1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * arch/parisc/kernel/firmware.c - safe PDC access routines 4 * 5 * PDC == Processor Dependent Code 6 * 7 * See PDC documentation at 8 * https://parisc.wiki.kernel.org/index.php/Technical_Documentation 9 * for documentation describing the entry points and calling 10 * conventions defined below. 11 * 12 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org) 13 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy) 14 * Copyright 2003 Grant Grundler <grundler parisc-linux org> 15 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org> 16 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org> 17 */ 18 19 /* I think it would be in everyone's best interest to follow this 20 * guidelines when writing PDC wrappers: 21 * 22 * - the name of the pdc wrapper should match one of the macros 23 * used for the first two arguments 24 * - don't use caps for random parts of the name 25 * - use the static PDC result buffers and "copyout" to structs 26 * supplied by the caller to encapsulate alignment restrictions 27 * - hold pdc_lock while in PDC or using static result buffers 28 * - use __pa() to convert virtual (kernel) pointers to physical 29 * ones. 30 * - the name of the struct used for pdc return values should equal 31 * one of the macros used for the first two arguments to the 32 * corresponding PDC call 33 * - keep the order of arguments 34 * - don't be smart (setting trailing NUL bytes for strings, return 35 * something useful even if the call failed) unless you are sure 36 * it's not going to affect functionality or performance 37 * 38 * Example: 39 * int pdc_cache_info(struct pdc_cache_info *cache_info ) 40 * { 41 * int retval; 42 * 43 * spin_lock_irq(&pdc_lock); 44 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0); 45 * convert_to_wide(pdc_result); 46 * memcpy(cache_info, pdc_result, sizeof(*cache_info)); 47 * spin_unlock_irq(&pdc_lock); 48 * 49 * return retval; 50 * } 51 * prumpf 991016 52 */ 53 54 #include <linux/stdarg.h> 55 56 #include <linux/delay.h> 57 #include <linux/init.h> 58 #include <linux/kernel.h> 59 #include <linux/module.h> 60 #include <linux/string.h> 61 #include <linux/spinlock.h> 62 63 #include <asm/page.h> 64 #include <asm/pdc.h> 65 #include <asm/pdcpat.h> 66 #include <asm/processor.h> /* for boot_cpu_data */ 67 68 #if defined(BOOTLOADER) 69 # undef spin_lock_irqsave 70 # define spin_lock_irqsave(a, b) { b = 1; } 71 # undef spin_unlock_irqrestore 72 # define spin_unlock_irqrestore(a, b) 73 #else 74 static DEFINE_SPINLOCK(pdc_lock); 75 #endif 76 77 static unsigned long pdc_result[NUM_PDC_RESULT] __aligned(8); 78 static unsigned long pdc_result2[NUM_PDC_RESULT] __aligned(8); 79 80 #ifdef CONFIG_64BIT 81 #define WIDE_FIRMWARE PDC_MODEL_OS64 82 #define NARROW_FIRMWARE PDC_MODEL_OS32 83 84 /* Firmware needs to be initially set to narrow to determine the 85 * actual firmware width. */ 86 int parisc_narrow_firmware __ro_after_init = NARROW_FIRMWARE; 87 #endif 88 89 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls 90 * and MEM_PDC calls are always the same width as the OS. 91 * Some PAT boxes may have 64-bit IODC I/O. 92 * 93 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow 94 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls. 95 * This allowed wide kernels to run on Cxxx boxes. 96 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode 97 * when running a 64-bit kernel on such boxes (e.g. C200 or C360). 98 */ 99 100 #ifdef CONFIG_64BIT 101 long real64_call(unsigned long function, ...); 102 #endif 103 long real32_call(unsigned long function, ...); 104 105 #ifdef CONFIG_64BIT 106 # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc 107 # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args) 108 #else 109 # define MEM_PDC (unsigned long)PAGE0->mem_pdc 110 # define mem_pdc_call(args...) real32_call(MEM_PDC, args) 111 #endif 112 113 114 /** 115 * f_extend - Convert PDC addresses to kernel addresses. 116 * @address: Address returned from PDC. 117 * 118 * This function is used to convert PDC addresses into kernel addresses 119 * when the PDC address size and kernel address size are different. 120 */ 121 static unsigned long f_extend(unsigned long address) 122 { 123 #ifdef CONFIG_64BIT 124 if(unlikely(parisc_narrow_firmware)) { 125 if((address & 0xff000000) == 0xf0000000) 126 return (0xfffffff0UL << 32) | (u32)address; 127 128 if((address & 0xf0000000) == 0xf0000000) 129 return (0xffffffffUL << 32) | (u32)address; 130 } 131 #endif 132 return address; 133 } 134 135 /** 136 * convert_to_wide - Convert the return buffer addresses into kernel addresses. 137 * @addr: The return buffer from PDC. 138 * 139 * This function is used to convert the return buffer addresses retrieved from PDC 140 * into kernel addresses when the PDC address size and kernel address size are 141 * different. 142 */ 143 static void convert_to_wide(unsigned long *addr) 144 { 145 #ifdef CONFIG_64BIT 146 int i; 147 unsigned int *p = (unsigned int *)addr; 148 149 if (unlikely(parisc_narrow_firmware)) { 150 for (i = (NUM_PDC_RESULT-1); i >= 0; --i) 151 addr[i] = p[i]; 152 } 153 #endif 154 } 155 156 #ifdef CONFIG_64BIT 157 void set_firmware_width_unlocked(void) 158 { 159 int ret; 160 161 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, 162 __pa(pdc_result), 0); 163 if (ret < 0) 164 return; 165 convert_to_wide(pdc_result); 166 if (pdc_result[0] != NARROW_FIRMWARE) 167 parisc_narrow_firmware = 0; 168 } 169 170 /** 171 * set_firmware_width - Determine if the firmware is wide or narrow. 172 * 173 * This function must be called before any pdc_* function that uses the 174 * convert_to_wide function. 175 */ 176 void set_firmware_width(void) 177 { 178 unsigned long flags; 179 180 /* already initialized? */ 181 if (parisc_narrow_firmware != NARROW_FIRMWARE) 182 return; 183 184 spin_lock_irqsave(&pdc_lock, flags); 185 set_firmware_width_unlocked(); 186 spin_unlock_irqrestore(&pdc_lock, flags); 187 } 188 #else 189 void set_firmware_width_unlocked(void) 190 { 191 return; 192 } 193 194 void set_firmware_width(void) 195 { 196 return; 197 } 198 #endif /*CONFIG_64BIT*/ 199 200 201 #if !defined(BOOTLOADER) 202 /** 203 * pdc_emergency_unlock - Unlock the linux pdc lock 204 * 205 * This call unlocks the linux pdc lock in case we need some PDC functions 206 * (like pdc_add_valid) during kernel stack dump. 207 */ 208 void pdc_emergency_unlock(void) 209 { 210 /* Spinlock DEBUG code freaks out if we unconditionally unlock */ 211 if (spin_is_locked(&pdc_lock)) 212 spin_unlock(&pdc_lock); 213 } 214 215 216 /** 217 * pdc_add_valid - Verify address can be accessed without causing a HPMC. 218 * @address: Address to be verified. 219 * 220 * This PDC call attempts to read from the specified address and verifies 221 * if the address is valid. 222 * 223 * The return value is PDC_OK (0) in case accessing this address is valid. 224 */ 225 int pdc_add_valid(unsigned long address) 226 { 227 int retval; 228 unsigned long flags; 229 230 spin_lock_irqsave(&pdc_lock, flags); 231 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address); 232 spin_unlock_irqrestore(&pdc_lock, flags); 233 234 return retval; 235 } 236 EXPORT_SYMBOL(pdc_add_valid); 237 238 /** 239 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler. 240 * @instr: Pointer to variable which will get instruction opcode. 241 * 242 * The return value is PDC_OK (0) in case call succeeded. 243 */ 244 int __init pdc_instr(unsigned int *instr) 245 { 246 int retval; 247 unsigned long flags; 248 249 spin_lock_irqsave(&pdc_lock, flags); 250 retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result)); 251 convert_to_wide(pdc_result); 252 *instr = pdc_result[0]; 253 spin_unlock_irqrestore(&pdc_lock, flags); 254 255 return retval; 256 } 257 258 /** 259 * pdc_chassis_info - Return chassis information. 260 * @chassis_info: The memory buffer address. 261 * @led_info: The size of the memory buffer address. 262 * @len: The size of the memory buffer address. 263 * 264 * An HVERSION dependent call for returning the chassis information. 265 */ 266 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len) 267 { 268 int retval; 269 unsigned long flags; 270 271 spin_lock_irqsave(&pdc_lock, flags); 272 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info)); 273 memcpy(&pdc_result2, led_info, len); 274 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO, 275 __pa(pdc_result), __pa(pdc_result2), len); 276 memcpy(chassis_info, pdc_result, sizeof(*chassis_info)); 277 memcpy(led_info, pdc_result2, len); 278 spin_unlock_irqrestore(&pdc_lock, flags); 279 280 return retval; 281 } 282 283 /** 284 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message. 285 * @state: state of the machine 286 * @data: value for that state 287 * 288 * Must be correctly formatted or expect system crash 289 */ 290 #ifdef CONFIG_64BIT 291 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data) 292 { 293 int retval = 0; 294 unsigned long flags; 295 296 if (!is_pdc_pat()) 297 return -1; 298 299 spin_lock_irqsave(&pdc_lock, flags); 300 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data)); 301 spin_unlock_irqrestore(&pdc_lock, flags); 302 303 return retval; 304 } 305 #endif 306 307 /** 308 * pdc_chassis_disp - Updates chassis code 309 * @disp: value to show on display 310 */ 311 int pdc_chassis_disp(unsigned long disp) 312 { 313 int retval = 0; 314 unsigned long flags; 315 316 spin_lock_irqsave(&pdc_lock, flags); 317 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp); 318 spin_unlock_irqrestore(&pdc_lock, flags); 319 320 return retval; 321 } 322 323 /** 324 * __pdc_cpu_rendezvous - Stop currently executing CPU and do not return. 325 */ 326 int __pdc_cpu_rendezvous(void) 327 { 328 if (is_pdc_pat()) 329 return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS); 330 else 331 return mem_pdc_call(PDC_PROC, 1, 0); 332 } 333 334 /** 335 * pdc_cpu_rendezvous_lock - Lock PDC while transitioning to rendezvous state 336 */ 337 void pdc_cpu_rendezvous_lock(void) __acquires(&pdc_lock) 338 { 339 spin_lock(&pdc_lock); 340 } 341 342 /** 343 * pdc_cpu_rendezvous_unlock - Unlock PDC after reaching rendezvous state 344 */ 345 void pdc_cpu_rendezvous_unlock(void) __releases(&pdc_lock) 346 { 347 spin_unlock(&pdc_lock); 348 } 349 350 /** 351 * pdc_pat_get_PDC_entrypoint - Get PDC entry point for current CPU 352 * @pdc_entry: pointer to where the PDC entry point should be stored 353 */ 354 int pdc_pat_get_PDC_entrypoint(unsigned long *pdc_entry) 355 { 356 int retval = 0; 357 unsigned long flags; 358 359 if (!IS_ENABLED(CONFIG_SMP) || !is_pdc_pat()) { 360 *pdc_entry = MEM_PDC; 361 return 0; 362 } 363 364 spin_lock_irqsave(&pdc_lock, flags); 365 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_PDC_ENTRYPOINT, 366 __pa(pdc_result)); 367 *pdc_entry = pdc_result[0]; 368 spin_unlock_irqrestore(&pdc_lock, flags); 369 370 return retval; 371 } 372 /** 373 * pdc_chassis_warn - Fetches chassis warnings 374 * @warn: The warning value to be shown 375 */ 376 int pdc_chassis_warn(unsigned long *warn) 377 { 378 int retval = 0; 379 unsigned long flags; 380 381 spin_lock_irqsave(&pdc_lock, flags); 382 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result)); 383 *warn = pdc_result[0]; 384 spin_unlock_irqrestore(&pdc_lock, flags); 385 386 return retval; 387 } 388 389 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info) 390 { 391 int ret; 392 393 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result)); 394 convert_to_wide(pdc_result); 395 pdc_coproc_info->ccr_functional = pdc_result[0]; 396 pdc_coproc_info->ccr_present = pdc_result[1]; 397 pdc_coproc_info->revision = pdc_result[17]; 398 pdc_coproc_info->model = pdc_result[18]; 399 400 return ret; 401 } 402 403 /** 404 * pdc_coproc_cfg - To identify coprocessors attached to the processor. 405 * @pdc_coproc_info: Return buffer address. 406 * 407 * This PDC call returns the presence and status of all the coprocessors 408 * attached to the processor. 409 */ 410 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info) 411 { 412 int ret; 413 unsigned long flags; 414 415 spin_lock_irqsave(&pdc_lock, flags); 416 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info); 417 spin_unlock_irqrestore(&pdc_lock, flags); 418 419 return ret; 420 } 421 422 /** 423 * pdc_iodc_read - Read data from the modules IODC. 424 * @actcnt: The actual number of bytes. 425 * @hpa: The HPA of the module for the iodc read. 426 * @index: The iodc entry point. 427 * @iodc_data: A buffer memory for the iodc options. 428 * @iodc_data_size: Size of the memory buffer. 429 * 430 * This PDC call reads from the IODC of the module specified by the hpa 431 * argument. 432 */ 433 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index, 434 void *iodc_data, unsigned int iodc_data_size) 435 { 436 int retval; 437 unsigned long flags; 438 439 spin_lock_irqsave(&pdc_lock, flags); 440 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 441 index, __pa(pdc_result2), iodc_data_size); 442 convert_to_wide(pdc_result); 443 *actcnt = pdc_result[0]; 444 memcpy(iodc_data, pdc_result2, iodc_data_size); 445 spin_unlock_irqrestore(&pdc_lock, flags); 446 447 return retval; 448 } 449 EXPORT_SYMBOL(pdc_iodc_read); 450 451 /** 452 * pdc_system_map_find_mods - Locate unarchitected modules. 453 * @pdc_mod_info: Return buffer address. 454 * @mod_path: pointer to dev path structure. 455 * @mod_index: fixed address module index. 456 * 457 * To locate and identify modules which reside at fixed I/O addresses, which 458 * do not self-identify via architected bus walks. 459 */ 460 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info, 461 struct pdc_module_path *mod_path, long mod_index) 462 { 463 int retval; 464 unsigned long flags; 465 466 spin_lock_irqsave(&pdc_lock, flags); 467 memcpy(pdc_result2, mod_path, sizeof(*mod_path)); 468 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 469 __pa(pdc_result2), mod_index); 470 convert_to_wide(pdc_result); 471 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info)); 472 memcpy(mod_path, pdc_result2, sizeof(*mod_path)); 473 spin_unlock_irqrestore(&pdc_lock, flags); 474 475 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr); 476 return retval; 477 } 478 479 /** 480 * pdc_system_map_find_addrs - Retrieve additional address ranges. 481 * @pdc_addr_info: Return buffer address. 482 * @mod_index: Fixed address module index. 483 * @addr_index: Address range index. 484 * 485 * Retrieve additional information about subsequent address ranges for modules 486 * with multiple address ranges. 487 */ 488 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 489 long mod_index, long addr_index) 490 { 491 int retval; 492 unsigned long flags; 493 494 spin_lock_irqsave(&pdc_lock, flags); 495 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result), 496 mod_index, addr_index); 497 convert_to_wide(pdc_result); 498 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info)); 499 spin_unlock_irqrestore(&pdc_lock, flags); 500 501 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr); 502 return retval; 503 } 504 505 /** 506 * pdc_model_info - Return model information about the processor. 507 * @model: The return buffer. 508 * 509 * Returns the version numbers, identifiers, and capabilities from the processor module. 510 */ 511 int pdc_model_info(struct pdc_model *model) 512 { 513 int retval; 514 unsigned long flags; 515 516 spin_lock_irqsave(&pdc_lock, flags); 517 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0); 518 convert_to_wide(pdc_result); 519 memcpy(model, pdc_result, sizeof(*model)); 520 spin_unlock_irqrestore(&pdc_lock, flags); 521 522 return retval; 523 } 524 525 /** 526 * pdc_model_sysmodel - Get the system model name. 527 * @os_id: The operating system ID asked for (an OS_ID_* value) 528 * @name: A char array of at least 81 characters. 529 * 530 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L). 531 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command 532 * on HP/UX. 533 */ 534 int pdc_model_sysmodel(unsigned int os_id, char *name) 535 { 536 int retval; 537 unsigned long flags; 538 539 spin_lock_irqsave(&pdc_lock, flags); 540 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result), 541 os_id, __pa(name)); 542 convert_to_wide(pdc_result); 543 544 if (retval == PDC_OK) { 545 name[pdc_result[0]] = '\0'; /* add trailing '\0' */ 546 } else { 547 name[0] = 0; 548 } 549 spin_unlock_irqrestore(&pdc_lock, flags); 550 551 return retval; 552 } 553 554 /** 555 * pdc_model_versions - Identify the version number of each processor. 556 * @versions: The return buffer. 557 * @id: The id of the processor to check. 558 * 559 * Returns the version number for each processor component. 560 * 561 * This comment was here before, but I do not know what it means :( -RB 562 * id: 0 = cpu revision, 1 = boot-rom-version 563 */ 564 int pdc_model_versions(unsigned long *versions, int id) 565 { 566 int retval; 567 unsigned long flags; 568 569 spin_lock_irqsave(&pdc_lock, flags); 570 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id); 571 convert_to_wide(pdc_result); 572 *versions = pdc_result[0]; 573 spin_unlock_irqrestore(&pdc_lock, flags); 574 575 return retval; 576 } 577 578 /** 579 * pdc_model_cpuid - Returns the CPU_ID. 580 * @cpu_id: The return buffer. 581 * 582 * Returns the CPU_ID value which uniquely identifies the cpu portion of 583 * the processor module. 584 */ 585 int pdc_model_cpuid(unsigned long *cpu_id) 586 { 587 int retval; 588 unsigned long flags; 589 590 spin_lock_irqsave(&pdc_lock, flags); 591 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ 592 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0); 593 convert_to_wide(pdc_result); 594 *cpu_id = pdc_result[0]; 595 spin_unlock_irqrestore(&pdc_lock, flags); 596 597 return retval; 598 } 599 600 /** 601 * pdc_model_capabilities - Returns the platform capabilities. 602 * @capabilities: The return buffer. 603 * 604 * Returns information about platform support for 32- and/or 64-bit 605 * OSes, IO-PDIR coherency, and virtual aliasing. 606 */ 607 int pdc_model_capabilities(unsigned long *capabilities) 608 { 609 int retval; 610 unsigned long flags; 611 612 spin_lock_irqsave(&pdc_lock, flags); 613 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ 614 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0); 615 convert_to_wide(pdc_result); 616 if (retval == PDC_OK) { 617 *capabilities = pdc_result[0]; 618 } else { 619 *capabilities = PDC_MODEL_OS32; 620 } 621 spin_unlock_irqrestore(&pdc_lock, flags); 622 623 return retval; 624 } 625 626 /** 627 * pdc_model_platform_info - Returns machine product and serial number. 628 * @orig_prod_num: Return buffer for original product number. 629 * @current_prod_num: Return buffer for current product number. 630 * @serial_no: Return buffer for serial number. 631 * 632 * Returns strings containing the original and current product numbers and the 633 * serial number of the system. 634 */ 635 int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num, 636 char *serial_no) 637 { 638 int retval; 639 unsigned long flags; 640 641 spin_lock_irqsave(&pdc_lock, flags); 642 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO, 643 __pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no)); 644 convert_to_wide(pdc_result); 645 spin_unlock_irqrestore(&pdc_lock, flags); 646 647 return retval; 648 } 649 650 /** 651 * pdc_cache_info - Return cache and TLB information. 652 * @cache_info: The return buffer. 653 * 654 * Returns information about the processor's cache and TLB. 655 */ 656 int pdc_cache_info(struct pdc_cache_info *cache_info) 657 { 658 int retval; 659 unsigned long flags; 660 661 spin_lock_irqsave(&pdc_lock, flags); 662 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0); 663 convert_to_wide(pdc_result); 664 memcpy(cache_info, pdc_result, sizeof(*cache_info)); 665 spin_unlock_irqrestore(&pdc_lock, flags); 666 667 return retval; 668 } 669 670 /** 671 * pdc_spaceid_bits - Return whether Space ID hashing is turned on. 672 * @space_bits: Should be 0, if not, bad mojo! 673 * 674 * Returns information about Space ID hashing. 675 */ 676 int pdc_spaceid_bits(unsigned long *space_bits) 677 { 678 int retval; 679 unsigned long flags; 680 681 spin_lock_irqsave(&pdc_lock, flags); 682 pdc_result[0] = 0; 683 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0); 684 convert_to_wide(pdc_result); 685 *space_bits = pdc_result[0]; 686 spin_unlock_irqrestore(&pdc_lock, flags); 687 688 return retval; 689 } 690 691 /** 692 * pdc_btlb_info - Return block TLB information. 693 * @btlb: The return buffer. 694 * 695 * Returns information about the hardware Block TLB. 696 */ 697 int pdc_btlb_info(struct pdc_btlb_info *btlb) 698 { 699 int retval; 700 unsigned long flags; 701 702 if (IS_ENABLED(CONFIG_PA20)) 703 return PDC_BAD_PROC; 704 705 spin_lock_irqsave(&pdc_lock, flags); 706 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0); 707 memcpy(btlb, pdc_result, sizeof(*btlb)); 708 spin_unlock_irqrestore(&pdc_lock, flags); 709 710 if(retval < 0) { 711 btlb->max_size = 0; 712 } 713 return retval; 714 } 715 716 int pdc_btlb_insert(unsigned long long vpage, unsigned long physpage, unsigned long len, 717 unsigned long entry_info, unsigned long slot) 718 { 719 int retval; 720 unsigned long flags; 721 722 if (IS_ENABLED(CONFIG_PA20)) 723 return PDC_BAD_PROC; 724 725 spin_lock_irqsave(&pdc_lock, flags); 726 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INSERT, (unsigned long) (vpage >> 32), 727 (unsigned long) vpage, physpage, len, entry_info, slot); 728 spin_unlock_irqrestore(&pdc_lock, flags); 729 return retval; 730 } 731 732 int pdc_btlb_purge_all(void) 733 { 734 int retval; 735 unsigned long flags; 736 737 if (IS_ENABLED(CONFIG_PA20)) 738 return PDC_BAD_PROC; 739 740 spin_lock_irqsave(&pdc_lock, flags); 741 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_PURGE_ALL); 742 spin_unlock_irqrestore(&pdc_lock, flags); 743 return retval; 744 } 745 746 /** 747 * pdc_mem_map_hpa - Find fixed module information. 748 * @address: The return buffer 749 * @mod_path: pointer to dev path structure. 750 * 751 * This call was developed for S700 workstations to allow the kernel to find 752 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this 753 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP 754 * call. 755 * 756 * This call is supported by all existing S700 workstations (up to Gecko). 757 */ 758 int pdc_mem_map_hpa(struct pdc_memory_map *address, 759 struct pdc_module_path *mod_path) 760 { 761 int retval; 762 unsigned long flags; 763 764 if (IS_ENABLED(CONFIG_PA20)) 765 return PDC_BAD_PROC; 766 767 spin_lock_irqsave(&pdc_lock, flags); 768 memcpy(pdc_result2, mod_path, sizeof(*mod_path)); 769 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result), 770 __pa(pdc_result2)); 771 memcpy(address, pdc_result, sizeof(*address)); 772 spin_unlock_irqrestore(&pdc_lock, flags); 773 774 return retval; 775 } 776 777 /** 778 * pdc_lan_station_id - Get the LAN address. 779 * @lan_addr: The return buffer. 780 * @hpa: The network device HPA. 781 * 782 * Get the LAN station address when it is not directly available from the LAN hardware. 783 */ 784 int pdc_lan_station_id(char *lan_addr, unsigned long hpa) 785 { 786 int retval; 787 unsigned long flags; 788 789 spin_lock_irqsave(&pdc_lock, flags); 790 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ, 791 __pa(pdc_result), hpa); 792 if (retval < 0) { 793 /* FIXME: else read MAC from NVRAM */ 794 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE); 795 } else { 796 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE); 797 } 798 spin_unlock_irqrestore(&pdc_lock, flags); 799 800 return retval; 801 } 802 EXPORT_SYMBOL(pdc_lan_station_id); 803 804 /** 805 * pdc_stable_read - Read data from Stable Storage. 806 * @staddr: Stable Storage address to access. 807 * @memaddr: The memory address where Stable Storage data shall be copied. 808 * @count: number of bytes to transfer. count is multiple of 4. 809 * 810 * This PDC call reads from the Stable Storage address supplied in staddr 811 * and copies count bytes to the memory address memaddr. 812 * The call will fail if staddr+count > PDC_STABLE size. 813 */ 814 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count) 815 { 816 int retval; 817 unsigned long flags; 818 819 spin_lock_irqsave(&pdc_lock, flags); 820 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr, 821 __pa(pdc_result), count); 822 convert_to_wide(pdc_result); 823 memcpy(memaddr, pdc_result, count); 824 spin_unlock_irqrestore(&pdc_lock, flags); 825 826 return retval; 827 } 828 EXPORT_SYMBOL(pdc_stable_read); 829 830 /** 831 * pdc_stable_write - Write data to Stable Storage. 832 * @staddr: Stable Storage address to access. 833 * @memaddr: The memory address where Stable Storage data shall be read from. 834 * @count: number of bytes to transfer. count is multiple of 4. 835 * 836 * This PDC call reads count bytes from the supplied memaddr address, 837 * and copies count bytes to the Stable Storage address staddr. 838 * The call will fail if staddr+count > PDC_STABLE size. 839 */ 840 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count) 841 { 842 int retval; 843 unsigned long flags; 844 845 spin_lock_irqsave(&pdc_lock, flags); 846 memcpy(pdc_result, memaddr, count); 847 convert_to_wide(pdc_result); 848 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr, 849 __pa(pdc_result), count); 850 spin_unlock_irqrestore(&pdc_lock, flags); 851 852 return retval; 853 } 854 EXPORT_SYMBOL(pdc_stable_write); 855 856 /** 857 * pdc_stable_get_size - Get Stable Storage size in bytes. 858 * @size: pointer where the size will be stored. 859 * 860 * This PDC call returns the number of bytes in the processor's Stable 861 * Storage, which is the number of contiguous bytes implemented in Stable 862 * Storage starting from staddr=0. size in an unsigned 64-bit integer 863 * which is a multiple of four. 864 */ 865 int pdc_stable_get_size(unsigned long *size) 866 { 867 int retval; 868 unsigned long flags; 869 870 spin_lock_irqsave(&pdc_lock, flags); 871 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result)); 872 *size = pdc_result[0]; 873 spin_unlock_irqrestore(&pdc_lock, flags); 874 875 return retval; 876 } 877 EXPORT_SYMBOL(pdc_stable_get_size); 878 879 /** 880 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid. 881 * 882 * This PDC call is meant to be used to check the integrity of the current 883 * contents of Stable Storage. 884 */ 885 int pdc_stable_verify_contents(void) 886 { 887 int retval; 888 unsigned long flags; 889 890 spin_lock_irqsave(&pdc_lock, flags); 891 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS); 892 spin_unlock_irqrestore(&pdc_lock, flags); 893 894 return retval; 895 } 896 EXPORT_SYMBOL(pdc_stable_verify_contents); 897 898 /** 899 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize 900 * the validity indicator. 901 * 902 * This PDC call will erase all contents of Stable Storage. Use with care! 903 */ 904 int pdc_stable_initialize(void) 905 { 906 int retval; 907 unsigned long flags; 908 909 spin_lock_irqsave(&pdc_lock, flags); 910 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE); 911 spin_unlock_irqrestore(&pdc_lock, flags); 912 913 return retval; 914 } 915 EXPORT_SYMBOL(pdc_stable_initialize); 916 917 /** 918 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD) 919 * @hwpath: fully bc.mod style path to the device. 920 * @initiator: the array to return the result into 921 * 922 * Get the SCSI operational parameters from PDC. 923 * Needed since HPUX never used BIOS or symbios card NVRAM. 924 * Most ncr/sym cards won't have an entry and just use whatever 925 * capabilities of the card are (eg Ultra, LVD). But there are 926 * several cases where it's useful: 927 * o set SCSI id for Multi-initiator clusters, 928 * o cable too long (ie SE scsi 10Mhz won't support 6m length), 929 * o bus width exported is less than what the interface chip supports. 930 */ 931 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator) 932 { 933 int retval; 934 unsigned long flags; 935 936 spin_lock_irqsave(&pdc_lock, flags); 937 938 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */ 939 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \ 940 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0) 941 942 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 943 __pa(pdc_result), __pa(hwpath)); 944 if (retval < PDC_OK) 945 goto out; 946 947 if (pdc_result[0] < 16) { 948 initiator->host_id = pdc_result[0]; 949 } else { 950 initiator->host_id = -1; 951 } 952 953 /* 954 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns 955 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively 956 */ 957 switch (pdc_result[1]) { 958 case 1: initiator->factor = 50; break; 959 case 2: initiator->factor = 25; break; 960 case 5: initiator->factor = 12; break; 961 case 25: initiator->factor = 10; break; 962 case 20: initiator->factor = 12; break; 963 case 40: initiator->factor = 10; break; 964 default: initiator->factor = -1; break; 965 } 966 967 if (IS_SPROCKETS()) { 968 initiator->width = pdc_result[4]; 969 initiator->mode = pdc_result[5]; 970 } else { 971 initiator->width = -1; 972 initiator->mode = -1; 973 } 974 975 out: 976 spin_unlock_irqrestore(&pdc_lock, flags); 977 978 return (retval >= PDC_OK); 979 } 980 EXPORT_SYMBOL(pdc_get_initiator); 981 982 983 /** 984 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table. 985 * @num_entries: The return value. 986 * @hpa: The HPA for the device. 987 * 988 * This PDC function returns the number of entries in the specified cell's 989 * interrupt table. 990 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes 991 */ 992 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa) 993 { 994 int retval; 995 unsigned long flags; 996 997 spin_lock_irqsave(&pdc_lock, flags); 998 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 999 __pa(pdc_result), hpa); 1000 convert_to_wide(pdc_result); 1001 *num_entries = pdc_result[0]; 1002 spin_unlock_irqrestore(&pdc_lock, flags); 1003 1004 return retval; 1005 } 1006 1007 /** 1008 * pdc_pci_irt - Get the PCI interrupt routing table. 1009 * @num_entries: The number of entries in the table. 1010 * @hpa: The Hard Physical Address of the device. 1011 * @tbl: 1012 * 1013 * Get the PCI interrupt routing table for the device at the given HPA. 1014 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes 1015 */ 1016 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl) 1017 { 1018 int retval; 1019 unsigned long flags; 1020 1021 BUG_ON((unsigned long)tbl & 0x7); 1022 1023 spin_lock_irqsave(&pdc_lock, flags); 1024 pdc_result[0] = num_entries; 1025 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 1026 __pa(pdc_result), hpa, __pa(tbl)); 1027 spin_unlock_irqrestore(&pdc_lock, flags); 1028 1029 return retval; 1030 } 1031 1032 1033 #if 0 /* UNTEST CODE - left here in case someone needs it */ 1034 1035 /** 1036 * pdc_pci_config_read - read PCI config space. 1037 * @hpa: Token from PDC to indicate which PCI device 1038 * @cfg_addr: Configuration space address to read from 1039 * 1040 * Read PCI Configuration space *before* linux PCI subsystem is running. 1041 */ 1042 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr) 1043 { 1044 int retval; 1045 unsigned long flags; 1046 1047 spin_lock_irqsave(&pdc_lock, flags); 1048 pdc_result[0] = 0; 1049 pdc_result[1] = 0; 1050 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 1051 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL); 1052 spin_unlock_irqrestore(&pdc_lock, flags); 1053 1054 return retval ? ~0 : (unsigned int) pdc_result[0]; 1055 } 1056 1057 1058 /** 1059 * pdc_pci_config_write - read PCI config space. 1060 * @hpa: Token from PDC to indicate which PCI device 1061 * @cfg_addr: Configuration space address to write 1062 * @val: Value we want in the 32-bit register 1063 * 1064 * Write PCI Configuration space *before* linux PCI subsystem is running. 1065 */ 1066 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val) 1067 { 1068 int retval; 1069 unsigned long flags; 1070 1071 spin_lock_irqsave(&pdc_lock, flags); 1072 pdc_result[0] = 0; 1073 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 1074 __pa(pdc_result), hpa, 1075 cfg_addr&~3UL, 4UL, (unsigned long) val); 1076 spin_unlock_irqrestore(&pdc_lock, flags); 1077 1078 return retval; 1079 } 1080 #endif /* UNTESTED CODE */ 1081 1082 /** 1083 * pdc_tod_read - Read the Time-Of-Day clock. 1084 * @tod: The return buffer: 1085 * 1086 * Read the Time-Of-Day clock 1087 */ 1088 int pdc_tod_read(struct pdc_tod *tod) 1089 { 1090 int retval; 1091 unsigned long flags; 1092 1093 spin_lock_irqsave(&pdc_lock, flags); 1094 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0); 1095 convert_to_wide(pdc_result); 1096 memcpy(tod, pdc_result, sizeof(*tod)); 1097 spin_unlock_irqrestore(&pdc_lock, flags); 1098 1099 return retval; 1100 } 1101 EXPORT_SYMBOL(pdc_tod_read); 1102 1103 int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo) 1104 { 1105 int retval; 1106 unsigned long flags; 1107 1108 spin_lock_irqsave(&pdc_lock, flags); 1109 retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0); 1110 convert_to_wide(pdc_result); 1111 memcpy(rinfo, pdc_result, sizeof(*rinfo)); 1112 spin_unlock_irqrestore(&pdc_lock, flags); 1113 1114 return retval; 1115 } 1116 1117 int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret, 1118 unsigned long *pdt_entries_ptr) 1119 { 1120 int retval; 1121 unsigned long flags; 1122 1123 spin_lock_irqsave(&pdc_lock, flags); 1124 retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result), 1125 __pa(pdt_entries_ptr)); 1126 if (retval == PDC_OK) { 1127 convert_to_wide(pdc_result); 1128 memcpy(pret, pdc_result, sizeof(*pret)); 1129 } 1130 spin_unlock_irqrestore(&pdc_lock, flags); 1131 1132 #ifdef CONFIG_64BIT 1133 /* 1134 * 64-bit kernels should not call this PDT function in narrow mode. 1135 * The pdt_entries_ptr array above will now contain 32-bit values 1136 */ 1137 if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware)) 1138 return PDC_ERROR; 1139 #endif 1140 1141 return retval; 1142 } 1143 1144 /** 1145 * pdc_pim_toc11 - Fetch TOC PIM 1.1 data from firmware. 1146 * @ret: pointer to return buffer 1147 */ 1148 int pdc_pim_toc11(struct pdc_toc_pim_11 *ret) 1149 { 1150 int retval; 1151 unsigned long flags; 1152 1153 spin_lock_irqsave(&pdc_lock, flags); 1154 retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result), 1155 __pa(ret), sizeof(*ret)); 1156 spin_unlock_irqrestore(&pdc_lock, flags); 1157 return retval; 1158 } 1159 1160 /** 1161 * pdc_pim_toc20 - Fetch TOC PIM 2.0 data from firmware. 1162 * @ret: pointer to return buffer 1163 */ 1164 int pdc_pim_toc20(struct pdc_toc_pim_20 *ret) 1165 { 1166 int retval; 1167 unsigned long flags; 1168 1169 spin_lock_irqsave(&pdc_lock, flags); 1170 retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result), 1171 __pa(ret), sizeof(*ret)); 1172 spin_unlock_irqrestore(&pdc_lock, flags); 1173 return retval; 1174 } 1175 1176 /** 1177 * pdc_tod_set - Set the Time-Of-Day clock. 1178 * @sec: The number of seconds since epoch. 1179 * @usec: The number of micro seconds. 1180 * 1181 * Set the Time-Of-Day clock. 1182 */ 1183 int pdc_tod_set(unsigned long sec, unsigned long usec) 1184 { 1185 int retval; 1186 unsigned long flags; 1187 1188 spin_lock_irqsave(&pdc_lock, flags); 1189 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec); 1190 spin_unlock_irqrestore(&pdc_lock, flags); 1191 1192 return retval; 1193 } 1194 EXPORT_SYMBOL(pdc_tod_set); 1195 1196 #ifdef CONFIG_64BIT 1197 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr, 1198 struct pdc_memory_table *tbl, unsigned long entries) 1199 { 1200 int retval; 1201 unsigned long flags; 1202 1203 spin_lock_irqsave(&pdc_lock, flags); 1204 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries); 1205 convert_to_wide(pdc_result); 1206 memcpy(r_addr, pdc_result, sizeof(*r_addr)); 1207 memcpy(tbl, pdc_result2, entries * sizeof(*tbl)); 1208 spin_unlock_irqrestore(&pdc_lock, flags); 1209 1210 return retval; 1211 } 1212 #endif /* CONFIG_64BIT */ 1213 1214 /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap 1215 * so I guessed at unsigned long. Someone who knows what this does, can fix 1216 * it later. :) 1217 */ 1218 int pdc_do_firm_test_reset(unsigned long ftc_bitmap) 1219 { 1220 int retval; 1221 unsigned long flags; 1222 1223 spin_lock_irqsave(&pdc_lock, flags); 1224 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET, 1225 PDC_FIRM_TEST_MAGIC, ftc_bitmap); 1226 spin_unlock_irqrestore(&pdc_lock, flags); 1227 1228 return retval; 1229 } 1230 1231 /* 1232 * pdc_do_reset - Reset the system. 1233 * 1234 * Reset the system. 1235 */ 1236 int pdc_do_reset(void) 1237 { 1238 int retval; 1239 unsigned long flags; 1240 1241 spin_lock_irqsave(&pdc_lock, flags); 1242 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET); 1243 spin_unlock_irqrestore(&pdc_lock, flags); 1244 1245 return retval; 1246 } 1247 1248 /* 1249 * pdc_soft_power_info - Enable soft power switch. 1250 * @power_reg: address of soft power register 1251 * 1252 * Return the absolute address of the soft power switch register 1253 */ 1254 int __init pdc_soft_power_info(unsigned long *power_reg) 1255 { 1256 int retval; 1257 unsigned long flags; 1258 1259 *power_reg = (unsigned long) (-1); 1260 1261 spin_lock_irqsave(&pdc_lock, flags); 1262 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0); 1263 if (retval == PDC_OK) { 1264 convert_to_wide(pdc_result); 1265 *power_reg = f_extend(pdc_result[0]); 1266 } 1267 spin_unlock_irqrestore(&pdc_lock, flags); 1268 1269 return retval; 1270 } 1271 1272 /* 1273 * pdc_soft_power_button{_panic} - Control the soft power button behaviour 1274 * @sw_control: 0 for hardware control, 1 for software control 1275 * 1276 * 1277 * This PDC function places the soft power button under software or 1278 * hardware control. 1279 * Under software control the OS may control to when to allow to shut 1280 * down the system. Under hardware control pressing the power button 1281 * powers off the system immediately. 1282 * 1283 * The _panic version relies on spin_trylock to prevent deadlock 1284 * on panic path. 1285 */ 1286 int pdc_soft_power_button(int sw_control) 1287 { 1288 int retval; 1289 unsigned long flags; 1290 1291 spin_lock_irqsave(&pdc_lock, flags); 1292 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control); 1293 spin_unlock_irqrestore(&pdc_lock, flags); 1294 1295 return retval; 1296 } 1297 1298 int pdc_soft_power_button_panic(int sw_control) 1299 { 1300 int retval; 1301 unsigned long flags; 1302 1303 if (!spin_trylock_irqsave(&pdc_lock, flags)) { 1304 pr_emerg("Couldn't enable soft power button\n"); 1305 return -EBUSY; /* ignored by the panic notifier */ 1306 } 1307 1308 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control); 1309 spin_unlock_irqrestore(&pdc_lock, flags); 1310 1311 return retval; 1312 } 1313 1314 /* 1315 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices. 1316 * Primarily a problem on T600 (which parisc-linux doesn't support) but 1317 * who knows what other platform firmware might do with this OS "hook". 1318 */ 1319 void pdc_io_reset(void) 1320 { 1321 unsigned long flags; 1322 1323 spin_lock_irqsave(&pdc_lock, flags); 1324 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0); 1325 spin_unlock_irqrestore(&pdc_lock, flags); 1326 } 1327 1328 /* 1329 * pdc_io_reset_devices - Hack to Stop USB controller 1330 * 1331 * If PDC used the usb controller, the usb controller 1332 * is still running and will crash the machines during iommu 1333 * setup, because of still running DMA. This PDC call 1334 * stops the USB controller. 1335 * Normally called after calling pdc_io_reset(). 1336 */ 1337 void pdc_io_reset_devices(void) 1338 { 1339 unsigned long flags; 1340 1341 spin_lock_irqsave(&pdc_lock, flags); 1342 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0); 1343 spin_unlock_irqrestore(&pdc_lock, flags); 1344 } 1345 1346 #endif /* defined(BOOTLOADER) */ 1347 1348 /* locked by pdc_lock */ 1349 static char iodc_dbuf[4096] __page_aligned_bss; 1350 1351 /** 1352 * pdc_iodc_print - Console print using IODC. 1353 * @str: the string to output. 1354 * @count: length of str 1355 * 1356 * Note that only these special chars are architected for console IODC io: 1357 * BEL, BS, CR, and LF. Others are passed through. 1358 * Since the HP console requires CR+LF to perform a 'newline', we translate 1359 * "\n" to "\r\n". 1360 */ 1361 int pdc_iodc_print(const unsigned char *str, unsigned count) 1362 { 1363 unsigned int i, found = 0; 1364 unsigned long flags; 1365 1366 count = min_t(unsigned int, count, sizeof(iodc_dbuf)); 1367 1368 spin_lock_irqsave(&pdc_lock, flags); 1369 for (i = 0; i < count;) { 1370 switch(str[i]) { 1371 case '\n': 1372 iodc_dbuf[i+0] = '\r'; 1373 iodc_dbuf[i+1] = '\n'; 1374 i += 2; 1375 found = 1; 1376 goto print; 1377 default: 1378 iodc_dbuf[i] = str[i]; 1379 i++; 1380 break; 1381 } 1382 } 1383 1384 print: 1385 real32_call(PAGE0->mem_cons.iodc_io, 1386 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT, 1387 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers), 1388 __pa(pdc_result), 0, __pa(iodc_dbuf), i, 0); 1389 spin_unlock_irqrestore(&pdc_lock, flags); 1390 1391 return i - found; 1392 } 1393 1394 #if !defined(BOOTLOADER) 1395 /** 1396 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console. 1397 * 1398 * Read a character (non-blocking) from the PDC console, returns -1 if 1399 * key is not present. 1400 */ 1401 int pdc_iodc_getc(void) 1402 { 1403 int ch; 1404 int status; 1405 unsigned long flags; 1406 1407 /* Bail if no console input device. */ 1408 if (!PAGE0->mem_kbd.iodc_io) 1409 return 0; 1410 1411 /* wait for a keyboard (rs232)-input */ 1412 spin_lock_irqsave(&pdc_lock, flags); 1413 real32_call(PAGE0->mem_kbd.iodc_io, 1414 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN, 1415 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 1416 __pa(pdc_result), 0, __pa(iodc_dbuf), 1, 0); 1417 1418 ch = *iodc_dbuf; 1419 /* like convert_to_wide() but for first return value only: */ 1420 status = *(int *)&pdc_result; 1421 spin_unlock_irqrestore(&pdc_lock, flags); 1422 1423 if (status == 0) 1424 return -1; 1425 1426 return ch; 1427 } 1428 1429 int pdc_sti_call(unsigned long func, unsigned long flags, 1430 unsigned long inptr, unsigned long outputr, 1431 unsigned long glob_cfg, int do_call64) 1432 { 1433 int retval = 0; 1434 unsigned long irqflags; 1435 1436 spin_lock_irqsave(&pdc_lock, irqflags); 1437 if (IS_ENABLED(CONFIG_64BIT) && do_call64) { 1438 #ifdef CONFIG_64BIT 1439 retval = real64_call(func, flags, inptr, outputr, glob_cfg); 1440 #else 1441 WARN_ON(1); 1442 #endif 1443 } else { 1444 retval = real32_call(func, flags, inptr, outputr, glob_cfg); 1445 } 1446 spin_unlock_irqrestore(&pdc_lock, irqflags); 1447 1448 return retval; 1449 } 1450 EXPORT_SYMBOL(pdc_sti_call); 1451 1452 #ifdef CONFIG_64BIT 1453 /** 1454 * pdc_pat_cell_get_number - Returns the cell number. 1455 * @cell_info: The return buffer. 1456 * 1457 * This PDC call returns the cell number of the cell from which the call 1458 * is made. 1459 */ 1460 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info) 1461 { 1462 int retval; 1463 unsigned long flags; 1464 1465 spin_lock_irqsave(&pdc_lock, flags); 1466 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result)); 1467 memcpy(cell_info, pdc_result, sizeof(*cell_info)); 1468 spin_unlock_irqrestore(&pdc_lock, flags); 1469 1470 return retval; 1471 } 1472 1473 /** 1474 * pdc_pat_cell_module - Retrieve the cell's module information. 1475 * @actcnt: The number of bytes written to mem_addr. 1476 * @ploc: The physical location. 1477 * @mod: The module index. 1478 * @view_type: The view of the address type. 1479 * @mem_addr: The return buffer. 1480 * 1481 * This PDC call returns information about each module attached to the cell 1482 * at the specified location. 1483 */ 1484 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod, 1485 unsigned long view_type, void *mem_addr) 1486 { 1487 int retval; 1488 unsigned long flags; 1489 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8))); 1490 1491 spin_lock_irqsave(&pdc_lock, flags); 1492 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 1493 ploc, mod, view_type, __pa(&result)); 1494 if(!retval) { 1495 *actcnt = pdc_result[0]; 1496 memcpy(mem_addr, &result, *actcnt); 1497 } 1498 spin_unlock_irqrestore(&pdc_lock, flags); 1499 1500 return retval; 1501 } 1502 1503 /** 1504 * pdc_pat_cell_info - Retrieve the cell's information. 1505 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block. 1506 * @actcnt: The number of bytes which should be written to info. 1507 * @offset: offset of the structure. 1508 * @cell_number: The cell number which should be asked, or -1 for current cell. 1509 * 1510 * This PDC call returns information about the given cell (or all cells). 1511 */ 1512 int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info, 1513 unsigned long *actcnt, unsigned long offset, 1514 unsigned long cell_number) 1515 { 1516 int retval; 1517 unsigned long flags; 1518 struct pdc_pat_cell_info_rtn_block result; 1519 1520 spin_lock_irqsave(&pdc_lock, flags); 1521 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO, 1522 __pa(pdc_result), __pa(&result), *actcnt, 1523 offset, cell_number); 1524 if (!retval) { 1525 *actcnt = pdc_result[0]; 1526 memcpy(info, &result, *actcnt); 1527 } 1528 spin_unlock_irqrestore(&pdc_lock, flags); 1529 1530 return retval; 1531 } 1532 1533 /** 1534 * pdc_pat_cpu_get_number - Retrieve the cpu number. 1535 * @cpu_info: The return buffer. 1536 * @hpa: The Hard Physical Address of the CPU. 1537 * 1538 * Retrieve the cpu number for the cpu at the specified HPA. 1539 */ 1540 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa) 1541 { 1542 int retval; 1543 unsigned long flags; 1544 1545 spin_lock_irqsave(&pdc_lock, flags); 1546 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER, 1547 __pa(&pdc_result), hpa); 1548 memcpy(cpu_info, pdc_result, sizeof(*cpu_info)); 1549 spin_unlock_irqrestore(&pdc_lock, flags); 1550 1551 return retval; 1552 } 1553 1554 /** 1555 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table. 1556 * @num_entries: The return value. 1557 * @cell_num: The target cell. 1558 * 1559 * This PDC function returns the number of entries in the specified cell's 1560 * interrupt table. 1561 */ 1562 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num) 1563 { 1564 int retval; 1565 unsigned long flags; 1566 1567 spin_lock_irqsave(&pdc_lock, flags); 1568 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE, 1569 __pa(pdc_result), cell_num); 1570 *num_entries = pdc_result[0]; 1571 spin_unlock_irqrestore(&pdc_lock, flags); 1572 1573 return retval; 1574 } 1575 1576 /** 1577 * pdc_pat_get_irt - Retrieve the cell's interrupt table. 1578 * @r_addr: The return buffer. 1579 * @cell_num: The target cell. 1580 * 1581 * This PDC function returns the actual interrupt table for the specified cell. 1582 */ 1583 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num) 1584 { 1585 int retval; 1586 unsigned long flags; 1587 1588 spin_lock_irqsave(&pdc_lock, flags); 1589 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE, 1590 __pa(r_addr), cell_num); 1591 spin_unlock_irqrestore(&pdc_lock, flags); 1592 1593 return retval; 1594 } 1595 1596 /** 1597 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges. 1598 * @actual_len: The return buffer. 1599 * @mem_addr: Pointer to the memory buffer. 1600 * @count: The number of bytes to read from the buffer. 1601 * @offset: The offset with respect to the beginning of the buffer. 1602 * 1603 */ 1604 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 1605 unsigned long count, unsigned long offset) 1606 { 1607 int retval; 1608 unsigned long flags; 1609 1610 spin_lock_irqsave(&pdc_lock, flags); 1611 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 1612 __pa(pdc_result2), count, offset); 1613 *actual_len = pdc_result[0]; 1614 memcpy(mem_addr, pdc_result2, *actual_len); 1615 spin_unlock_irqrestore(&pdc_lock, flags); 1616 1617 return retval; 1618 } 1619 1620 /** 1621 * pdc_pat_pd_get_pdc_revisions - Retrieve PDC interface revisions. 1622 * @legacy_rev: The legacy revision. 1623 * @pat_rev: The PAT revision. 1624 * @pdc_cap: The PDC capabilities. 1625 * 1626 */ 1627 int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev, 1628 unsigned long *pat_rev, unsigned long *pdc_cap) 1629 { 1630 int retval; 1631 unsigned long flags; 1632 1633 spin_lock_irqsave(&pdc_lock, flags); 1634 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV, 1635 __pa(pdc_result)); 1636 if (retval == PDC_OK) { 1637 *legacy_rev = pdc_result[0]; 1638 *pat_rev = pdc_result[1]; 1639 *pdc_cap = pdc_result[2]; 1640 } 1641 spin_unlock_irqrestore(&pdc_lock, flags); 1642 1643 return retval; 1644 } 1645 1646 1647 /** 1648 * pdc_pat_io_pci_cfg_read - Read PCI configuration space. 1649 * @pci_addr: PCI configuration space address for which the read request is being made. 1650 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 1651 * @mem_addr: Pointer to return memory buffer. 1652 * 1653 */ 1654 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr) 1655 { 1656 int retval; 1657 unsigned long flags; 1658 1659 spin_lock_irqsave(&pdc_lock, flags); 1660 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ, 1661 __pa(pdc_result), pci_addr, pci_size); 1662 switch(pci_size) { 1663 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; break; 1664 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; break; 1665 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; break; 1666 } 1667 spin_unlock_irqrestore(&pdc_lock, flags); 1668 1669 return retval; 1670 } 1671 1672 /** 1673 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges. 1674 * @pci_addr: PCI configuration space address for which the write request is being made. 1675 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 1676 * @val: Pointer to 1, 2, or 4 byte value in low order end of argument to be 1677 * written to PCI Config space. 1678 * 1679 */ 1680 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val) 1681 { 1682 int retval; 1683 unsigned long flags; 1684 1685 spin_lock_irqsave(&pdc_lock, flags); 1686 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE, 1687 pci_addr, pci_size, val); 1688 spin_unlock_irqrestore(&pdc_lock, flags); 1689 1690 return retval; 1691 } 1692 1693 /** 1694 * pdc_pat_mem_pdt_info - Retrieve information about page deallocation table 1695 * @rinfo: memory pdt information 1696 * 1697 */ 1698 int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo) 1699 { 1700 int retval; 1701 unsigned long flags; 1702 1703 spin_lock_irqsave(&pdc_lock, flags); 1704 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO, 1705 __pa(&pdc_result)); 1706 if (retval == PDC_OK) 1707 memcpy(rinfo, &pdc_result, sizeof(*rinfo)); 1708 spin_unlock_irqrestore(&pdc_lock, flags); 1709 1710 return retval; 1711 } 1712 1713 /** 1714 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation 1715 * table of a cell 1716 * @rinfo: memory pdt information 1717 * @cell: cell number 1718 * 1719 */ 1720 int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo, 1721 unsigned long cell) 1722 { 1723 int retval; 1724 unsigned long flags; 1725 1726 spin_lock_irqsave(&pdc_lock, flags); 1727 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO, 1728 __pa(&pdc_result), cell); 1729 if (retval == PDC_OK) 1730 memcpy(rinfo, &pdc_result, sizeof(*rinfo)); 1731 spin_unlock_irqrestore(&pdc_lock, flags); 1732 1733 return retval; 1734 } 1735 1736 /** 1737 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware 1738 * @pret: array of PDT entries 1739 * @pdt_entries_ptr: ptr to hold number of PDT entries 1740 * @max_entries: maximum number of entries to be read 1741 * 1742 */ 1743 int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret, 1744 unsigned long *pdt_entries_ptr, unsigned long max_entries) 1745 { 1746 int retval; 1747 unsigned long flags, entries; 1748 1749 spin_lock_irqsave(&pdc_lock, flags); 1750 /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */ 1751 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ, 1752 __pa(&pdc_result), parisc_cell_num, 1753 __pa(pdt_entries_ptr)); 1754 1755 if (retval == PDC_OK) { 1756 /* build up return value as for PDC_PAT_MEM_PD_READ */ 1757 entries = min(pdc_result[0], max_entries); 1758 pret->pdt_entries = entries; 1759 pret->actual_count_bytes = entries * sizeof(unsigned long); 1760 } 1761 1762 spin_unlock_irqrestore(&pdc_lock, flags); 1763 WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries); 1764 1765 return retval; 1766 } 1767 /** 1768 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware 1769 * @pret: array of PDT entries 1770 * @pdt_entries_ptr: ptr to hold number of PDT entries 1771 * @count: number of bytes to read 1772 * @offset: offset to start (in bytes) 1773 * 1774 */ 1775 int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret, 1776 unsigned long *pdt_entries_ptr, unsigned long count, 1777 unsigned long offset) 1778 { 1779 int retval; 1780 unsigned long flags, entries; 1781 1782 spin_lock_irqsave(&pdc_lock, flags); 1783 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ, 1784 __pa(&pdc_result), __pa(pdt_entries_ptr), 1785 count, offset); 1786 1787 if (retval == PDC_OK) { 1788 entries = min(pdc_result[0], count); 1789 pret->actual_count_bytes = entries; 1790 pret->pdt_entries = entries / sizeof(unsigned long); 1791 } 1792 1793 spin_unlock_irqrestore(&pdc_lock, flags); 1794 1795 return retval; 1796 } 1797 1798 /** 1799 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware 1800 * @pret: ptr to hold returned information 1801 * @phys_addr: physical address to examine 1802 * 1803 */ 1804 int pdc_pat_mem_get_dimm_phys_location( 1805 struct pdc_pat_mem_phys_mem_location *pret, 1806 unsigned long phys_addr) 1807 { 1808 int retval; 1809 unsigned long flags; 1810 1811 spin_lock_irqsave(&pdc_lock, flags); 1812 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS, 1813 __pa(&pdc_result), phys_addr); 1814 1815 if (retval == PDC_OK) 1816 memcpy(pret, &pdc_result, sizeof(*pret)); 1817 1818 spin_unlock_irqrestore(&pdc_lock, flags); 1819 1820 return retval; 1821 } 1822 #endif /* CONFIG_64BIT */ 1823 #endif /* defined(BOOTLOADER) */ 1824 1825 1826 /***************** 32-bit real-mode calls ***********/ 1827 /* The struct below is used 1828 * to overlay real_stack (real2.S), preparing a 32-bit call frame. 1829 * real32_call_asm() then uses this stack in narrow real mode 1830 */ 1831 1832 struct narrow_stack { 1833 /* use int, not long which is 64 bits */ 1834 unsigned int arg13; 1835 unsigned int arg12; 1836 unsigned int arg11; 1837 unsigned int arg10; 1838 unsigned int arg9; 1839 unsigned int arg8; 1840 unsigned int arg7; 1841 unsigned int arg6; 1842 unsigned int arg5; 1843 unsigned int arg4; 1844 unsigned int arg3; 1845 unsigned int arg2; 1846 unsigned int arg1; 1847 unsigned int arg0; 1848 unsigned int frame_marker[8]; 1849 unsigned int sp; 1850 /* in reality, there's nearly 8k of stack after this */ 1851 }; 1852 1853 long real32_call(unsigned long fn, ...) 1854 { 1855 va_list args; 1856 extern struct narrow_stack real_stack; 1857 extern unsigned long real32_call_asm(unsigned int *, 1858 unsigned int *, 1859 unsigned int); 1860 1861 va_start(args, fn); 1862 real_stack.arg0 = va_arg(args, unsigned int); 1863 real_stack.arg1 = va_arg(args, unsigned int); 1864 real_stack.arg2 = va_arg(args, unsigned int); 1865 real_stack.arg3 = va_arg(args, unsigned int); 1866 real_stack.arg4 = va_arg(args, unsigned int); 1867 real_stack.arg5 = va_arg(args, unsigned int); 1868 real_stack.arg6 = va_arg(args, unsigned int); 1869 real_stack.arg7 = va_arg(args, unsigned int); 1870 real_stack.arg8 = va_arg(args, unsigned int); 1871 real_stack.arg9 = va_arg(args, unsigned int); 1872 real_stack.arg10 = va_arg(args, unsigned int); 1873 real_stack.arg11 = va_arg(args, unsigned int); 1874 real_stack.arg12 = va_arg(args, unsigned int); 1875 real_stack.arg13 = va_arg(args, unsigned int); 1876 va_end(args); 1877 1878 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn); 1879 } 1880 1881 #ifdef CONFIG_64BIT 1882 /***************** 64-bit real-mode calls ***********/ 1883 1884 struct wide_stack { 1885 unsigned long arg0; 1886 unsigned long arg1; 1887 unsigned long arg2; 1888 unsigned long arg3; 1889 unsigned long arg4; 1890 unsigned long arg5; 1891 unsigned long arg6; 1892 unsigned long arg7; 1893 unsigned long arg8; 1894 unsigned long arg9; 1895 unsigned long arg10; 1896 unsigned long arg11; 1897 unsigned long arg12; 1898 unsigned long arg13; 1899 unsigned long frame_marker[2]; /* rp, previous sp */ 1900 unsigned long sp; 1901 /* in reality, there's nearly 8k of stack after this */ 1902 }; 1903 1904 long real64_call(unsigned long fn, ...) 1905 { 1906 va_list args; 1907 extern struct wide_stack real64_stack; 1908 extern unsigned long real64_call_asm(unsigned long *, 1909 unsigned long *, 1910 unsigned long); 1911 1912 va_start(args, fn); 1913 real64_stack.arg0 = va_arg(args, unsigned long); 1914 real64_stack.arg1 = va_arg(args, unsigned long); 1915 real64_stack.arg2 = va_arg(args, unsigned long); 1916 real64_stack.arg3 = va_arg(args, unsigned long); 1917 real64_stack.arg4 = va_arg(args, unsigned long); 1918 real64_stack.arg5 = va_arg(args, unsigned long); 1919 real64_stack.arg6 = va_arg(args, unsigned long); 1920 real64_stack.arg7 = va_arg(args, unsigned long); 1921 real64_stack.arg8 = va_arg(args, unsigned long); 1922 real64_stack.arg9 = va_arg(args, unsigned long); 1923 real64_stack.arg10 = va_arg(args, unsigned long); 1924 real64_stack.arg11 = va_arg(args, unsigned long); 1925 real64_stack.arg12 = va_arg(args, unsigned long); 1926 real64_stack.arg13 = va_arg(args, unsigned long); 1927 va_end(args); 1928 1929 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn); 1930 } 1931 1932 #endif /* CONFIG_64BIT */ 1933