 * pdc_cpu_rendenzvous - Stop currently executing CPU 317 * @retval: -1 on error, 0 on success 318 */ 319 int __pdc_cpu_rendezvous(void) 320 { 321 if (is_pdc_pat()) 322 return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS); 323 else 324 return mem_pdc_call(PDC_PROC, 1, 0); 325 } 326 327 328 /** 329 * pdc_chassis_warn - Fetches chassis warnings 330 * @retval: -1 on error, 0 on success 331 */ 332 int pdc_chassis_warn(unsigned long *warn) 333 { 334 int retval = 0; 335 unsigned long flags; 336 337 spin_lock_irqsave(&pdc_lock, flags); 338 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result)); 339 *warn = pdc_result[0]; 340 spin_unlock_irqrestore(&pdc_lock, flags); 341 342 return retval; 343 } 344 345 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info) 346 { 347 int ret; 348 349 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result)); 350 convert_to_wide(pdc_result); 351 pdc_coproc_info->ccr_functional = pdc_result[0]; 352 pdc_coproc_info->ccr_present = pdc_result[1]; 353 pdc_coproc_info->revision = pdc_result[17]; 354 pdc_coproc_info->model = pdc_result[18]; 355 356 return ret; 357 } 358 359 /** 360 * pdc_coproc_cfg - To identify coprocessors attached to the processor. 361 * @pdc_coproc_info: Return buffer address. 362 * 363 * This PDC call returns the presence and status of all the coprocessors 364 * attached to the processor. 365 */ 366 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info) 367 { 368 int ret; 369 unsigned long flags; 370 371 spin_lock_irqsave(&pdc_lock, flags); 372 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info); 373 spin_unlock_irqrestore(&pdc_lock, flags); 374 375 return ret; 376 } 377 378 /** 379 * pdc_iodc_read - Read data from the modules IODC. 380 * @actcnt: The actual number of bytes. 381 * @hpa: The HPA of the module for the iodc read. 382 * @index: The iodc entry point. 383 * @iodc_data: A buffer memory for the iodc options. 384 * @iodc_data_size: Size of the memory buffer. 385 * 386 * This PDC call reads from the IODC of the module specified by the hpa 387 * argument. 388 */ 389 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index, 390 void *iodc_data, unsigned int iodc_data_size) 391 { 392 int retval; 393 unsigned long flags; 394 395 spin_lock_irqsave(&pdc_lock, flags); 396 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 397 index, __pa(pdc_result2), iodc_data_size); 398 convert_to_wide(pdc_result); 399 *actcnt = pdc_result[0]; 400 memcpy(iodc_data, pdc_result2, iodc_data_size); 401 spin_unlock_irqrestore(&pdc_lock, flags); 402 403 return retval; 404 } 405 EXPORT_SYMBOL(pdc_iodc_read); 406 407 /** 408 * pdc_system_map_find_mods - Locate unarchitected modules. 409 * @pdc_mod_info: Return buffer address. 410 * @mod_path: pointer to dev path structure. 411 * @mod_index: fixed address module index. 412 * 413 * To locate and identify modules which reside at fixed I/O addresses, which 414 * do not self-identify via architected bus walks. 415 */ 416 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info, 417 struct pdc_module_path *mod_path, long mod_index) 418 { 419 int retval; 420 unsigned long flags; 421 422 spin_lock_irqsave(&pdc_lock, flags); 423 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 424 __pa(pdc_result2), mod_index); 425 convert_to_wide(pdc_result); 426 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info)); 427 memcpy(mod_path, pdc_result2, sizeof(*mod_path)); 428 spin_unlock_irqrestore(&pdc_lock, flags); 429 430 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr); 431 return retval; 432 } 433 434 /** 435 * pdc_system_map_find_addrs - Retrieve additional address ranges. 436 * @pdc_addr_info: Return buffer address. 437 * @mod_index: Fixed address module index. 438 * @addr_index: Address range index. 439 * 440 * Retrieve additional information about subsequent address ranges for modules 441 * with multiple address ranges. 442 */ 443 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 444 long mod_index, long addr_index) 445 { 446 int retval; 447 unsigned long flags; 448 449 spin_lock_irqsave(&pdc_lock, flags); 450 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result), 451 mod_index, addr_index); 452 convert_to_wide(pdc_result); 453 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info)); 454 spin_unlock_irqrestore(&pdc_lock, flags); 455 456 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr); 457 return retval; 458 } 459 460 /** 461 * pdc_model_info - Return model information about the processor. 462 * @model: The return buffer. 463 * 464 * Returns the version numbers, identifiers, and capabilities from the processor module. 465 */ 466 int pdc_model_info(struct pdc_model *model) 467 { 468 int retval; 469 unsigned long flags; 470 471 spin_lock_irqsave(&pdc_lock, flags); 472 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0); 473 convert_to_wide(pdc_result); 474 memcpy(model, pdc_result, sizeof(*model)); 475 spin_unlock_irqrestore(&pdc_lock, flags); 476 477 return retval; 478 } 479 480 /** 481 * pdc_model_sysmodel - Get the system model name. 482 * @name: A char array of at least 81 characters. 483 * 484 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L). 485 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command 486 * on HP/UX. 487 */ 488 int pdc_model_sysmodel(char *name) 489 { 490 int retval; 491 unsigned long flags; 492 493 spin_lock_irqsave(&pdc_lock, flags); 494 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result), 495 OS_ID_HPUX, __pa(name)); 496 convert_to_wide(pdc_result); 497 498 if (retval == PDC_OK) { 499 name[pdc_result[0]] = '\0'; /* add trailing '\0' */ 500 } else { 501 name[0] = 0; 502 } 503 spin_unlock_irqrestore(&pdc_lock, flags); 504 505 return retval; 506 } 507 508 /** 509 * pdc_model_versions - Identify the version number of each processor. 510 * @cpu_id: The return buffer. 511 * @id: The id of the processor to check. 512 * 513 * Returns the version number for each processor component. 514 * 515 * This comment was here before, but I do not know what it means :( -RB 516 * id: 0 = cpu revision, 1 = boot-rom-version 517 */ 518 int pdc_model_versions(unsigned long *versions, int id) 519 { 520 int retval; 521 unsigned long flags; 522 523 spin_lock_irqsave(&pdc_lock, flags); 524 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id); 525 convert_to_wide(pdc_result); 526 *versions = pdc_result[0]; 527 spin_unlock_irqrestore(&pdc_lock, flags); 528 529 return retval; 530 } 531 532 /** 533 * pdc_model_cpuid - Returns the CPU_ID. 534 * @cpu_id: The return buffer. 535 * 536 * Returns the CPU_ID value which uniquely identifies the cpu portion of 537 * the processor module. 538 */ 539 int pdc_model_cpuid(unsigned long *cpu_id) 540 { 541 int retval; 542 unsigned long flags; 543 544 spin_lock_irqsave(&pdc_lock, flags); 545 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ 546 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0); 547 convert_to_wide(pdc_result); 548 *cpu_id = pdc_result[0]; 549 spin_unlock_irqrestore(&pdc_lock, flags); 550 551 return retval; 552 } 553 554 /** 555 * pdc_model_capabilities - Returns the platform capabilities. 556 * @capabilities: The return buffer. 557 * 558 * Returns information about platform support for 32- and/or 64-bit 559 * OSes, IO-PDIR coherency, and virtual aliasing. 560 */ 561 int pdc_model_capabilities(unsigned long *capabilities) 562 { 563 int retval; 564 unsigned long flags; 565 566 spin_lock_irqsave(&pdc_lock, flags); 567 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ 568 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0); 569 convert_to_wide(pdc_result); 570 if (retval == PDC_OK) { 571 *capabilities = pdc_result[0]; 572 } else { 573 *capabilities = PDC_MODEL_OS32; 574 } 575 spin_unlock_irqrestore(&pdc_lock, flags); 576 577 return retval; 578 } 579 580 /** 581 * pdc_model_platform_info - Returns machine product and serial number. 582 * @orig_prod_num: Return buffer for original product number. 583 * @current_prod_num: Return buffer for current product number. 584 * @serial_no: Return buffer for serial number. 585 * 586 * Returns strings containing the original and current product numbers and the 587 * serial number of the system. 588 */ 589 int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num, 590 char *serial_no) 591 { 592 int retval; 593 unsigned long flags; 594 595 spin_lock_irqsave(&pdc_lock, flags); 596 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO, 597 __pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no)); 598 convert_to_wide(pdc_result); 599 spin_unlock_irqrestore(&pdc_lock, flags); 600 601 return retval; 602 } 603 604 /** 605 * pdc_cache_info - Return cache and TLB information. 606 * @cache_info: The return buffer. 607 * 608 * Returns information about the processor's cache and TLB. 609 */ 610 int pdc_cache_info(struct pdc_cache_info *cache_info) 611 { 612 int retval; 613 unsigned long flags; 614 615 spin_lock_irqsave(&pdc_lock, flags); 616 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0); 617 convert_to_wide(pdc_result); 618 memcpy(cache_info, pdc_result, sizeof(*cache_info)); 619 spin_unlock_irqrestore(&pdc_lock, flags); 620 621 return retval; 622 } 623 624 /** 625 * pdc_spaceid_bits - Return whether Space ID hashing is turned on. 626 * @space_bits: Should be 0, if not, bad mojo! 627 * 628 * Returns information about Space ID hashing. 629 */ 630 int pdc_spaceid_bits(unsigned long *space_bits) 631 { 632 int retval; 633 unsigned long flags; 634 635 spin_lock_irqsave(&pdc_lock, flags); 636 pdc_result[0] = 0; 637 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0); 638 convert_to_wide(pdc_result); 639 *space_bits = pdc_result[0]; 640 spin_unlock_irqrestore(&pdc_lock, flags); 641 642 return retval; 643 } 644 645 #ifndef CONFIG_PA20 646 /** 647 * pdc_btlb_info - Return block TLB information. 648 * @btlb: The return buffer. 649 * 650 * Returns information about the hardware Block TLB. 651 */ 652 int pdc_btlb_info(struct pdc_btlb_info *btlb) 653 { 654 int retval; 655 unsigned long flags; 656 657 spin_lock_irqsave(&pdc_lock, flags); 658 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0); 659 memcpy(btlb, pdc_result, sizeof(*btlb)); 660 spin_unlock_irqrestore(&pdc_lock, flags); 661 662 if(retval < 0) { 663 btlb->max_size = 0; 664 } 665 return retval; 666 } 667 668 /** 669 * pdc_mem_map_hpa - Find fixed module information. 670 * @address: The return buffer 671 * @mod_path: pointer to dev path structure. 672 * 673 * This call was developed for S700 workstations to allow the kernel to find 674 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this 675 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP 676 * call. 677 * 678 * This call is supported by all existing S700 workstations (up to Gecko). 679 */ 680 int pdc_mem_map_hpa(struct pdc_memory_map *address, 681 struct pdc_module_path *mod_path) 682 { 683 int retval; 684 unsigned long flags; 685 686 spin_lock_irqsave(&pdc_lock, flags); 687 memcpy(pdc_result2, mod_path, sizeof(*mod_path)); 688 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result), 689 __pa(pdc_result2)); 690 memcpy(address, pdc_result, sizeof(*address)); 691 spin_unlock_irqrestore(&pdc_lock, flags); 692 693 return retval; 694 } 695 #endif /* !CONFIG_PA20 */ 696 697 /** 698 * pdc_lan_station_id - Get the LAN address. 699 * @lan_addr: The return buffer. 700 * @hpa: The network device HPA. 701 * 702 * Get the LAN station address when it is not directly available from the LAN hardware. 703 */ 704 int pdc_lan_station_id(char *lan_addr, unsigned long hpa) 705 { 706 int retval; 707 unsigned long flags; 708 709 spin_lock_irqsave(&pdc_lock, flags); 710 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ, 711 __pa(pdc_result), hpa); 712 if (retval < 0) { 713 /* FIXME: else read MAC from NVRAM */ 714 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE); 715 } else { 716 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE); 717 } 718 spin_unlock_irqrestore(&pdc_lock, flags); 719 720 return retval; 721 } 722 EXPORT_SYMBOL(pdc_lan_station_id); 723 724 /** 725 * pdc_stable_read - Read data from Stable Storage. 726 * @staddr: Stable Storage address to access. 727 * @memaddr: The memory address where Stable Storage data shall be copied. 728 * @count: number of bytes to transfer. count is multiple of 4. 729 * 730 * This PDC call reads from the Stable Storage address supplied in staddr 731 * and copies count bytes to the memory address memaddr. 732 * The call will fail if staddr+count > PDC_STABLE size. 733 */ 734 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count) 735 { 736 int retval; 737 unsigned long flags; 738 739 spin_lock_irqsave(&pdc_lock, flags); 740 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr, 741 __pa(pdc_result), count); 742 convert_to_wide(pdc_result); 743 memcpy(memaddr, pdc_result, count); 744 spin_unlock_irqrestore(&pdc_lock, flags); 745 746 return retval; 747 } 748 EXPORT_SYMBOL(pdc_stable_read); 749 750 /** 751 * pdc_stable_write - Write data to Stable Storage. 752 * @staddr: Stable Storage address to access. 753 * @memaddr: The memory address where Stable Storage data shall be read from. 754 * @count: number of bytes to transfer. count is multiple of 4. 755 * 756 * This PDC call reads count bytes from the supplied memaddr address, 757 * and copies count bytes to the Stable Storage address staddr. 758 * The call will fail if staddr+count > PDC_STABLE size. 759 */ 760 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count) 761 { 762 int retval; 763 unsigned long flags; 764 765 spin_lock_irqsave(&pdc_lock, flags); 766 memcpy(pdc_result, memaddr, count); 767 convert_to_wide(pdc_result); 768 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr, 769 __pa(pdc_result), count); 770 spin_unlock_irqrestore(&pdc_lock, flags); 771 772 return retval; 773 } 774 EXPORT_SYMBOL(pdc_stable_write); 775 776 /** 777 * pdc_stable_get_size - Get Stable Storage size in bytes. 778 * @size: pointer where the size will be stored. 779 * 780 * This PDC call returns the number of bytes in the processor's Stable 781 * Storage, which is the number of contiguous bytes implemented in Stable 782 * Storage starting from staddr=0. size in an unsigned 64-bit integer 783 * which is a multiple of four. 784 */ 785 int pdc_stable_get_size(unsigned long *size) 786 { 787 int retval; 788 unsigned long flags; 789 790 spin_lock_irqsave(&pdc_lock, flags); 791 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result)); 792 *size = pdc_result[0]; 793 spin_unlock_irqrestore(&pdc_lock, flags); 794 795 return retval; 796 } 797 EXPORT_SYMBOL(pdc_stable_get_size); 798 799 /** 800 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid. 801 * 802 * This PDC call is meant to be used to check the integrity of the current 803 * contents of Stable Storage. 804 */ 805 int pdc_stable_verify_contents(void) 806 { 807 int retval; 808 unsigned long flags; 809 810 spin_lock_irqsave(&pdc_lock, flags); 811 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS); 812 spin_unlock_irqrestore(&pdc_lock, flags); 813 814 return retval; 815 } 816 EXPORT_SYMBOL(pdc_stable_verify_contents); 817 818 /** 819 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize 820 * the validity indicator. 821 * 822 * This PDC call will erase all contents of Stable Storage. Use with care! 823 */ 824 int pdc_stable_initialize(void) 825 { 826 int retval; 827 unsigned long flags; 828 829 spin_lock_irqsave(&pdc_lock, flags); 830 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE); 831 spin_unlock_irqrestore(&pdc_lock, flags); 832 833 return retval; 834 } 835 EXPORT_SYMBOL(pdc_stable_initialize); 836 837 /** 838 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD) 839 * @hwpath: fully bc.mod style path to the device. 840 * @initiator: the array to return the result into 841 * 842 * Get the SCSI operational parameters from PDC. 843 * Needed since HPUX never used BIOS or symbios card NVRAM. 844 * Most ncr/sym cards won't have an entry and just use whatever 845 * capabilities of the card are (eg Ultra, LVD). But there are 846 * several cases where it's useful: 847 * o set SCSI id for Multi-initiator clusters, 848 * o cable too long (ie SE scsi 10Mhz won't support 6m length), 849 * o bus width exported is less than what the interface chip supports. 850 */ 851 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator) 852 { 853 int retval; 854 unsigned long flags; 855 856 spin_lock_irqsave(&pdc_lock, flags); 857 858 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */ 859 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \ 860 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0) 861 862 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 863 __pa(pdc_result), __pa(hwpath)); 864 if (retval < PDC_OK) 865 goto out; 866 867 if (pdc_result[0] < 16) { 868 initiator->host_id = pdc_result[0]; 869 } else { 870 initiator->host_id = -1; 871 } 872 873 /* 874 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns 875 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively 876 */ 877 switch (pdc_result[1]) { 878 case 1: initiator->factor = 50; break; 879 case 2: initiator->factor = 25; break; 880 case 5: initiator->factor = 12; break; 881 case 25: initiator->factor = 10; break; 882 case 20: initiator->factor = 12; break; 883 case 40: initiator->factor = 10; break; 884 default: initiator->factor = -1; break; 885 } 886 887 if (IS_SPROCKETS()) { 888 initiator->width = pdc_result[4]; 889 initiator->mode = pdc_result[5]; 890 } else { 891 initiator->width = -1; 892 initiator->mode = -1; 893 } 894 895 out: 896 spin_unlock_irqrestore(&pdc_lock, flags); 897 898 return (retval >= PDC_OK); 899 } 900 EXPORT_SYMBOL(pdc_get_initiator); 901 902 903 /** 904 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table. 905 * @num_entries: The return value. 906 * @hpa: The HPA for the device. 907 * 908 * This PDC function returns the number of entries in the specified cell's 909 * interrupt table. 910 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes 911 */ 912 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa) 913 { 914 int retval; 915 unsigned long flags; 916 917 spin_lock_irqsave(&pdc_lock, flags); 918 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 919 __pa(pdc_result), hpa); 920 convert_to_wide(pdc_result); 921 *num_entries = pdc_result[0]; 922 spin_unlock_irqrestore(&pdc_lock, flags); 923 924 return retval; 925 } 926 927 /** 928 * pdc_pci_irt - Get the PCI interrupt routing table. 929 * @num_entries: The number of entries in the table. 930 * @hpa: The Hard Physical Address of the device. 931 * @tbl: 932 * 933 * Get the PCI interrupt routing table for the device at the given HPA. 934 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes 935 */ 936 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl) 937 { 938 int retval; 939 unsigned long flags; 940 941 BUG_ON((unsigned long)tbl & 0x7); 942 943 spin_lock_irqsave(&pdc_lock, flags); 944 pdc_result[0] = num_entries; 945 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 946 __pa(pdc_result), hpa, __pa(tbl)); 947 spin_unlock_irqrestore(&pdc_lock, flags); 948 949 return retval; 950 } 951 952 953 #if 0 /* UNTEST CODE - left here in case someone needs it */ 954 955 /** 956 * pdc_pci_config_read - read PCI config space. 957 * @hpa token from PDC to indicate which PCI device 958 * @pci_addr configuration space address to read from 959 * 960 * Read PCI Configuration space *before* linux PCI subsystem is running. 961 */ 962 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr) 963 { 964 int retval; 965 unsigned long flags; 966 967 spin_lock_irqsave(&pdc_lock, flags); 968 pdc_result[0] = 0; 969 pdc_result[1] = 0; 970 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 971 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL); 972 spin_unlock_irqrestore(&pdc_lock, flags); 973 974 return retval ? ~0 : (unsigned int) pdc_result[0]; 975 } 976 977 978 /** 979 * pdc_pci_config_write - read PCI config space. 980 * @hpa token from PDC to indicate which PCI device 981 * @pci_addr configuration space address to write 982 * @val value we want in the 32-bit register 983 * 984 * Write PCI Configuration space *before* linux PCI subsystem is running. 985 */ 986 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val) 987 { 988 int retval; 989 unsigned long flags; 990 991 spin_lock_irqsave(&pdc_lock, flags); 992 pdc_result[0] = 0; 993 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 994 __pa(pdc_result), hpa, 995 cfg_addr&~3UL, 4UL, (unsigned long) val); 996 spin_unlock_irqrestore(&pdc_lock, flags); 997 998 return retval; 999 } 1000 #endif /* UNTESTED CODE */ 1001 1002 /** 1003 * pdc_tod_read - Read the Time-Of-Day clock. 1004 * @tod: The return buffer: 1005 * 1006 * Read the Time-Of-Day clock 1007 */ 1008 int pdc_tod_read(struct pdc_tod *tod) 1009 { 1010 int retval; 1011 unsigned long flags; 1012 1013 spin_lock_irqsave(&pdc_lock, flags); 1014 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0); 1015 convert_to_wide(pdc_result); 1016 memcpy(tod, pdc_result, sizeof(*tod)); 1017 spin_unlock_irqrestore(&pdc_lock, flags); 1018 1019 return retval; 1020 } 1021 EXPORT_SYMBOL(pdc_tod_read); 1022 1023 int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo) 1024 { 1025 int retval; 1026 unsigned long flags; 1027 1028 spin_lock_irqsave(&pdc_lock, flags); 1029 retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0); 1030 convert_to_wide(pdc_result); 1031 memcpy(rinfo, pdc_result, sizeof(*rinfo)); 1032 spin_unlock_irqrestore(&pdc_lock, flags); 1033 1034 return retval; 1035 } 1036 1037 int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret, 1038 unsigned long *pdt_entries_ptr) 1039 { 1040 int retval; 1041 unsigned long flags; 1042 1043 spin_lock_irqsave(&pdc_lock, flags); 1044 retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result), 1045 __pa(pdt_entries_ptr)); 1046 if (retval == PDC_OK) { 1047 convert_to_wide(pdc_result); 1048 memcpy(pret, pdc_result, sizeof(*pret)); 1049 } 1050 spin_unlock_irqrestore(&pdc_lock, flags); 1051 1052 #ifdef CONFIG_64BIT 1053 /* 1054 * 64-bit kernels should not call this PDT function in narrow mode. 1055 * The pdt_entries_ptr array above will now contain 32-bit values 1056 */ 1057 if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware)) 1058 return PDC_ERROR; 1059 #endif 1060 1061 return retval; 1062 } 1063 1064 /** 1065 * pdc_tod_set - Set the Time-Of-Day clock. 1066 * @sec: The number of seconds since epoch. 1067 * @usec: The number of micro seconds. 1068 * 1069 * Set the Time-Of-Day clock. 1070 */ 1071 int pdc_tod_set(unsigned long sec, unsigned long usec) 1072 { 1073 int retval; 1074 unsigned long flags; 1075 1076 spin_lock_irqsave(&pdc_lock, flags); 1077 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec); 1078 spin_unlock_irqrestore(&pdc_lock, flags); 1079 1080 return retval; 1081 } 1082 EXPORT_SYMBOL(pdc_tod_set); 1083 1084 #ifdef CONFIG_64BIT 1085 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr, 1086 struct pdc_memory_table *tbl, unsigned long entries) 1087 { 1088 int retval; 1089 unsigned long flags; 1090 1091 spin_lock_irqsave(&pdc_lock, flags); 1092 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries); 1093 convert_to_wide(pdc_result); 1094 memcpy(r_addr, pdc_result, sizeof(*r_addr)); 1095 memcpy(tbl, pdc_result2, entries * sizeof(*tbl)); 1096 spin_unlock_irqrestore(&pdc_lock, flags); 1097 1098 return retval; 1099 } 1100 #endif /* CONFIG_64BIT */ 1101 1102 /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap 1103 * so I guessed at unsigned long. Someone who knows what this does, can fix 1104 * it later. :) 1105 */ 1106 int pdc_do_firm_test_reset(unsigned long ftc_bitmap) 1107 { 1108 int retval; 1109 unsigned long flags; 1110 1111 spin_lock_irqsave(&pdc_lock, flags); 1112 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET, 1113 PDC_FIRM_TEST_MAGIC, ftc_bitmap); 1114 spin_unlock_irqrestore(&pdc_lock, flags); 1115 1116 return retval; 1117 } 1118 1119 /* 1120 * pdc_do_reset - Reset the system. 1121 * 1122 * Reset the system. 1123 */ 1124 int pdc_do_reset(void) 1125 { 1126 int retval; 1127 unsigned long flags; 1128 1129 spin_lock_irqsave(&pdc_lock, flags); 1130 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET); 1131 spin_unlock_irqrestore(&pdc_lock, flags); 1132 1133 return retval; 1134 } 1135 1136 /* 1137 * pdc_soft_power_info - Enable soft power switch. 1138 * @power_reg: address of soft power register 1139 * 1140 * Return the absolute address of the soft power switch register 1141 */ 1142 int __init pdc_soft_power_info(unsigned long *power_reg) 1143 { 1144 int retval; 1145 unsigned long flags; 1146 1147 *power_reg = (unsigned long) (-1); 1148 1149 spin_lock_irqsave(&pdc_lock, flags); 1150 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0); 1151 if (retval == PDC_OK) { 1152 convert_to_wide(pdc_result); 1153 *power_reg = f_extend(pdc_result[0]); 1154 } 1155 spin_unlock_irqrestore(&pdc_lock, flags); 1156 1157 return retval; 1158 } 1159 1160 /* 1161 * pdc_soft_power_button - Control the soft power button behaviour 1162 * @sw_control: 0 for hardware control, 1 for software control 1163 * 1164 * 1165 * This PDC function places the soft power button under software or 1166 * hardware control. 1167 * Under software control the OS may control to when to allow to shut 1168 * down the system. Under hardware control pressing the power button 1169 * powers off the system immediately. 1170 */ 1171 int pdc_soft_power_button(int sw_control) 1172 { 1173 int retval; 1174 unsigned long flags; 1175 1176 spin_lock_irqsave(&pdc_lock, flags); 1177 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control); 1178 spin_unlock_irqrestore(&pdc_lock, flags); 1179 1180 return retval; 1181 } 1182 1183 /* 1184 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices. 1185 * Primarily a problem on T600 (which parisc-linux doesn't support) but 1186 * who knows what other platform firmware might do with this OS "hook". 1187 */ 1188 void pdc_io_reset(void) 1189 { 1190 unsigned long flags; 1191 1192 spin_lock_irqsave(&pdc_lock, flags); 1193 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0); 1194 spin_unlock_irqrestore(&pdc_lock, flags); 1195 } 1196 1197 /* 1198 * pdc_io_reset_devices - Hack to Stop USB controller 1199 * 1200 * If PDC used the usb controller, the usb controller 1201 * is still running and will crash the machines during iommu 1202 * setup, because of still running DMA. This PDC call 1203 * stops the USB controller. 1204 * Normally called after calling pdc_io_reset(). 1205 */ 1206 void pdc_io_reset_devices(void) 1207 { 1208 unsigned long flags; 1209 1210 spin_lock_irqsave(&pdc_lock, flags); 1211 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0); 1212 spin_unlock_irqrestore(&pdc_lock, flags); 1213 } 1214 1215 #endif /* defined(BOOTLOADER) */ 1216 1217 /* locked by pdc_console_lock */ 1218 static int __attribute__((aligned(8))) iodc_retbuf[32]; 1219 static char __attribute__((aligned(64))) iodc_dbuf[4096]; 1220 1221 /** 1222 * pdc_iodc_print - Console print using IODC. 1223 * @str: the string to output. 1224 * @count: length of str 1225 * 1226 * Note that only these special chars are architected for console IODC io: 1227 * BEL, BS, CR, and LF. Others are passed through. 1228 * Since the HP console requires CR+LF to perform a 'newline', we translate 1229 * "\n" to "\r\n". 1230 */ 1231 int pdc_iodc_print(const unsigned char *str, unsigned count) 1232 { 1233 unsigned int i; 1234 unsigned long flags; 1235 1236 for (i = 0; i < count;) { 1237 switch(str[i]) { 1238 case '\n': 1239 iodc_dbuf[i+0] = '\r'; 1240 iodc_dbuf[i+1] = '\n'; 1241 i += 2; 1242 goto print; 1243 default: 1244 iodc_dbuf[i] = str[i]; 1245 i++; 1246 break; 1247 } 1248 } 1249 1250 print: 1251 spin_lock_irqsave(&pdc_lock, flags); 1252 real32_call(PAGE0->mem_cons.iodc_io, 1253 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT, 1254 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers), 1255 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0); 1256 spin_unlock_irqrestore(&pdc_lock, flags); 1257 1258 return i; 1259 } 1260 1261 #if !defined(BOOTLOADER) 1262 /** 1263 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console. 1264 * 1265 * Read a character (non-blocking) from the PDC console, returns -1 if 1266 * key is not present. 1267 */ 1268 int pdc_iodc_getc(void) 1269 { 1270 int ch; 1271 int status; 1272 unsigned long flags; 1273 1274 /* Bail if no console input device. */ 1275 if (!PAGE0->mem_kbd.iodc_io) 1276 return 0; 1277 1278 /* wait for a keyboard (rs232)-input */ 1279 spin_lock_irqsave(&pdc_lock, flags); 1280 real32_call(PAGE0->mem_kbd.iodc_io, 1281 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN, 1282 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 1283 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0); 1284 1285 ch = *iodc_dbuf; 1286 status = *iodc_retbuf; 1287 spin_unlock_irqrestore(&pdc_lock, flags); 1288 1289 if (status == 0) 1290 return -1; 1291 1292 return ch; 1293 } 1294 1295 int pdc_sti_call(unsigned long func, unsigned long flags, 1296 unsigned long inptr, unsigned long outputr, 1297 unsigned long glob_cfg) 1298 { 1299 int retval; 1300 unsigned long irqflags; 1301 1302 spin_lock_irqsave(&pdc_lock, irqflags); 1303 retval = real32_call(func, flags, inptr, outputr, glob_cfg); 1304 spin_unlock_irqrestore(&pdc_lock, irqflags); 1305 1306 return retval; 1307 } 1308 EXPORT_SYMBOL(pdc_sti_call); 1309 1310 #ifdef CONFIG_64BIT 1311 /** 1312 * pdc_pat_cell_get_number - Returns the cell number. 1313 * @cell_info: The return buffer. 1314 * 1315 * This PDC call returns the cell number of the cell from which the call 1316 * is made. 1317 */ 1318 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info) 1319 { 1320 int retval; 1321 unsigned long flags; 1322 1323 spin_lock_irqsave(&pdc_lock, flags); 1324 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result)); 1325 memcpy(cell_info, pdc_result, sizeof(*cell_info)); 1326 spin_unlock_irqrestore(&pdc_lock, flags); 1327 1328 return retval; 1329 } 1330 1331 /** 1332 * pdc_pat_cell_module - Retrieve the cell's module information. 1333 * @actcnt: The number of bytes written to mem_addr. 1334 * @ploc: The physical location. 1335 * @mod: The module index. 1336 * @view_type: The view of the address type. 1337 * @mem_addr: The return buffer. 1338 * 1339 * This PDC call returns information about each module attached to the cell 1340 * at the specified location. 1341 */ 1342 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod, 1343 unsigned long view_type, void *mem_addr) 1344 { 1345 int retval; 1346 unsigned long flags; 1347 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8))); 1348 1349 spin_lock_irqsave(&pdc_lock, flags); 1350 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 1351 ploc, mod, view_type, __pa(&result)); 1352 if(!retval) { 1353 *actcnt = pdc_result[0]; 1354 memcpy(mem_addr, &result, *actcnt); 1355 } 1356 spin_unlock_irqrestore(&pdc_lock, flags); 1357 1358 return retval; 1359 } 1360 1361 /** 1362 * pdc_pat_cell_info - Retrieve the cell's information. 1363 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block. 1364 * @actcnt: The number of bytes which should be written to info. 1365 * @offset: offset of the structure. 1366 * @cell_number: The cell number which should be asked, or -1 for current cell. 1367 * 1368 * This PDC call returns information about the given cell (or all cells). 1369 */ 1370 int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info, 1371 unsigned long *actcnt, unsigned long offset, 1372 unsigned long cell_number) 1373 { 1374 int retval; 1375 unsigned long flags; 1376 struct pdc_pat_cell_info_rtn_block result; 1377 1378 spin_lock_irqsave(&pdc_lock, flags); 1379 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO, 1380 __pa(pdc_result), __pa(&result), *actcnt, 1381 offset, cell_number); 1382 if (!retval) { 1383 *actcnt = pdc_result[0]; 1384 memcpy(info, &result, *actcnt); 1385 } 1386 spin_unlock_irqrestore(&pdc_lock, flags); 1387 1388 return retval; 1389 } 1390 1391 /** 1392 * pdc_pat_cpu_get_number - Retrieve the cpu number. 1393 * @cpu_info: The return buffer. 1394 * @hpa: The Hard Physical Address of the CPU. 1395 * 1396 * Retrieve the cpu number for the cpu at the specified HPA. 1397 */ 1398 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa) 1399 { 1400 int retval; 1401 unsigned long flags; 1402 1403 spin_lock_irqsave(&pdc_lock, flags); 1404 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER, 1405 __pa(&pdc_result), hpa); 1406 memcpy(cpu_info, pdc_result, sizeof(*cpu_info)); 1407 spin_unlock_irqrestore(&pdc_lock, flags); 1408 1409 return retval; 1410 } 1411 1412 /** 1413 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table. 1414 * @num_entries: The return value. 1415 * @cell_num: The target cell. 1416 * 1417 * This PDC function returns the number of entries in the specified cell's 1418 * interrupt table. 1419 */ 1420 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num) 1421 { 1422 int retval; 1423 unsigned long flags; 1424 1425 spin_lock_irqsave(&pdc_lock, flags); 1426 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE, 1427 __pa(pdc_result), cell_num); 1428 *num_entries = pdc_result[0]; 1429 spin_unlock_irqrestore(&pdc_lock, flags); 1430 1431 return retval; 1432 } 1433 1434 /** 1435 * pdc_pat_get_irt - Retrieve the cell's interrupt table. 1436 * @r_addr: The return buffer. 1437 * @cell_num: The target cell. 1438 * 1439 * This PDC function returns the actual interrupt table for the specified cell. 1440 */ 1441 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num) 1442 { 1443 int retval; 1444 unsigned long flags; 1445 1446 spin_lock_irqsave(&pdc_lock, flags); 1447 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE, 1448 __pa(r_addr), cell_num); 1449 spin_unlock_irqrestore(&pdc_lock, flags); 1450 1451 return retval; 1452 } 1453 1454 /** 1455 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges. 1456 * @actlen: The return buffer. 1457 * @mem_addr: Pointer to the memory buffer. 1458 * @count: The number of bytes to read from the buffer. 1459 * @offset: The offset with respect to the beginning of the buffer. 1460 * 1461 */ 1462 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 1463 unsigned long count, unsigned long offset) 1464 { 1465 int retval; 1466 unsigned long flags; 1467 1468 spin_lock_irqsave(&pdc_lock, flags); 1469 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 1470 __pa(pdc_result2), count, offset); 1471 *actual_len = pdc_result[0]; 1472 memcpy(mem_addr, pdc_result2, *actual_len); 1473 spin_unlock_irqrestore(&pdc_lock, flags); 1474 1475 return retval; 1476 } 1477 1478 /** 1479 * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions. 1480 * @legacy_rev: The legacy revision. 1481 * @pat_rev: The PAT revision. 1482 * @pdc_cap: The PDC capabilities. 1483 * 1484 */ 1485 int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev, 1486 unsigned long *pat_rev, unsigned long *pdc_cap) 1487 { 1488 int retval; 1489 unsigned long flags; 1490 1491 spin_lock_irqsave(&pdc_lock, flags); 1492 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV, 1493 __pa(pdc_result)); 1494 if (retval == PDC_OK) { 1495 *legacy_rev = pdc_result[0]; 1496 *pat_rev = pdc_result[1]; 1497 *pdc_cap = pdc_result[2]; 1498 } 1499 spin_unlock_irqrestore(&pdc_lock, flags); 1500 1501 return retval; 1502 } 1503 1504 1505 /** 1506 * pdc_pat_io_pci_cfg_read - Read PCI configuration space. 1507 * @pci_addr: PCI configuration space address for which the read request is being made. 1508 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 1509 * @mem_addr: Pointer to return memory buffer. 1510 * 1511 */ 1512 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr) 1513 { 1514 int retval; 1515 unsigned long flags; 1516 1517 spin_lock_irqsave(&pdc_lock, flags); 1518 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ, 1519 __pa(pdc_result), pci_addr, pci_size); 1520 switch(pci_size) { 1521 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; break; 1522 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; break; 1523 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; break; 1524 } 1525 spin_unlock_irqrestore(&pdc_lock, flags); 1526 1527 return retval; 1528 } 1529 1530 /** 1531 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges. 1532 * @pci_addr: PCI configuration space address for which the write request is being made. 1533 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 1534 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 1535 * written to PCI Config space. 1536 * 1537 */ 1538 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val) 1539 { 1540 int retval; 1541 unsigned long flags; 1542 1543 spin_lock_irqsave(&pdc_lock, flags); 1544 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE, 1545 pci_addr, pci_size, val); 1546 spin_unlock_irqrestore(&pdc_lock, flags); 1547 1548 return retval; 1549 } 1550 1551 /** 1552 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table 1553 * @rinfo: memory pdt information 1554 * 1555 */ 1556 int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo) 1557 { 1558 int retval; 1559 unsigned long flags; 1560 1561 spin_lock_irqsave(&pdc_lock, flags); 1562 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO, 1563 __pa(&pdc_result)); 1564 if (retval == PDC_OK) 1565 memcpy(rinfo, &pdc_result, sizeof(*rinfo)); 1566 spin_unlock_irqrestore(&pdc_lock, flags); 1567 1568 return retval; 1569 } 1570 1571 /** 1572 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation 1573 * table of a cell 1574 * @rinfo: memory pdt information 1575 * @cell: cell number 1576 * 1577 */ 1578 int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo, 1579 unsigned long cell) 1580 { 1581 int retval; 1582 unsigned long flags; 1583 1584 spin_lock_irqsave(&pdc_lock, flags); 1585 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO, 1586 __pa(&pdc_result), cell); 1587 if (retval == PDC_OK) 1588 memcpy(rinfo, &pdc_result, sizeof(*rinfo)); 1589 spin_unlock_irqrestore(&pdc_lock, flags); 1590 1591 return retval; 1592 } 1593 1594 /** 1595 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware 1596 * @pret: array of PDT entries 1597 * @pdt_entries_ptr: ptr to hold number of PDT entries 1598 * @max_entries: maximum number of entries to be read 1599 * 1600 */ 1601 int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret, 1602 unsigned long *pdt_entries_ptr, unsigned long max_entries) 1603 { 1604 int retval; 1605 unsigned long flags, entries; 1606 1607 spin_lock_irqsave(&pdc_lock, flags); 1608 /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */ 1609 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ, 1610 __pa(&pdc_result), parisc_cell_num, 1611 __pa(pdt_entries_ptr)); 1612 1613 if (retval == PDC_OK) { 1614 /* build up return value as for PDC_PAT_MEM_PD_READ */ 1615 entries = min(pdc_result[0], max_entries); 1616 pret->pdt_entries = entries; 1617 pret->actual_count_bytes = entries * sizeof(unsigned long); 1618 } 1619 1620 spin_unlock_irqrestore(&pdc_lock, flags); 1621 WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries); 1622 1623 return retval; 1624 } 1625 /** 1626 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware 1627 * @pret: array of PDT entries 1628 * @pdt_entries_ptr: ptr to hold number of PDT entries 1629 * @count: number of bytes to read 1630 * @offset: offset to start (in bytes) 1631 * 1632 */ 1633 int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret, 1634 unsigned long *pdt_entries_ptr, unsigned long count, 1635 unsigned long offset) 1636 { 1637 int retval; 1638 unsigned long flags, entries; 1639 1640 spin_lock_irqsave(&pdc_lock, flags); 1641 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ, 1642 __pa(&pdc_result), __pa(pdt_entries_ptr), 1643 count, offset); 1644 1645 if (retval == PDC_OK) { 1646 entries = min(pdc_result[0], count); 1647 pret->actual_count_bytes = entries; 1648 pret->pdt_entries = entries / sizeof(unsigned long); 1649 } 1650 1651 spin_unlock_irqrestore(&pdc_lock, flags); 1652 1653 return retval; 1654 } 1655 1656 /** 1657 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware 1658 * @pret: ptr to hold returned information 1659 * @phys_addr: physical address to examine 1660 * 1661 */ 1662 int pdc_pat_mem_get_dimm_phys_location( 1663 struct pdc_pat_mem_phys_mem_location *pret, 1664 unsigned long phys_addr) 1665 { 1666 int retval; 1667 unsigned long flags; 1668 1669 spin_lock_irqsave(&pdc_lock, flags); 1670 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS, 1671 __pa(&pdc_result), phys_addr); 1672 1673 if (retval == PDC_OK) 1674 memcpy(pret, &pdc_result, sizeof(*pret)); 1675 1676 spin_unlock_irqrestore(&pdc_lock, flags); 1677 1678 return retval; 1679 } 1680 #endif /* CONFIG_64BIT */ 1681 #endif /* defined(BOOTLOADER) */ 1682 1683 1684 /***************** 32-bit real-mode calls ***********/ 1685 /* The struct below is used 1686 * to overlay real_stack (real2.S), preparing a 32-bit call frame. 1687 * real32_call_asm() then uses this stack in narrow real mode 1688 */ 1689 1690 struct narrow_stack { 1691 /* use int, not long which is 64 bits */ 1692 unsigned int arg13; 1693 unsigned int arg12; 1694 unsigned int arg11; 1695 unsigned int arg10; 1696 unsigned int arg9; 1697 unsigned int arg8; 1698 unsigned int arg7; 1699 unsigned int arg6; 1700 unsigned int arg5; 1701 unsigned int arg4; 1702 unsigned int arg3; 1703 unsigned int arg2; 1704 unsigned int arg1; 1705 unsigned int arg0; 1706 unsigned int frame_marker[8]; 1707 unsigned int sp; 1708 /* in reality, there's nearly 8k of stack after this */ 1709 }; 1710 1711 long real32_call(unsigned long fn, ...) 1712 { 1713 va_list args; 1714 extern struct narrow_stack real_stack; 1715 extern unsigned long real32_call_asm(unsigned int *, 1716 unsigned int *, 1717 unsigned int); 1718 1719 va_start(args, fn); 1720 real_stack.arg0 = va_arg(args, unsigned int); 1721 real_stack.arg1 = va_arg(args, unsigned int); 1722 real_stack.arg2 = va_arg(args, unsigned int); 1723 real_stack.arg3 = va_arg(args, unsigned int); 1724 real_stack.arg4 = va_arg(args, unsigned int); 1725 real_stack.arg5 = va_arg(args, unsigned int); 1726 real_stack.arg6 = va_arg(args, unsigned int); 1727 real_stack.arg7 = va_arg(args, unsigned int); 1728 real_stack.arg8 = va_arg(args, unsigned int); 1729 real_stack.arg9 = va_arg(args, unsigned int); 1730 real_stack.arg10 = va_arg(args, unsigned int); 1731 real_stack.arg11 = va_arg(args, unsigned int); 1732 real_stack.arg12 = va_arg(args, unsigned int); 1733 real_stack.arg13 = va_arg(args, unsigned int); 1734 va_end(args); 1735 1736 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn); 1737 } 1738 1739 #ifdef CONFIG_64BIT 1740 /***************** 64-bit real-mode calls ***********/ 1741 1742 struct wide_stack { 1743 unsigned long arg0; 1744 unsigned long arg1; 1745 unsigned long arg2; 1746 unsigned long arg3; 1747 unsigned long arg4; 1748 unsigned long arg5; 1749 unsigned long arg6; 1750 unsigned long arg7; 1751 unsigned long arg8; 1752 unsigned long arg9; 1753 unsigned long arg10; 1754 unsigned long arg11; 1755 unsigned long arg12; 1756 unsigned long arg13; 1757 unsigned long frame_marker[2]; /* rp, previous sp */ 1758 unsigned long sp; 1759 /* in reality, there's nearly 8k of stack after this */ 1760 }; 1761 1762 long real64_call(unsigned long fn, ...) 1763 { 1764 va_list args; 1765 extern struct wide_stack real64_stack; 1766 extern unsigned long real64_call_asm(unsigned long *, 1767 unsigned long *, 1768 unsigned long); 1769 1770 va_start(args, fn); 1771 real64_stack.arg0 = va_arg(args, unsigned long); 1772 real64_stack.arg1 = va_arg(args, unsigned long); 1773 real64_stack.arg2 = va_arg(args, unsigned long); 1774 real64_stack.arg3 = va_arg(args, unsigned long); 1775 real64_stack.arg4 = va_arg(args, unsigned long); 1776 real64_stack.arg5 = va_arg(args, unsigned long); 1777 real64_stack.arg6 = va_arg(args, unsigned long); 1778 real64_stack.arg7 = va_arg(args, unsigned long); 1779 real64_stack.arg8 = va_arg(args, unsigned long); 1780 real64_stack.arg9 = va_arg(args, unsigned long); 1781 real64_stack.arg10 = va_arg(args, unsigned long); 1782 real64_stack.arg11 = va_arg(args, unsigned long); 1783 real64_stack.arg12 = va_arg(args, unsigned long); 1784 real64_stack.arg13 = va_arg(args, unsigned long); 1785 va_end(args); 1786 1787 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn); 1788 } 1789 1790 #endif /* CONFIG_64BIT */ 1791