1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * arch/parisc/kernel/firmware.c - safe PDC access routines 4 * 5 * PDC == Processor Dependent Code 6 * 7 * See http://www.parisc-linux.org/documentation/index.html 8 * for documentation describing the entry points and calling 9 * conventions defined below. 10 * 11 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org) 12 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy) 13 * Copyright 2003 Grant Grundler <grundler parisc-linux org> 14 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org> 15 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org> 16 */ 17 18 /* I think it would be in everyone's best interest to follow this 19 * guidelines when writing PDC wrappers: 20 * 21 * - the name of the pdc wrapper should match one of the macros 22 * used for the first two arguments 23 * - don't use caps for random parts of the name 24 * - use the static PDC result buffers and "copyout" to structs 25 * supplied by the caller to encapsulate alignment restrictions 26 * - hold pdc_lock while in PDC or using static result buffers 27 * - use __pa() to convert virtual (kernel) pointers to physical 28 * ones. 29 * - the name of the struct used for pdc return values should equal 30 * one of the macros used for the first two arguments to the 31 * corresponding PDC call 32 * - keep the order of arguments 33 * - don't be smart (setting trailing NUL bytes for strings, return 34 * something useful even if the call failed) unless you are sure 35 * it's not going to affect functionality or performance 36 * 37 * Example: 38 * int pdc_cache_info(struct pdc_cache_info *cache_info ) 39 * { 40 * int retval; 41 * 42 * spin_lock_irq(&pdc_lock); 43 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0); 44 * convert_to_wide(pdc_result); 45 * memcpy(cache_info, pdc_result, sizeof(*cache_info)); 46 * spin_unlock_irq(&pdc_lock); 47 * 48 * return retval; 49 * } 50 * prumpf 991016 51 */ 52 53 #include <stdarg.h> 54 55 #include <linux/delay.h> 56 #include <linux/init.h> 57 #include <linux/kernel.h> 58 #include <linux/module.h> 59 #include <linux/string.h> 60 #include <linux/spinlock.h> 61 62 #include <asm/page.h> 63 #include <asm/pdc.h> 64 #include <asm/pdcpat.h> 65 #include <asm/processor.h> /* for boot_cpu_data */ 66 67 #if defined(BOOTLOADER) 68 # undef spin_lock_irqsave 69 # define spin_lock_irqsave(a, b) { b = 1; } 70 # undef spin_unlock_irqrestore 71 # define spin_unlock_irqrestore(a, b) 72 #else 73 static DEFINE_SPINLOCK(pdc_lock); 74 #endif 75 76 extern unsigned long pdc_result[NUM_PDC_RESULT]; 77 extern unsigned long pdc_result2[NUM_PDC_RESULT]; 78 79 #ifdef CONFIG_64BIT 80 #define WIDE_FIRMWARE 0x1 81 #define NARROW_FIRMWARE 0x2 82 83 /* Firmware needs to be initially set to narrow to determine the 84 * actual firmware width. */ 85 int parisc_narrow_firmware __ro_after_init = 1; 86 #endif 87 88 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls 89 * and MEM_PDC calls are always the same width as the OS. 90 * Some PAT boxes may have 64-bit IODC I/O. 91 * 92 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow 93 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls. 94 * This allowed wide kernels to run on Cxxx boxes. 95 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode 96 * when running a 64-bit kernel on such boxes (e.g. C200 or C360). 97 */ 98 99 #ifdef CONFIG_64BIT 100 long real64_call(unsigned long function, ...); 101 #endif 102 long real32_call(unsigned long function, ...); 103 104 #ifdef CONFIG_64BIT 105 # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc 106 # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args) 107 #else 108 # define MEM_PDC (unsigned long)PAGE0->mem_pdc 109 # define mem_pdc_call(args...) real32_call(MEM_PDC, args) 110 #endif 111 112 113 /** 114 * f_extend - Convert PDC addresses to kernel addresses. 115 * @address: Address returned from PDC. 116 * 117 * This function is used to convert PDC addresses into kernel addresses 118 * when the PDC address size and kernel address size are different. 119 */ 120 static unsigned long f_extend(unsigned long address) 121 { 122 #ifdef CONFIG_64BIT 123 if(unlikely(parisc_narrow_firmware)) { 124 if((address & 0xff000000) == 0xf0000000) 125 return 0xf0f0f0f000000000UL | (u32)address; 126 127 if((address & 0xf0000000) == 0xf0000000) 128 return 0xffffffff00000000UL | (u32)address; 129 } 130 #endif 131 return address; 132 } 133 134 /** 135 * convert_to_wide - Convert the return buffer addresses into kernel addresses. 136 * @address: The return buffer from PDC. 137 * 138 * This function is used to convert the return buffer addresses retrieved from PDC 139 * into kernel addresses when the PDC address size and kernel address size are 140 * different. 141 */ 142 static void convert_to_wide(unsigned long *addr) 143 { 144 #ifdef CONFIG_64BIT 145 int i; 146 unsigned int *p = (unsigned int *)addr; 147 148 if (unlikely(parisc_narrow_firmware)) { 149 for (i = (NUM_PDC_RESULT-1); i >= 0; --i) 150 addr[i] = p[i]; 151 } 152 #endif 153 } 154 155 #ifdef CONFIG_64BIT 156 void set_firmware_width_unlocked(void) 157 { 158 int ret; 159 160 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, 161 __pa(pdc_result), 0); 162 convert_to_wide(pdc_result); 163 if (pdc_result[0] != NARROW_FIRMWARE) 164 parisc_narrow_firmware = 0; 165 } 166 167 /** 168 * set_firmware_width - Determine if the firmware is wide or narrow. 169 * 170 * This function must be called before any pdc_* function that uses the 171 * convert_to_wide function. 172 */ 173 void set_firmware_width(void) 174 { 175 unsigned long flags; 176 spin_lock_irqsave(&pdc_lock, flags); 177 set_firmware_width_unlocked(); 178 spin_unlock_irqrestore(&pdc_lock, flags); 179 } 180 #else 181 void set_firmware_width_unlocked(void) 182 { 183 return; 184 } 185 186 void set_firmware_width(void) 187 { 188 return; 189 } 190 #endif /*CONFIG_64BIT*/ 191 192 193 #if !defined(BOOTLOADER) 194 /** 195 * pdc_emergency_unlock - Unlock the linux pdc lock 196 * 197 * This call unlocks the linux pdc lock in case we need some PDC functions 198 * (like pdc_add_valid) during kernel stack dump. 199 */ 200 void pdc_emergency_unlock(void) 201 { 202 /* Spinlock DEBUG code freaks out if we unconditionally unlock */ 203 if (spin_is_locked(&pdc_lock)) 204 spin_unlock(&pdc_lock); 205 } 206 207 208 /** 209 * pdc_add_valid - Verify address can be accessed without causing a HPMC. 210 * @address: Address to be verified. 211 * 212 * This PDC call attempts to read from the specified address and verifies 213 * if the address is valid. 214 * 215 * The return value is PDC_OK (0) in case accessing this address is valid. 216 */ 217 int pdc_add_valid(unsigned long address) 218 { 219 int retval; 220 unsigned long flags; 221 222 spin_lock_irqsave(&pdc_lock, flags); 223 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address); 224 spin_unlock_irqrestore(&pdc_lock, flags); 225 226 return retval; 227 } 228 EXPORT_SYMBOL(pdc_add_valid); 229 230 /** 231 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler. 232 * @instr: Pointer to variable which will get instruction opcode. 233 * 234 * The return value is PDC_OK (0) in case call succeeded. 235 */ 236 int __init pdc_instr(unsigned int *instr) 237 { 238 int retval; 239 unsigned long flags; 240 241 spin_lock_irqsave(&pdc_lock, flags); 242 retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result)); 243 convert_to_wide(pdc_result); 244 *instr = pdc_result[0]; 245 spin_unlock_irqrestore(&pdc_lock, flags); 246 247 return retval; 248 } 249 250 /** 251 * pdc_chassis_info - Return chassis information. 252 * @result: The return buffer. 253 * @chassis_info: The memory buffer address. 254 * @len: The size of the memory buffer address. 255 * 256 * An HVERSION dependent call for returning the chassis information. 257 */ 258 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len) 259 { 260 int retval; 261 unsigned long flags; 262 263 spin_lock_irqsave(&pdc_lock, flags); 264 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info)); 265 memcpy(&pdc_result2, led_info, len); 266 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO, 267 __pa(pdc_result), __pa(pdc_result2), len); 268 memcpy(chassis_info, pdc_result, sizeof(*chassis_info)); 269 memcpy(led_info, pdc_result2, len); 270 spin_unlock_irqrestore(&pdc_lock, flags); 271 272 return retval; 273 } 274 275 /** 276 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message. 277 * @retval: -1 on error, 0 on success. Other value are PDC errors 278 * 279 * Must be correctly formatted or expect system crash 280 */ 281 #ifdef CONFIG_64BIT 282 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data) 283 { 284 int retval = 0; 285 unsigned long flags; 286 287 if (!is_pdc_pat()) 288 return -1; 289 290 spin_lock_irqsave(&pdc_lock, flags); 291 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data)); 292 spin_unlock_irqrestore(&pdc_lock, flags); 293 294 return retval; 295 } 296 #endif 297 298 /** 299 * pdc_chassis_disp - Updates chassis code 300 * @retval: -1 on error, 0 on success 301 */ 302 int pdc_chassis_disp(unsigned long disp) 303 { 304 int retval = 0; 305 unsigned long flags; 306 307 spin_lock_irqsave(&pdc_lock, flags); 308 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp); 309 spin_unlock_irqrestore(&pdc_lock, flags); 310 311 return retval; 312 } 313 314 /** 315 * pdc_chassis_warn - Fetches chassis warnings 316 * @retval: -1 on error, 0 on success 317 */ 318 int pdc_chassis_warn(unsigned long *warn) 319 { 320 int retval = 0; 321 unsigned long flags; 322 323 spin_lock_irqsave(&pdc_lock, flags); 324 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result)); 325 *warn = pdc_result[0]; 326 spin_unlock_irqrestore(&pdc_lock, flags); 327 328 return retval; 329 } 330 331 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info) 332 { 333 int ret; 334 335 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result)); 336 convert_to_wide(pdc_result); 337 pdc_coproc_info->ccr_functional = pdc_result[0]; 338 pdc_coproc_info->ccr_present = pdc_result[1]; 339 pdc_coproc_info->revision = pdc_result[17]; 340 pdc_coproc_info->model = pdc_result[18]; 341 342 return ret; 343 } 344 345 /** 346 * pdc_coproc_cfg - To identify coprocessors attached to the processor. 347 * @pdc_coproc_info: Return buffer address. 348 * 349 * This PDC call returns the presence and status of all the coprocessors 350 * attached to the processor. 351 */ 352 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info) 353 { 354 int ret; 355 unsigned long flags; 356 357 spin_lock_irqsave(&pdc_lock, flags); 358 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info); 359 spin_unlock_irqrestore(&pdc_lock, flags); 360 361 return ret; 362 } 363 364 /** 365 * pdc_iodc_read - Read data from the modules IODC. 366 * @actcnt: The actual number of bytes. 367 * @hpa: The HPA of the module for the iodc read. 368 * @index: The iodc entry point. 369 * @iodc_data: A buffer memory for the iodc options. 370 * @iodc_data_size: Size of the memory buffer. 371 * 372 * This PDC call reads from the IODC of the module specified by the hpa 373 * argument. 374 */ 375 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index, 376 void *iodc_data, unsigned int iodc_data_size) 377 { 378 int retval; 379 unsigned long flags; 380 381 spin_lock_irqsave(&pdc_lock, flags); 382 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 383 index, __pa(pdc_result2), iodc_data_size); 384 convert_to_wide(pdc_result); 385 *actcnt = pdc_result[0]; 386 memcpy(iodc_data, pdc_result2, iodc_data_size); 387 spin_unlock_irqrestore(&pdc_lock, flags); 388 389 return retval; 390 } 391 EXPORT_SYMBOL(pdc_iodc_read); 392 393 /** 394 * pdc_system_map_find_mods - Locate unarchitected modules. 395 * @pdc_mod_info: Return buffer address. 396 * @mod_path: pointer to dev path structure. 397 * @mod_index: fixed address module index. 398 * 399 * To locate and identify modules which reside at fixed I/O addresses, which 400 * do not self-identify via architected bus walks. 401 */ 402 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info, 403 struct pdc_module_path *mod_path, long mod_index) 404 { 405 int retval; 406 unsigned long flags; 407 408 spin_lock_irqsave(&pdc_lock, flags); 409 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 410 __pa(pdc_result2), mod_index); 411 convert_to_wide(pdc_result); 412 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info)); 413 memcpy(mod_path, pdc_result2, sizeof(*mod_path)); 414 spin_unlock_irqrestore(&pdc_lock, flags); 415 416 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr); 417 return retval; 418 } 419 420 /** 421 * pdc_system_map_find_addrs - Retrieve additional address ranges. 422 * @pdc_addr_info: Return buffer address. 423 * @mod_index: Fixed address module index. 424 * @addr_index: Address range index. 425 * 426 * Retrieve additional information about subsequent address ranges for modules 427 * with multiple address ranges. 428 */ 429 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 430 long mod_index, long addr_index) 431 { 432 int retval; 433 unsigned long flags; 434 435 spin_lock_irqsave(&pdc_lock, flags); 436 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result), 437 mod_index, addr_index); 438 convert_to_wide(pdc_result); 439 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info)); 440 spin_unlock_irqrestore(&pdc_lock, flags); 441 442 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr); 443 return retval; 444 } 445 446 /** 447 * pdc_model_info - Return model information about the processor. 448 * @model: The return buffer. 449 * 450 * Returns the version numbers, identifiers, and capabilities from the processor module. 451 */ 452 int pdc_model_info(struct pdc_model *model) 453 { 454 int retval; 455 unsigned long flags; 456 457 spin_lock_irqsave(&pdc_lock, flags); 458 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0); 459 convert_to_wide(pdc_result); 460 memcpy(model, pdc_result, sizeof(*model)); 461 spin_unlock_irqrestore(&pdc_lock, flags); 462 463 return retval; 464 } 465 466 /** 467 * pdc_model_sysmodel - Get the system model name. 468 * @name: A char array of at least 81 characters. 469 * 470 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L). 471 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command 472 * on HP/UX. 473 */ 474 int pdc_model_sysmodel(char *name) 475 { 476 int retval; 477 unsigned long flags; 478 479 spin_lock_irqsave(&pdc_lock, flags); 480 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result), 481 OS_ID_HPUX, __pa(name)); 482 convert_to_wide(pdc_result); 483 484 if (retval == PDC_OK) { 485 name[pdc_result[0]] = '\0'; /* add trailing '\0' */ 486 } else { 487 name[0] = 0; 488 } 489 spin_unlock_irqrestore(&pdc_lock, flags); 490 491 return retval; 492 } 493 494 /** 495 * pdc_model_versions - Identify the version number of each processor. 496 * @cpu_id: The return buffer. 497 * @id: The id of the processor to check. 498 * 499 * Returns the version number for each processor component. 500 * 501 * This comment was here before, but I do not know what it means :( -RB 502 * id: 0 = cpu revision, 1 = boot-rom-version 503 */ 504 int pdc_model_versions(unsigned long *versions, int id) 505 { 506 int retval; 507 unsigned long flags; 508 509 spin_lock_irqsave(&pdc_lock, flags); 510 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id); 511 convert_to_wide(pdc_result); 512 *versions = pdc_result[0]; 513 spin_unlock_irqrestore(&pdc_lock, flags); 514 515 return retval; 516 } 517 518 /** 519 * pdc_model_cpuid - Returns the CPU_ID. 520 * @cpu_id: The return buffer. 521 * 522 * Returns the CPU_ID value which uniquely identifies the cpu portion of 523 * the processor module. 524 */ 525 int pdc_model_cpuid(unsigned long *cpu_id) 526 { 527 int retval; 528 unsigned long flags; 529 530 spin_lock_irqsave(&pdc_lock, flags); 531 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ 532 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0); 533 convert_to_wide(pdc_result); 534 *cpu_id = pdc_result[0]; 535 spin_unlock_irqrestore(&pdc_lock, flags); 536 537 return retval; 538 } 539 540 /** 541 * pdc_model_capabilities - Returns the platform capabilities. 542 * @capabilities: The return buffer. 543 * 544 * Returns information about platform support for 32- and/or 64-bit 545 * OSes, IO-PDIR coherency, and virtual aliasing. 546 */ 547 int pdc_model_capabilities(unsigned long *capabilities) 548 { 549 int retval; 550 unsigned long flags; 551 552 spin_lock_irqsave(&pdc_lock, flags); 553 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ 554 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0); 555 convert_to_wide(pdc_result); 556 if (retval == PDC_OK) { 557 *capabilities = pdc_result[0]; 558 } else { 559 *capabilities = PDC_MODEL_OS32; 560 } 561 spin_unlock_irqrestore(&pdc_lock, flags); 562 563 return retval; 564 } 565 566 /** 567 * pdc_model_platform_info - Returns machine product and serial number. 568 * @orig_prod_num: Return buffer for original product number. 569 * @current_prod_num: Return buffer for current product number. 570 * @serial_no: Return buffer for serial number. 571 * 572 * Returns strings containing the original and current product numbers and the 573 * serial number of the system. 574 */ 575 int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num, 576 char *serial_no) 577 { 578 int retval; 579 unsigned long flags; 580 581 spin_lock_irqsave(&pdc_lock, flags); 582 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO, 583 __pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no)); 584 convert_to_wide(pdc_result); 585 spin_unlock_irqrestore(&pdc_lock, flags); 586 587 return retval; 588 } 589 590 /** 591 * pdc_cache_info - Return cache and TLB information. 592 * @cache_info: The return buffer. 593 * 594 * Returns information about the processor's cache and TLB. 595 */ 596 int pdc_cache_info(struct pdc_cache_info *cache_info) 597 { 598 int retval; 599 unsigned long flags; 600 601 spin_lock_irqsave(&pdc_lock, flags); 602 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0); 603 convert_to_wide(pdc_result); 604 memcpy(cache_info, pdc_result, sizeof(*cache_info)); 605 spin_unlock_irqrestore(&pdc_lock, flags); 606 607 return retval; 608 } 609 610 /** 611 * pdc_spaceid_bits - Return whether Space ID hashing is turned on. 612 * @space_bits: Should be 0, if not, bad mojo! 613 * 614 * Returns information about Space ID hashing. 615 */ 616 int pdc_spaceid_bits(unsigned long *space_bits) 617 { 618 int retval; 619 unsigned long flags; 620 621 spin_lock_irqsave(&pdc_lock, flags); 622 pdc_result[0] = 0; 623 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0); 624 convert_to_wide(pdc_result); 625 *space_bits = pdc_result[0]; 626 spin_unlock_irqrestore(&pdc_lock, flags); 627 628 return retval; 629 } 630 631 #ifndef CONFIG_PA20 632 /** 633 * pdc_btlb_info - Return block TLB information. 634 * @btlb: The return buffer. 635 * 636 * Returns information about the hardware Block TLB. 637 */ 638 int pdc_btlb_info(struct pdc_btlb_info *btlb) 639 { 640 int retval; 641 unsigned long flags; 642 643 spin_lock_irqsave(&pdc_lock, flags); 644 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0); 645 memcpy(btlb, pdc_result, sizeof(*btlb)); 646 spin_unlock_irqrestore(&pdc_lock, flags); 647 648 if(retval < 0) { 649 btlb->max_size = 0; 650 } 651 return retval; 652 } 653 654 /** 655 * pdc_mem_map_hpa - Find fixed module information. 656 * @address: The return buffer 657 * @mod_path: pointer to dev path structure. 658 * 659 * This call was developed for S700 workstations to allow the kernel to find 660 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this 661 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP 662 * call. 663 * 664 * This call is supported by all existing S700 workstations (up to Gecko). 665 */ 666 int pdc_mem_map_hpa(struct pdc_memory_map *address, 667 struct pdc_module_path *mod_path) 668 { 669 int retval; 670 unsigned long flags; 671 672 spin_lock_irqsave(&pdc_lock, flags); 673 memcpy(pdc_result2, mod_path, sizeof(*mod_path)); 674 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result), 675 __pa(pdc_result2)); 676 memcpy(address, pdc_result, sizeof(*address)); 677 spin_unlock_irqrestore(&pdc_lock, flags); 678 679 return retval; 680 } 681 #endif /* !CONFIG_PA20 */ 682 683 /** 684 * pdc_lan_station_id - Get the LAN address. 685 * @lan_addr: The return buffer. 686 * @hpa: The network device HPA. 687 * 688 * Get the LAN station address when it is not directly available from the LAN hardware. 689 */ 690 int pdc_lan_station_id(char *lan_addr, unsigned long hpa) 691 { 692 int retval; 693 unsigned long flags; 694 695 spin_lock_irqsave(&pdc_lock, flags); 696 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ, 697 __pa(pdc_result), hpa); 698 if (retval < 0) { 699 /* FIXME: else read MAC from NVRAM */ 700 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE); 701 } else { 702 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE); 703 } 704 spin_unlock_irqrestore(&pdc_lock, flags); 705 706 return retval; 707 } 708 EXPORT_SYMBOL(pdc_lan_station_id); 709 710 /** 711 * pdc_stable_read - Read data from Stable Storage. 712 * @staddr: Stable Storage address to access. 713 * @memaddr: The memory address where Stable Storage data shall be copied. 714 * @count: number of bytes to transfer. count is multiple of 4. 715 * 716 * This PDC call reads from the Stable Storage address supplied in staddr 717 * and copies count bytes to the memory address memaddr. 718 * The call will fail if staddr+count > PDC_STABLE size. 719 */ 720 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count) 721 { 722 int retval; 723 unsigned long flags; 724 725 spin_lock_irqsave(&pdc_lock, flags); 726 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr, 727 __pa(pdc_result), count); 728 convert_to_wide(pdc_result); 729 memcpy(memaddr, pdc_result, count); 730 spin_unlock_irqrestore(&pdc_lock, flags); 731 732 return retval; 733 } 734 EXPORT_SYMBOL(pdc_stable_read); 735 736 /** 737 * pdc_stable_write - Write data to Stable Storage. 738 * @staddr: Stable Storage address to access. 739 * @memaddr: The memory address where Stable Storage data shall be read from. 740 * @count: number of bytes to transfer. count is multiple of 4. 741 * 742 * This PDC call reads count bytes from the supplied memaddr address, 743 * and copies count bytes to the Stable Storage address staddr. 744 * The call will fail if staddr+count > PDC_STABLE size. 745 */ 746 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count) 747 { 748 int retval; 749 unsigned long flags; 750 751 spin_lock_irqsave(&pdc_lock, flags); 752 memcpy(pdc_result, memaddr, count); 753 convert_to_wide(pdc_result); 754 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr, 755 __pa(pdc_result), count); 756 spin_unlock_irqrestore(&pdc_lock, flags); 757 758 return retval; 759 } 760 EXPORT_SYMBOL(pdc_stable_write); 761 762 /** 763 * pdc_stable_get_size - Get Stable Storage size in bytes. 764 * @size: pointer where the size will be stored. 765 * 766 * This PDC call returns the number of bytes in the processor's Stable 767 * Storage, which is the number of contiguous bytes implemented in Stable 768 * Storage starting from staddr=0. size in an unsigned 64-bit integer 769 * which is a multiple of four. 770 */ 771 int pdc_stable_get_size(unsigned long *size) 772 { 773 int retval; 774 unsigned long flags; 775 776 spin_lock_irqsave(&pdc_lock, flags); 777 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result)); 778 *size = pdc_result[0]; 779 spin_unlock_irqrestore(&pdc_lock, flags); 780 781 return retval; 782 } 783 EXPORT_SYMBOL(pdc_stable_get_size); 784 785 /** 786 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid. 787 * 788 * This PDC call is meant to be used to check the integrity of the current 789 * contents of Stable Storage. 790 */ 791 int pdc_stable_verify_contents(void) 792 { 793 int retval; 794 unsigned long flags; 795 796 spin_lock_irqsave(&pdc_lock, flags); 797 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS); 798 spin_unlock_irqrestore(&pdc_lock, flags); 799 800 return retval; 801 } 802 EXPORT_SYMBOL(pdc_stable_verify_contents); 803 804 /** 805 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize 806 * the validity indicator. 807 * 808 * This PDC call will erase all contents of Stable Storage. Use with care! 809 */ 810 int pdc_stable_initialize(void) 811 { 812 int retval; 813 unsigned long flags; 814 815 spin_lock_irqsave(&pdc_lock, flags); 816 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE); 817 spin_unlock_irqrestore(&pdc_lock, flags); 818 819 return retval; 820 } 821 EXPORT_SYMBOL(pdc_stable_initialize); 822 823 /** 824 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD) 825 * @hwpath: fully bc.mod style path to the device. 826 * @initiator: the array to return the result into 827 * 828 * Get the SCSI operational parameters from PDC. 829 * Needed since HPUX never used BIOS or symbios card NVRAM. 830 * Most ncr/sym cards won't have an entry and just use whatever 831 * capabilities of the card are (eg Ultra, LVD). But there are 832 * several cases where it's useful: 833 * o set SCSI id for Multi-initiator clusters, 834 * o cable too long (ie SE scsi 10Mhz won't support 6m length), 835 * o bus width exported is less than what the interface chip supports. 836 */ 837 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator) 838 { 839 int retval; 840 unsigned long flags; 841 842 spin_lock_irqsave(&pdc_lock, flags); 843 844 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */ 845 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \ 846 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0) 847 848 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 849 __pa(pdc_result), __pa(hwpath)); 850 if (retval < PDC_OK) 851 goto out; 852 853 if (pdc_result[0] < 16) { 854 initiator->host_id = pdc_result[0]; 855 } else { 856 initiator->host_id = -1; 857 } 858 859 /* 860 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns 861 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively 862 */ 863 switch (pdc_result[1]) { 864 case 1: initiator->factor = 50; break; 865 case 2: initiator->factor = 25; break; 866 case 5: initiator->factor = 12; break; 867 case 25: initiator->factor = 10; break; 868 case 20: initiator->factor = 12; break; 869 case 40: initiator->factor = 10; break; 870 default: initiator->factor = -1; break; 871 } 872 873 if (IS_SPROCKETS()) { 874 initiator->width = pdc_result[4]; 875 initiator->mode = pdc_result[5]; 876 } else { 877 initiator->width = -1; 878 initiator->mode = -1; 879 } 880 881 out: 882 spin_unlock_irqrestore(&pdc_lock, flags); 883 884 return (retval >= PDC_OK); 885 } 886 EXPORT_SYMBOL(pdc_get_initiator); 887 888 889 /** 890 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table. 891 * @num_entries: The return value. 892 * @hpa: The HPA for the device. 893 * 894 * This PDC function returns the number of entries in the specified cell's 895 * interrupt table. 896 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes 897 */ 898 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa) 899 { 900 int retval; 901 unsigned long flags; 902 903 spin_lock_irqsave(&pdc_lock, flags); 904 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 905 __pa(pdc_result), hpa); 906 convert_to_wide(pdc_result); 907 *num_entries = pdc_result[0]; 908 spin_unlock_irqrestore(&pdc_lock, flags); 909 910 return retval; 911 } 912 913 /** 914 * pdc_pci_irt - Get the PCI interrupt routing table. 915 * @num_entries: The number of entries in the table. 916 * @hpa: The Hard Physical Address of the device. 917 * @tbl: 918 * 919 * Get the PCI interrupt routing table for the device at the given HPA. 920 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes 921 */ 922 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl) 923 { 924 int retval; 925 unsigned long flags; 926 927 BUG_ON((unsigned long)tbl & 0x7); 928 929 spin_lock_irqsave(&pdc_lock, flags); 930 pdc_result[0] = num_entries; 931 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 932 __pa(pdc_result), hpa, __pa(tbl)); 933 spin_unlock_irqrestore(&pdc_lock, flags); 934 935 return retval; 936 } 937 938 939 #if 0 /* UNTEST CODE - left here in case someone needs it */ 940 941 /** 942 * pdc_pci_config_read - read PCI config space. 943 * @hpa token from PDC to indicate which PCI device 944 * @pci_addr configuration space address to read from 945 * 946 * Read PCI Configuration space *before* linux PCI subsystem is running. 947 */ 948 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr) 949 { 950 int retval; 951 unsigned long flags; 952 953 spin_lock_irqsave(&pdc_lock, flags); 954 pdc_result[0] = 0; 955 pdc_result[1] = 0; 956 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 957 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL); 958 spin_unlock_irqrestore(&pdc_lock, flags); 959 960 return retval ? ~0 : (unsigned int) pdc_result[0]; 961 } 962 963 964 /** 965 * pdc_pci_config_write - read PCI config space. 966 * @hpa token from PDC to indicate which PCI device 967 * @pci_addr configuration space address to write 968 * @val value we want in the 32-bit register 969 * 970 * Write PCI Configuration space *before* linux PCI subsystem is running. 971 */ 972 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val) 973 { 974 int retval; 975 unsigned long flags; 976 977 spin_lock_irqsave(&pdc_lock, flags); 978 pdc_result[0] = 0; 979 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 980 __pa(pdc_result), hpa, 981 cfg_addr&~3UL, 4UL, (unsigned long) val); 982 spin_unlock_irqrestore(&pdc_lock, flags); 983 984 return retval; 985 } 986 #endif /* UNTESTED CODE */ 987 988 /** 989 * pdc_tod_read - Read the Time-Of-Day clock. 990 * @tod: The return buffer: 991 * 992 * Read the Time-Of-Day clock 993 */ 994 int pdc_tod_read(struct pdc_tod *tod) 995 { 996 int retval; 997 unsigned long flags; 998 999 spin_lock_irqsave(&pdc_lock, flags); 1000 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0); 1001 convert_to_wide(pdc_result); 1002 memcpy(tod, pdc_result, sizeof(*tod)); 1003 spin_unlock_irqrestore(&pdc_lock, flags); 1004 1005 return retval; 1006 } 1007 EXPORT_SYMBOL(pdc_tod_read); 1008 1009 int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo) 1010 { 1011 int retval; 1012 unsigned long flags; 1013 1014 spin_lock_irqsave(&pdc_lock, flags); 1015 retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0); 1016 convert_to_wide(pdc_result); 1017 memcpy(rinfo, pdc_result, sizeof(*rinfo)); 1018 spin_unlock_irqrestore(&pdc_lock, flags); 1019 1020 return retval; 1021 } 1022 1023 int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret, 1024 unsigned long *pdt_entries_ptr) 1025 { 1026 int retval; 1027 unsigned long flags; 1028 1029 spin_lock_irqsave(&pdc_lock, flags); 1030 retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result), 1031 __pa(pdt_entries_ptr)); 1032 if (retval == PDC_OK) { 1033 convert_to_wide(pdc_result); 1034 memcpy(pret, pdc_result, sizeof(*pret)); 1035 } 1036 spin_unlock_irqrestore(&pdc_lock, flags); 1037 1038 #ifdef CONFIG_64BIT 1039 /* 1040 * 64-bit kernels should not call this PDT function in narrow mode. 1041 * The pdt_entries_ptr array above will now contain 32-bit values 1042 */ 1043 if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware)) 1044 return PDC_ERROR; 1045 #endif 1046 1047 return retval; 1048 } 1049 1050 /** 1051 * pdc_tod_set - Set the Time-Of-Day clock. 1052 * @sec: The number of seconds since epoch. 1053 * @usec: The number of micro seconds. 1054 * 1055 * Set the Time-Of-Day clock. 1056 */ 1057 int pdc_tod_set(unsigned long sec, unsigned long usec) 1058 { 1059 int retval; 1060 unsigned long flags; 1061 1062 spin_lock_irqsave(&pdc_lock, flags); 1063 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec); 1064 spin_unlock_irqrestore(&pdc_lock, flags); 1065 1066 return retval; 1067 } 1068 EXPORT_SYMBOL(pdc_tod_set); 1069 1070 #ifdef CONFIG_64BIT 1071 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr, 1072 struct pdc_memory_table *tbl, unsigned long entries) 1073 { 1074 int retval; 1075 unsigned long flags; 1076 1077 spin_lock_irqsave(&pdc_lock, flags); 1078 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries); 1079 convert_to_wide(pdc_result); 1080 memcpy(r_addr, pdc_result, sizeof(*r_addr)); 1081 memcpy(tbl, pdc_result2, entries * sizeof(*tbl)); 1082 spin_unlock_irqrestore(&pdc_lock, flags); 1083 1084 return retval; 1085 } 1086 #endif /* CONFIG_64BIT */ 1087 1088 /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap 1089 * so I guessed at unsigned long. Someone who knows what this does, can fix 1090 * it later. :) 1091 */ 1092 int pdc_do_firm_test_reset(unsigned long ftc_bitmap) 1093 { 1094 int retval; 1095 unsigned long flags; 1096 1097 spin_lock_irqsave(&pdc_lock, flags); 1098 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET, 1099 PDC_FIRM_TEST_MAGIC, ftc_bitmap); 1100 spin_unlock_irqrestore(&pdc_lock, flags); 1101 1102 return retval; 1103 } 1104 1105 /* 1106 * pdc_do_reset - Reset the system. 1107 * 1108 * Reset the system. 1109 */ 1110 int pdc_do_reset(void) 1111 { 1112 int retval; 1113 unsigned long flags; 1114 1115 spin_lock_irqsave(&pdc_lock, flags); 1116 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET); 1117 spin_unlock_irqrestore(&pdc_lock, flags); 1118 1119 return retval; 1120 } 1121 1122 /* 1123 * pdc_soft_power_info - Enable soft power switch. 1124 * @power_reg: address of soft power register 1125 * 1126 * Return the absolute address of the soft power switch register 1127 */ 1128 int __init pdc_soft_power_info(unsigned long *power_reg) 1129 { 1130 int retval; 1131 unsigned long flags; 1132 1133 *power_reg = (unsigned long) (-1); 1134 1135 spin_lock_irqsave(&pdc_lock, flags); 1136 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0); 1137 if (retval == PDC_OK) { 1138 convert_to_wide(pdc_result); 1139 *power_reg = f_extend(pdc_result[0]); 1140 } 1141 spin_unlock_irqrestore(&pdc_lock, flags); 1142 1143 return retval; 1144 } 1145 1146 /* 1147 * pdc_soft_power_button - Control the soft power button behaviour 1148 * @sw_control: 0 for hardware control, 1 for software control 1149 * 1150 * 1151 * This PDC function places the soft power button under software or 1152 * hardware control. 1153 * Under software control the OS may control to when to allow to shut 1154 * down the system. Under hardware control pressing the power button 1155 * powers off the system immediately. 1156 */ 1157 int pdc_soft_power_button(int sw_control) 1158 { 1159 int retval; 1160 unsigned long flags; 1161 1162 spin_lock_irqsave(&pdc_lock, flags); 1163 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control); 1164 spin_unlock_irqrestore(&pdc_lock, flags); 1165 1166 return retval; 1167 } 1168 1169 /* 1170 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices. 1171 * Primarily a problem on T600 (which parisc-linux doesn't support) but 1172 * who knows what other platform firmware might do with this OS "hook". 1173 */ 1174 void pdc_io_reset(void) 1175 { 1176 unsigned long flags; 1177 1178 spin_lock_irqsave(&pdc_lock, flags); 1179 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0); 1180 spin_unlock_irqrestore(&pdc_lock, flags); 1181 } 1182 1183 /* 1184 * pdc_io_reset_devices - Hack to Stop USB controller 1185 * 1186 * If PDC used the usb controller, the usb controller 1187 * is still running and will crash the machines during iommu 1188 * setup, because of still running DMA. This PDC call 1189 * stops the USB controller. 1190 * Normally called after calling pdc_io_reset(). 1191 */ 1192 void pdc_io_reset_devices(void) 1193 { 1194 unsigned long flags; 1195 1196 spin_lock_irqsave(&pdc_lock, flags); 1197 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0); 1198 spin_unlock_irqrestore(&pdc_lock, flags); 1199 } 1200 1201 #endif /* defined(BOOTLOADER) */ 1202 1203 /* locked by pdc_console_lock */ 1204 static int __attribute__((aligned(8))) iodc_retbuf[32]; 1205 static char __attribute__((aligned(64))) iodc_dbuf[4096]; 1206 1207 /** 1208 * pdc_iodc_print - Console print using IODC. 1209 * @str: the string to output. 1210 * @count: length of str 1211 * 1212 * Note that only these special chars are architected for console IODC io: 1213 * BEL, BS, CR, and LF. Others are passed through. 1214 * Since the HP console requires CR+LF to perform a 'newline', we translate 1215 * "\n" to "\r\n". 1216 */ 1217 int pdc_iodc_print(const unsigned char *str, unsigned count) 1218 { 1219 unsigned int i; 1220 unsigned long flags; 1221 1222 for (i = 0; i < count;) { 1223 switch(str[i]) { 1224 case '\n': 1225 iodc_dbuf[i+0] = '\r'; 1226 iodc_dbuf[i+1] = '\n'; 1227 i += 2; 1228 goto print; 1229 default: 1230 iodc_dbuf[i] = str[i]; 1231 i++; 1232 break; 1233 } 1234 } 1235 1236 print: 1237 spin_lock_irqsave(&pdc_lock, flags); 1238 real32_call(PAGE0->mem_cons.iodc_io, 1239 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT, 1240 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers), 1241 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0); 1242 spin_unlock_irqrestore(&pdc_lock, flags); 1243 1244 return i; 1245 } 1246 1247 #if !defined(BOOTLOADER) 1248 /** 1249 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console. 1250 * 1251 * Read a character (non-blocking) from the PDC console, returns -1 if 1252 * key is not present. 1253 */ 1254 int pdc_iodc_getc(void) 1255 { 1256 int ch; 1257 int status; 1258 unsigned long flags; 1259 1260 /* Bail if no console input device. */ 1261 if (!PAGE0->mem_kbd.iodc_io) 1262 return 0; 1263 1264 /* wait for a keyboard (rs232)-input */ 1265 spin_lock_irqsave(&pdc_lock, flags); 1266 real32_call(PAGE0->mem_kbd.iodc_io, 1267 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN, 1268 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 1269 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0); 1270 1271 ch = *iodc_dbuf; 1272 status = *iodc_retbuf; 1273 spin_unlock_irqrestore(&pdc_lock, flags); 1274 1275 if (status == 0) 1276 return -1; 1277 1278 return ch; 1279 } 1280 1281 int pdc_sti_call(unsigned long func, unsigned long flags, 1282 unsigned long inptr, unsigned long outputr, 1283 unsigned long glob_cfg) 1284 { 1285 int retval; 1286 unsigned long irqflags; 1287 1288 spin_lock_irqsave(&pdc_lock, irqflags); 1289 retval = real32_call(func, flags, inptr, outputr, glob_cfg); 1290 spin_unlock_irqrestore(&pdc_lock, irqflags); 1291 1292 return retval; 1293 } 1294 EXPORT_SYMBOL(pdc_sti_call); 1295 1296 #ifdef CONFIG_64BIT 1297 /** 1298 * pdc_pat_cell_get_number - Returns the cell number. 1299 * @cell_info: The return buffer. 1300 * 1301 * This PDC call returns the cell number of the cell from which the call 1302 * is made. 1303 */ 1304 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info) 1305 { 1306 int retval; 1307 unsigned long flags; 1308 1309 spin_lock_irqsave(&pdc_lock, flags); 1310 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result)); 1311 memcpy(cell_info, pdc_result, sizeof(*cell_info)); 1312 spin_unlock_irqrestore(&pdc_lock, flags); 1313 1314 return retval; 1315 } 1316 1317 /** 1318 * pdc_pat_cell_module - Retrieve the cell's module information. 1319 * @actcnt: The number of bytes written to mem_addr. 1320 * @ploc: The physical location. 1321 * @mod: The module index. 1322 * @view_type: The view of the address type. 1323 * @mem_addr: The return buffer. 1324 * 1325 * This PDC call returns information about each module attached to the cell 1326 * at the specified location. 1327 */ 1328 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod, 1329 unsigned long view_type, void *mem_addr) 1330 { 1331 int retval; 1332 unsigned long flags; 1333 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8))); 1334 1335 spin_lock_irqsave(&pdc_lock, flags); 1336 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 1337 ploc, mod, view_type, __pa(&result)); 1338 if(!retval) { 1339 *actcnt = pdc_result[0]; 1340 memcpy(mem_addr, &result, *actcnt); 1341 } 1342 spin_unlock_irqrestore(&pdc_lock, flags); 1343 1344 return retval; 1345 } 1346 1347 /** 1348 * pdc_pat_cell_info - Retrieve the cell's information. 1349 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block. 1350 * @actcnt: The number of bytes which should be written to info. 1351 * @offset: offset of the structure. 1352 * @cell_number: The cell number which should be asked, or -1 for current cell. 1353 * 1354 * This PDC call returns information about the given cell (or all cells). 1355 */ 1356 int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info, 1357 unsigned long *actcnt, unsigned long offset, 1358 unsigned long cell_number) 1359 { 1360 int retval; 1361 unsigned long flags; 1362 struct pdc_pat_cell_info_rtn_block result; 1363 1364 spin_lock_irqsave(&pdc_lock, flags); 1365 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO, 1366 __pa(pdc_result), __pa(&result), *actcnt, 1367 offset, cell_number); 1368 if (!retval) { 1369 *actcnt = pdc_result[0]; 1370 memcpy(info, &result, *actcnt); 1371 } 1372 spin_unlock_irqrestore(&pdc_lock, flags); 1373 1374 return retval; 1375 } 1376 1377 /** 1378 * pdc_pat_cpu_get_number - Retrieve the cpu number. 1379 * @cpu_info: The return buffer. 1380 * @hpa: The Hard Physical Address of the CPU. 1381 * 1382 * Retrieve the cpu number for the cpu at the specified HPA. 1383 */ 1384 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa) 1385 { 1386 int retval; 1387 unsigned long flags; 1388 1389 spin_lock_irqsave(&pdc_lock, flags); 1390 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER, 1391 __pa(&pdc_result), hpa); 1392 memcpy(cpu_info, pdc_result, sizeof(*cpu_info)); 1393 spin_unlock_irqrestore(&pdc_lock, flags); 1394 1395 return retval; 1396 } 1397 1398 /** 1399 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table. 1400 * @num_entries: The return value. 1401 * @cell_num: The target cell. 1402 * 1403 * This PDC function returns the number of entries in the specified cell's 1404 * interrupt table. 1405 */ 1406 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num) 1407 { 1408 int retval; 1409 unsigned long flags; 1410 1411 spin_lock_irqsave(&pdc_lock, flags); 1412 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE, 1413 __pa(pdc_result), cell_num); 1414 *num_entries = pdc_result[0]; 1415 spin_unlock_irqrestore(&pdc_lock, flags); 1416 1417 return retval; 1418 } 1419 1420 /** 1421 * pdc_pat_get_irt - Retrieve the cell's interrupt table. 1422 * @r_addr: The return buffer. 1423 * @cell_num: The target cell. 1424 * 1425 * This PDC function returns the actual interrupt table for the specified cell. 1426 */ 1427 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num) 1428 { 1429 int retval; 1430 unsigned long flags; 1431 1432 spin_lock_irqsave(&pdc_lock, flags); 1433 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE, 1434 __pa(r_addr), cell_num); 1435 spin_unlock_irqrestore(&pdc_lock, flags); 1436 1437 return retval; 1438 } 1439 1440 /** 1441 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges. 1442 * @actlen: The return buffer. 1443 * @mem_addr: Pointer to the memory buffer. 1444 * @count: The number of bytes to read from the buffer. 1445 * @offset: The offset with respect to the beginning of the buffer. 1446 * 1447 */ 1448 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 1449 unsigned long count, unsigned long offset) 1450 { 1451 int retval; 1452 unsigned long flags; 1453 1454 spin_lock_irqsave(&pdc_lock, flags); 1455 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 1456 __pa(pdc_result2), count, offset); 1457 *actual_len = pdc_result[0]; 1458 memcpy(mem_addr, pdc_result2, *actual_len); 1459 spin_unlock_irqrestore(&pdc_lock, flags); 1460 1461 return retval; 1462 } 1463 1464 /** 1465 * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions. 1466 * @legacy_rev: The legacy revision. 1467 * @pat_rev: The PAT revision. 1468 * @pdc_cap: The PDC capabilities. 1469 * 1470 */ 1471 int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev, 1472 unsigned long *pat_rev, unsigned long *pdc_cap) 1473 { 1474 int retval; 1475 unsigned long flags; 1476 1477 spin_lock_irqsave(&pdc_lock, flags); 1478 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV, 1479 __pa(pdc_result)); 1480 if (retval == PDC_OK) { 1481 *legacy_rev = pdc_result[0]; 1482 *pat_rev = pdc_result[1]; 1483 *pdc_cap = pdc_result[2]; 1484 } 1485 spin_unlock_irqrestore(&pdc_lock, flags); 1486 1487 return retval; 1488 } 1489 1490 1491 /** 1492 * pdc_pat_io_pci_cfg_read - Read PCI configuration space. 1493 * @pci_addr: PCI configuration space address for which the read request is being made. 1494 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 1495 * @mem_addr: Pointer to return memory buffer. 1496 * 1497 */ 1498 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr) 1499 { 1500 int retval; 1501 unsigned long flags; 1502 1503 spin_lock_irqsave(&pdc_lock, flags); 1504 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ, 1505 __pa(pdc_result), pci_addr, pci_size); 1506 switch(pci_size) { 1507 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; break; 1508 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; break; 1509 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; break; 1510 } 1511 spin_unlock_irqrestore(&pdc_lock, flags); 1512 1513 return retval; 1514 } 1515 1516 /** 1517 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges. 1518 * @pci_addr: PCI configuration space address for which the write request is being made. 1519 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 1520 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 1521 * written to PCI Config space. 1522 * 1523 */ 1524 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val) 1525 { 1526 int retval; 1527 unsigned long flags; 1528 1529 spin_lock_irqsave(&pdc_lock, flags); 1530 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE, 1531 pci_addr, pci_size, val); 1532 spin_unlock_irqrestore(&pdc_lock, flags); 1533 1534 return retval; 1535 } 1536 1537 /** 1538 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table 1539 * @rinfo: memory pdt information 1540 * 1541 */ 1542 int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo) 1543 { 1544 int retval; 1545 unsigned long flags; 1546 1547 spin_lock_irqsave(&pdc_lock, flags); 1548 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO, 1549 __pa(&pdc_result)); 1550 if (retval == PDC_OK) 1551 memcpy(rinfo, &pdc_result, sizeof(*rinfo)); 1552 spin_unlock_irqrestore(&pdc_lock, flags); 1553 1554 return retval; 1555 } 1556 1557 /** 1558 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation 1559 * table of a cell 1560 * @rinfo: memory pdt information 1561 * @cell: cell number 1562 * 1563 */ 1564 int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo, 1565 unsigned long cell) 1566 { 1567 int retval; 1568 unsigned long flags; 1569 1570 spin_lock_irqsave(&pdc_lock, flags); 1571 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO, 1572 __pa(&pdc_result), cell); 1573 if (retval == PDC_OK) 1574 memcpy(rinfo, &pdc_result, sizeof(*rinfo)); 1575 spin_unlock_irqrestore(&pdc_lock, flags); 1576 1577 return retval; 1578 } 1579 1580 /** 1581 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware 1582 * @pret: array of PDT entries 1583 * @pdt_entries_ptr: ptr to hold number of PDT entries 1584 * @max_entries: maximum number of entries to be read 1585 * 1586 */ 1587 int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret, 1588 unsigned long *pdt_entries_ptr, unsigned long max_entries) 1589 { 1590 int retval; 1591 unsigned long flags, entries; 1592 1593 spin_lock_irqsave(&pdc_lock, flags); 1594 /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */ 1595 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ, 1596 __pa(&pdc_result), parisc_cell_num, 1597 __pa(pdt_entries_ptr)); 1598 1599 if (retval == PDC_OK) { 1600 /* build up return value as for PDC_PAT_MEM_PD_READ */ 1601 entries = min(pdc_result[0], max_entries); 1602 pret->pdt_entries = entries; 1603 pret->actual_count_bytes = entries * sizeof(unsigned long); 1604 } 1605 1606 spin_unlock_irqrestore(&pdc_lock, flags); 1607 WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries); 1608 1609 return retval; 1610 } 1611 /** 1612 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware 1613 * @pret: array of PDT entries 1614 * @pdt_entries_ptr: ptr to hold number of PDT entries 1615 * @count: number of bytes to read 1616 * @offset: offset to start (in bytes) 1617 * 1618 */ 1619 int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret, 1620 unsigned long *pdt_entries_ptr, unsigned long count, 1621 unsigned long offset) 1622 { 1623 int retval; 1624 unsigned long flags, entries; 1625 1626 spin_lock_irqsave(&pdc_lock, flags); 1627 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ, 1628 __pa(&pdc_result), __pa(pdt_entries_ptr), 1629 count, offset); 1630 1631 if (retval == PDC_OK) { 1632 entries = min(pdc_result[0], count); 1633 pret->actual_count_bytes = entries; 1634 pret->pdt_entries = entries / sizeof(unsigned long); 1635 } 1636 1637 spin_unlock_irqrestore(&pdc_lock, flags); 1638 1639 return retval; 1640 } 1641 1642 /** 1643 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware 1644 * @pret: ptr to hold returned information 1645 * @phys_addr: physical address to examine 1646 * 1647 */ 1648 int pdc_pat_mem_get_dimm_phys_location( 1649 struct pdc_pat_mem_phys_mem_location *pret, 1650 unsigned long phys_addr) 1651 { 1652 int retval; 1653 unsigned long flags; 1654 1655 spin_lock_irqsave(&pdc_lock, flags); 1656 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS, 1657 __pa(&pdc_result), phys_addr); 1658 1659 if (retval == PDC_OK) 1660 memcpy(pret, &pdc_result, sizeof(*pret)); 1661 1662 spin_unlock_irqrestore(&pdc_lock, flags); 1663 1664 return retval; 1665 } 1666 #endif /* CONFIG_64BIT */ 1667 #endif /* defined(BOOTLOADER) */ 1668 1669 1670 /***************** 32-bit real-mode calls ***********/ 1671 /* The struct below is used 1672 * to overlay real_stack (real2.S), preparing a 32-bit call frame. 1673 * real32_call_asm() then uses this stack in narrow real mode 1674 */ 1675 1676 struct narrow_stack { 1677 /* use int, not long which is 64 bits */ 1678 unsigned int arg13; 1679 unsigned int arg12; 1680 unsigned int arg11; 1681 unsigned int arg10; 1682 unsigned int arg9; 1683 unsigned int arg8; 1684 unsigned int arg7; 1685 unsigned int arg6; 1686 unsigned int arg5; 1687 unsigned int arg4; 1688 unsigned int arg3; 1689 unsigned int arg2; 1690 unsigned int arg1; 1691 unsigned int arg0; 1692 unsigned int frame_marker[8]; 1693 unsigned int sp; 1694 /* in reality, there's nearly 8k of stack after this */ 1695 }; 1696 1697 long real32_call(unsigned long fn, ...) 1698 { 1699 va_list args; 1700 extern struct narrow_stack real_stack; 1701 extern unsigned long real32_call_asm(unsigned int *, 1702 unsigned int *, 1703 unsigned int); 1704 1705 va_start(args, fn); 1706 real_stack.arg0 = va_arg(args, unsigned int); 1707 real_stack.arg1 = va_arg(args, unsigned int); 1708 real_stack.arg2 = va_arg(args, unsigned int); 1709 real_stack.arg3 = va_arg(args, unsigned int); 1710 real_stack.arg4 = va_arg(args, unsigned int); 1711 real_stack.arg5 = va_arg(args, unsigned int); 1712 real_stack.arg6 = va_arg(args, unsigned int); 1713 real_stack.arg7 = va_arg(args, unsigned int); 1714 real_stack.arg8 = va_arg(args, unsigned int); 1715 real_stack.arg9 = va_arg(args, unsigned int); 1716 real_stack.arg10 = va_arg(args, unsigned int); 1717 real_stack.arg11 = va_arg(args, unsigned int); 1718 real_stack.arg12 = va_arg(args, unsigned int); 1719 real_stack.arg13 = va_arg(args, unsigned int); 1720 va_end(args); 1721 1722 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn); 1723 } 1724 1725 #ifdef CONFIG_64BIT 1726 /***************** 64-bit real-mode calls ***********/ 1727 1728 struct wide_stack { 1729 unsigned long arg0; 1730 unsigned long arg1; 1731 unsigned long arg2; 1732 unsigned long arg3; 1733 unsigned long arg4; 1734 unsigned long arg5; 1735 unsigned long arg6; 1736 unsigned long arg7; 1737 unsigned long arg8; 1738 unsigned long arg9; 1739 unsigned long arg10; 1740 unsigned long arg11; 1741 unsigned long arg12; 1742 unsigned long arg13; 1743 unsigned long frame_marker[2]; /* rp, previous sp */ 1744 unsigned long sp; 1745 /* in reality, there's nearly 8k of stack after this */ 1746 }; 1747 1748 long real64_call(unsigned long fn, ...) 1749 { 1750 va_list args; 1751 extern struct wide_stack real64_stack; 1752 extern unsigned long real64_call_asm(unsigned long *, 1753 unsigned long *, 1754 unsigned long); 1755 1756 va_start(args, fn); 1757 real64_stack.arg0 = va_arg(args, unsigned long); 1758 real64_stack.arg1 = va_arg(args, unsigned long); 1759 real64_stack.arg2 = va_arg(args, unsigned long); 1760 real64_stack.arg3 = va_arg(args, unsigned long); 1761 real64_stack.arg4 = va_arg(args, unsigned long); 1762 real64_stack.arg5 = va_arg(args, unsigned long); 1763 real64_stack.arg6 = va_arg(args, unsigned long); 1764 real64_stack.arg7 = va_arg(args, unsigned long); 1765 real64_stack.arg8 = va_arg(args, unsigned long); 1766 real64_stack.arg9 = va_arg(args, unsigned long); 1767 real64_stack.arg10 = va_arg(args, unsigned long); 1768 real64_stack.arg11 = va_arg(args, unsigned long); 1769 real64_stack.arg12 = va_arg(args, unsigned long); 1770 real64_stack.arg13 = va_arg(args, unsigned long); 1771 va_end(args); 1772 1773 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn); 1774 } 1775 1776 #endif /* CONFIG_64BIT */ 1777