1 /* 2 * arch/parisc/kernel/firmware.c - safe PDC access routines 3 * 4 * PDC == Processor Dependent Code 5 * 6 * See http://www.parisc-linux.org/documentation/index.html 7 * for documentation describing the entry points and calling 8 * conventions defined below. 9 * 10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org) 11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy) 12 * Copyright 2003 Grant Grundler <grundler parisc-linux org> 13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org> 14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org> 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License as published by 18 * the Free Software Foundation; either version 2 of the License, or 19 * (at your option) any later version. 20 * 21 */ 22 23 /* I think it would be in everyone's best interest to follow this 24 * guidelines when writing PDC wrappers: 25 * 26 * - the name of the pdc wrapper should match one of the macros 27 * used for the first two arguments 28 * - don't use caps for random parts of the name 29 * - use the static PDC result buffers and "copyout" to structs 30 * supplied by the caller to encapsulate alignment restrictions 31 * - hold pdc_lock while in PDC or using static result buffers 32 * - use __pa() to convert virtual (kernel) pointers to physical 33 * ones. 34 * - the name of the struct used for pdc return values should equal 35 * one of the macros used for the first two arguments to the 36 * corresponding PDC call 37 * - keep the order of arguments 38 * - don't be smart (setting trailing NUL bytes for strings, return 39 * something useful even if the call failed) unless you are sure 40 * it's not going to affect functionality or performance 41 * 42 * Example: 43 * int pdc_cache_info(struct pdc_cache_info *cache_info ) 44 * { 45 * int retval; 46 * 47 * spin_lock_irq(&pdc_lock); 48 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0); 49 * convert_to_wide(pdc_result); 50 * memcpy(cache_info, pdc_result, sizeof(*cache_info)); 51 * spin_unlock_irq(&pdc_lock); 52 * 53 * return retval; 54 * } 55 * prumpf 991016 56 */ 57 58 #include <stdarg.h> 59 60 #include <linux/delay.h> 61 #include <linux/init.h> 62 #include <linux/kernel.h> 63 #include <linux/module.h> 64 #include <linux/string.h> 65 #include <linux/spinlock.h> 66 67 #include <asm/page.h> 68 #include <asm/pdc.h> 69 #include <asm/pdcpat.h> 70 #include <asm/system.h> 71 #include <asm/processor.h> /* for boot_cpu_data */ 72 73 static DEFINE_SPINLOCK(pdc_lock); 74 static unsigned long pdc_result[32] __attribute__ ((aligned (8))); 75 static unsigned long pdc_result2[32] __attribute__ ((aligned (8))); 76 77 #ifdef __LP64__ 78 #define WIDE_FIRMWARE 0x1 79 #define NARROW_FIRMWARE 0x2 80 81 /* Firmware needs to be initially set to narrow to determine the 82 * actual firmware width. */ 83 int parisc_narrow_firmware __read_mostly = 1; 84 #endif 85 86 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls 87 * and MEM_PDC calls are always the same width as the OS. 88 * Some PAT boxes may have 64-bit IODC I/O. 89 * 90 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow 91 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls. 92 * This allowed wide kernels to run on Cxxx boxes. 93 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode 94 * when running a 64-bit kernel on such boxes (e.g. C200 or C360). 95 */ 96 97 #ifdef __LP64__ 98 long real64_call(unsigned long function, ...); 99 #endif 100 long real32_call(unsigned long function, ...); 101 102 #ifdef __LP64__ 103 # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc 104 # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args) 105 #else 106 # define MEM_PDC (unsigned long)PAGE0->mem_pdc 107 # define mem_pdc_call(args...) real32_call(MEM_PDC, args) 108 #endif 109 110 111 /** 112 * f_extend - Convert PDC addresses to kernel addresses. 113 * @address: Address returned from PDC. 114 * 115 * This function is used to convert PDC addresses into kernel addresses 116 * when the PDC address size and kernel address size are different. 117 */ 118 static unsigned long f_extend(unsigned long address) 119 { 120 #ifdef __LP64__ 121 if(unlikely(parisc_narrow_firmware)) { 122 if((address & 0xff000000) == 0xf0000000) 123 return 0xf0f0f0f000000000UL | (u32)address; 124 125 if((address & 0xf0000000) == 0xf0000000) 126 return 0xffffffff00000000UL | (u32)address; 127 } 128 #endif 129 return address; 130 } 131 132 /** 133 * convert_to_wide - Convert the return buffer addresses into kernel addresses. 134 * @address: The return buffer from PDC. 135 * 136 * This function is used to convert the return buffer addresses retrieved from PDC 137 * into kernel addresses when the PDC address size and kernel address size are 138 * different. 139 */ 140 static void convert_to_wide(unsigned long *addr) 141 { 142 #ifdef __LP64__ 143 int i; 144 unsigned int *p = (unsigned int *)addr; 145 146 if(unlikely(parisc_narrow_firmware)) { 147 for(i = 31; i >= 0; --i) 148 addr[i] = p[i]; 149 } 150 #endif 151 } 152 153 /** 154 * set_firmware_width - Determine if the firmware is wide or narrow. 155 * 156 * This function must be called before any pdc_* function that uses the convert_to_wide 157 * function. 158 */ 159 void __init set_firmware_width(void) 160 { 161 #ifdef __LP64__ 162 int retval; 163 164 spin_lock_irq(&pdc_lock); 165 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0); 166 convert_to_wide(pdc_result); 167 if(pdc_result[0] != NARROW_FIRMWARE) 168 parisc_narrow_firmware = 0; 169 spin_unlock_irq(&pdc_lock); 170 #endif 171 } 172 173 /** 174 * pdc_emergency_unlock - Unlock the linux pdc lock 175 * 176 * This call unlocks the linux pdc lock in case we need some PDC functions 177 * (like pdc_add_valid) during kernel stack dump. 178 */ 179 void pdc_emergency_unlock(void) 180 { 181 /* Spinlock DEBUG code freaks out if we unconditionally unlock */ 182 if (spin_is_locked(&pdc_lock)) 183 spin_unlock(&pdc_lock); 184 } 185 186 187 /** 188 * pdc_add_valid - Verify address can be accessed without causing a HPMC. 189 * @address: Address to be verified. 190 * 191 * This PDC call attempts to read from the specified address and verifies 192 * if the address is valid. 193 * 194 * The return value is PDC_OK (0) in case accessing this address is valid. 195 */ 196 int pdc_add_valid(unsigned long address) 197 { 198 int retval; 199 200 spin_lock_irq(&pdc_lock); 201 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address); 202 spin_unlock_irq(&pdc_lock); 203 204 return retval; 205 } 206 EXPORT_SYMBOL(pdc_add_valid); 207 208 /** 209 * pdc_chassis_info - Return chassis information. 210 * @result: The return buffer. 211 * @chassis_info: The memory buffer address. 212 * @len: The size of the memory buffer address. 213 * 214 * An HVERSION dependent call for returning the chassis information. 215 */ 216 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len) 217 { 218 int retval; 219 220 spin_lock_irq(&pdc_lock); 221 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info)); 222 memcpy(&pdc_result2, led_info, len); 223 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO, 224 __pa(pdc_result), __pa(pdc_result2), len); 225 memcpy(chassis_info, pdc_result, sizeof(*chassis_info)); 226 memcpy(led_info, pdc_result2, len); 227 spin_unlock_irq(&pdc_lock); 228 229 return retval; 230 } 231 232 /** 233 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message. 234 * @retval: -1 on error, 0 on success. Other value are PDC errors 235 * 236 * Must be correctly formatted or expect system crash 237 */ 238 #ifdef __LP64__ 239 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data) 240 { 241 int retval = 0; 242 243 if (!is_pdc_pat()) 244 return -1; 245 246 spin_lock_irq(&pdc_lock); 247 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data)); 248 spin_unlock_irq(&pdc_lock); 249 250 return retval; 251 } 252 #endif 253 254 /** 255 * pdc_chassis_disp - Updates chassis code 256 * @retval: -1 on error, 0 on success 257 */ 258 int pdc_chassis_disp(unsigned long disp) 259 { 260 int retval = 0; 261 262 spin_lock_irq(&pdc_lock); 263 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp); 264 spin_unlock_irq(&pdc_lock); 265 266 return retval; 267 } 268 269 /** 270 * pdc_chassis_warn - Fetches chassis warnings 271 * @retval: -1 on error, 0 on success 272 */ 273 int pdc_chassis_warn(unsigned long *warn) 274 { 275 int retval = 0; 276 277 spin_lock_irq(&pdc_lock); 278 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result)); 279 *warn = pdc_result[0]; 280 spin_unlock_irq(&pdc_lock); 281 282 return retval; 283 } 284 285 /** 286 * pdc_coproc_cfg - To identify coprocessors attached to the processor. 287 * @pdc_coproc_info: Return buffer address. 288 * 289 * This PDC call returns the presence and status of all the coprocessors 290 * attached to the processor. 291 */ 292 int __init pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info) 293 { 294 int retval; 295 296 spin_lock_irq(&pdc_lock); 297 retval = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result)); 298 convert_to_wide(pdc_result); 299 pdc_coproc_info->ccr_functional = pdc_result[0]; 300 pdc_coproc_info->ccr_present = pdc_result[1]; 301 pdc_coproc_info->revision = pdc_result[17]; 302 pdc_coproc_info->model = pdc_result[18]; 303 spin_unlock_irq(&pdc_lock); 304 305 return retval; 306 } 307 308 /** 309 * pdc_iodc_read - Read data from the modules IODC. 310 * @actcnt: The actual number of bytes. 311 * @hpa: The HPA of the module for the iodc read. 312 * @index: The iodc entry point. 313 * @iodc_data: A buffer memory for the iodc options. 314 * @iodc_data_size: Size of the memory buffer. 315 * 316 * This PDC call reads from the IODC of the module specified by the hpa 317 * argument. 318 */ 319 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index, 320 void *iodc_data, unsigned int iodc_data_size) 321 { 322 int retval; 323 324 spin_lock_irq(&pdc_lock); 325 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 326 index, __pa(pdc_result2), iodc_data_size); 327 convert_to_wide(pdc_result); 328 *actcnt = pdc_result[0]; 329 memcpy(iodc_data, pdc_result2, iodc_data_size); 330 spin_unlock_irq(&pdc_lock); 331 332 return retval; 333 } 334 EXPORT_SYMBOL(pdc_iodc_read); 335 336 /** 337 * pdc_system_map_find_mods - Locate unarchitected modules. 338 * @pdc_mod_info: Return buffer address. 339 * @mod_path: pointer to dev path structure. 340 * @mod_index: fixed address module index. 341 * 342 * To locate and identify modules which reside at fixed I/O addresses, which 343 * do not self-identify via architected bus walks. 344 */ 345 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info, 346 struct pdc_module_path *mod_path, long mod_index) 347 { 348 int retval; 349 350 spin_lock_irq(&pdc_lock); 351 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 352 __pa(pdc_result2), mod_index); 353 convert_to_wide(pdc_result); 354 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info)); 355 memcpy(mod_path, pdc_result2, sizeof(*mod_path)); 356 spin_unlock_irq(&pdc_lock); 357 358 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr); 359 return retval; 360 } 361 362 /** 363 * pdc_system_map_find_addrs - Retrieve additional address ranges. 364 * @pdc_addr_info: Return buffer address. 365 * @mod_index: Fixed address module index. 366 * @addr_index: Address range index. 367 * 368 * Retrieve additional information about subsequent address ranges for modules 369 * with multiple address ranges. 370 */ 371 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 372 long mod_index, long addr_index) 373 { 374 int retval; 375 376 spin_lock_irq(&pdc_lock); 377 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result), 378 mod_index, addr_index); 379 convert_to_wide(pdc_result); 380 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info)); 381 spin_unlock_irq(&pdc_lock); 382 383 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr); 384 return retval; 385 } 386 387 /** 388 * pdc_model_info - Return model information about the processor. 389 * @model: The return buffer. 390 * 391 * Returns the version numbers, identifiers, and capabilities from the processor module. 392 */ 393 int pdc_model_info(struct pdc_model *model) 394 { 395 int retval; 396 397 spin_lock_irq(&pdc_lock); 398 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0); 399 convert_to_wide(pdc_result); 400 memcpy(model, pdc_result, sizeof(*model)); 401 spin_unlock_irq(&pdc_lock); 402 403 return retval; 404 } 405 406 /** 407 * pdc_model_sysmodel - Get the system model name. 408 * @name: A char array of at least 81 characters. 409 * 410 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L). 411 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command 412 * on HP/UX. 413 */ 414 int pdc_model_sysmodel(char *name) 415 { 416 int retval; 417 418 spin_lock_irq(&pdc_lock); 419 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result), 420 OS_ID_HPUX, __pa(name)); 421 convert_to_wide(pdc_result); 422 423 if (retval == PDC_OK) { 424 name[pdc_result[0]] = '\0'; /* add trailing '\0' */ 425 } else { 426 name[0] = 0; 427 } 428 spin_unlock_irq(&pdc_lock); 429 430 return retval; 431 } 432 433 /** 434 * pdc_model_versions - Identify the version number of each processor. 435 * @cpu_id: The return buffer. 436 * @id: The id of the processor to check. 437 * 438 * Returns the version number for each processor component. 439 * 440 * This comment was here before, but I do not know what it means :( -RB 441 * id: 0 = cpu revision, 1 = boot-rom-version 442 */ 443 int pdc_model_versions(unsigned long *versions, int id) 444 { 445 int retval; 446 447 spin_lock_irq(&pdc_lock); 448 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id); 449 convert_to_wide(pdc_result); 450 *versions = pdc_result[0]; 451 spin_unlock_irq(&pdc_lock); 452 453 return retval; 454 } 455 456 /** 457 * pdc_model_cpuid - Returns the CPU_ID. 458 * @cpu_id: The return buffer. 459 * 460 * Returns the CPU_ID value which uniquely identifies the cpu portion of 461 * the processor module. 462 */ 463 int pdc_model_cpuid(unsigned long *cpu_id) 464 { 465 int retval; 466 467 spin_lock_irq(&pdc_lock); 468 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ 469 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0); 470 convert_to_wide(pdc_result); 471 *cpu_id = pdc_result[0]; 472 spin_unlock_irq(&pdc_lock); 473 474 return retval; 475 } 476 477 /** 478 * pdc_model_capabilities - Returns the platform capabilities. 479 * @capabilities: The return buffer. 480 * 481 * Returns information about platform support for 32- and/or 64-bit 482 * OSes, IO-PDIR coherency, and virtual aliasing. 483 */ 484 int pdc_model_capabilities(unsigned long *capabilities) 485 { 486 int retval; 487 488 spin_lock_irq(&pdc_lock); 489 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ 490 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0); 491 convert_to_wide(pdc_result); 492 *capabilities = pdc_result[0]; 493 spin_unlock_irq(&pdc_lock); 494 495 return retval; 496 } 497 498 /** 499 * pdc_cache_info - Return cache and TLB information. 500 * @cache_info: The return buffer. 501 * 502 * Returns information about the processor's cache and TLB. 503 */ 504 int pdc_cache_info(struct pdc_cache_info *cache_info) 505 { 506 int retval; 507 508 spin_lock_irq(&pdc_lock); 509 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0); 510 convert_to_wide(pdc_result); 511 memcpy(cache_info, pdc_result, sizeof(*cache_info)); 512 spin_unlock_irq(&pdc_lock); 513 514 return retval; 515 } 516 517 /** 518 * pdc_spaceid_bits - Return whether Space ID hashing is turned on. 519 * @space_bits: Should be 0, if not, bad mojo! 520 * 521 * Returns information about Space ID hashing. 522 */ 523 int pdc_spaceid_bits(unsigned long *space_bits) 524 { 525 int retval; 526 527 spin_lock_irq(&pdc_lock); 528 pdc_result[0] = 0; 529 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0); 530 convert_to_wide(pdc_result); 531 *space_bits = pdc_result[0]; 532 spin_unlock_irq(&pdc_lock); 533 534 return retval; 535 } 536 537 #ifndef CONFIG_PA20 538 /** 539 * pdc_btlb_info - Return block TLB information. 540 * @btlb: The return buffer. 541 * 542 * Returns information about the hardware Block TLB. 543 */ 544 int pdc_btlb_info(struct pdc_btlb_info *btlb) 545 { 546 int retval; 547 548 spin_lock_irq(&pdc_lock); 549 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0); 550 memcpy(btlb, pdc_result, sizeof(*btlb)); 551 spin_unlock_irq(&pdc_lock); 552 553 if(retval < 0) { 554 btlb->max_size = 0; 555 } 556 return retval; 557 } 558 559 /** 560 * pdc_mem_map_hpa - Find fixed module information. 561 * @address: The return buffer 562 * @mod_path: pointer to dev path structure. 563 * 564 * This call was developed for S700 workstations to allow the kernel to find 565 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this 566 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP 567 * call. 568 * 569 * This call is supported by all existing S700 workstations (up to Gecko). 570 */ 571 int pdc_mem_map_hpa(struct pdc_memory_map *address, 572 struct pdc_module_path *mod_path) 573 { 574 int retval; 575 576 spin_lock_irq(&pdc_lock); 577 memcpy(pdc_result2, mod_path, sizeof(*mod_path)); 578 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result), 579 __pa(pdc_result2)); 580 memcpy(address, pdc_result, sizeof(*address)); 581 spin_unlock_irq(&pdc_lock); 582 583 return retval; 584 } 585 #endif /* !CONFIG_PA20 */ 586 587 /** 588 * pdc_lan_station_id - Get the LAN address. 589 * @lan_addr: The return buffer. 590 * @hpa: The network device HPA. 591 * 592 * Get the LAN station address when it is not directly available from the LAN hardware. 593 */ 594 int pdc_lan_station_id(char *lan_addr, unsigned long hpa) 595 { 596 int retval; 597 598 spin_lock_irq(&pdc_lock); 599 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ, 600 __pa(pdc_result), hpa); 601 if (retval < 0) { 602 /* FIXME: else read MAC from NVRAM */ 603 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE); 604 } else { 605 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE); 606 } 607 spin_unlock_irq(&pdc_lock); 608 609 return retval; 610 } 611 EXPORT_SYMBOL(pdc_lan_station_id); 612 613 /** 614 * pdc_stable_read - Read data from Stable Storage. 615 * @staddr: Stable Storage address to access. 616 * @memaddr: The memory address where Stable Storage data shall be copied. 617 * @count: number of bytes to transfert. count is multiple of 4. 618 * 619 * This PDC call reads from the Stable Storage address supplied in staddr 620 * and copies count bytes to the memory address memaddr. 621 * The call will fail if staddr+count > PDC_STABLE size. 622 */ 623 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count) 624 { 625 int retval; 626 627 spin_lock_irq(&pdc_lock); 628 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr, 629 __pa(pdc_result), count); 630 convert_to_wide(pdc_result); 631 memcpy(memaddr, pdc_result, count); 632 spin_unlock_irq(&pdc_lock); 633 634 return retval; 635 } 636 EXPORT_SYMBOL(pdc_stable_read); 637 638 /** 639 * pdc_stable_write - Write data to Stable Storage. 640 * @staddr: Stable Storage address to access. 641 * @memaddr: The memory address where Stable Storage data shall be read from. 642 * @count: number of bytes to transfert. count is multiple of 4. 643 * 644 * This PDC call reads count bytes from the supplied memaddr address, 645 * and copies count bytes to the Stable Storage address staddr. 646 * The call will fail if staddr+count > PDC_STABLE size. 647 */ 648 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count) 649 { 650 int retval; 651 652 spin_lock_irq(&pdc_lock); 653 memcpy(pdc_result, memaddr, count); 654 convert_to_wide(pdc_result); 655 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr, 656 __pa(pdc_result), count); 657 spin_unlock_irq(&pdc_lock); 658 659 return retval; 660 } 661 EXPORT_SYMBOL(pdc_stable_write); 662 663 /** 664 * pdc_stable_get_size - Get Stable Storage size in bytes. 665 * @size: pointer where the size will be stored. 666 * 667 * This PDC call returns the number of bytes in the processor's Stable 668 * Storage, which is the number of contiguous bytes implemented in Stable 669 * Storage starting from staddr=0. size in an unsigned 64-bit integer 670 * which is a multiple of four. 671 */ 672 int pdc_stable_get_size(unsigned long *size) 673 { 674 int retval; 675 676 spin_lock_irq(&pdc_lock); 677 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result)); 678 *size = pdc_result[0]; 679 spin_unlock_irq(&pdc_lock); 680 681 return retval; 682 } 683 EXPORT_SYMBOL(pdc_stable_get_size); 684 685 /** 686 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid. 687 * 688 * This PDC call is meant to be used to check the integrity of the current 689 * contents of Stable Storage. 690 */ 691 int pdc_stable_verify_contents(void) 692 { 693 int retval; 694 695 spin_lock_irq(&pdc_lock); 696 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS); 697 spin_unlock_irq(&pdc_lock); 698 699 return retval; 700 } 701 EXPORT_SYMBOL(pdc_stable_verify_contents); 702 703 /** 704 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize 705 * the validity indicator. 706 * 707 * This PDC call will erase all contents of Stable Storage. Use with care! 708 */ 709 int pdc_stable_initialize(void) 710 { 711 int retval; 712 713 spin_lock_irq(&pdc_lock); 714 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE); 715 spin_unlock_irq(&pdc_lock); 716 717 return retval; 718 } 719 EXPORT_SYMBOL(pdc_stable_initialize); 720 721 /** 722 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD) 723 * @hwpath: fully bc.mod style path to the device. 724 * @initiator: the array to return the result into 725 * 726 * Get the SCSI operational parameters from PDC. 727 * Needed since HPUX never used BIOS or symbios card NVRAM. 728 * Most ncr/sym cards won't have an entry and just use whatever 729 * capabilities of the card are (eg Ultra, LVD). But there are 730 * several cases where it's useful: 731 * o set SCSI id for Multi-initiator clusters, 732 * o cable too long (ie SE scsi 10Mhz won't support 6m length), 733 * o bus width exported is less than what the interface chip supports. 734 */ 735 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator) 736 { 737 int retval; 738 739 spin_lock_irq(&pdc_lock); 740 741 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */ 742 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \ 743 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0) 744 745 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 746 __pa(pdc_result), __pa(hwpath)); 747 if (retval < PDC_OK) 748 goto out; 749 750 if (pdc_result[0] < 16) { 751 initiator->host_id = pdc_result[0]; 752 } else { 753 initiator->host_id = -1; 754 } 755 756 /* 757 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns 758 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively 759 */ 760 switch (pdc_result[1]) { 761 case 1: initiator->factor = 50; break; 762 case 2: initiator->factor = 25; break; 763 case 5: initiator->factor = 12; break; 764 case 25: initiator->factor = 10; break; 765 case 20: initiator->factor = 12; break; 766 case 40: initiator->factor = 10; break; 767 default: initiator->factor = -1; break; 768 } 769 770 if (IS_SPROCKETS()) { 771 initiator->width = pdc_result[4]; 772 initiator->mode = pdc_result[5]; 773 } else { 774 initiator->width = -1; 775 initiator->mode = -1; 776 } 777 778 out: 779 spin_unlock_irq(&pdc_lock); 780 return (retval >= PDC_OK); 781 } 782 EXPORT_SYMBOL(pdc_get_initiator); 783 784 785 /** 786 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table. 787 * @num_entries: The return value. 788 * @hpa: The HPA for the device. 789 * 790 * This PDC function returns the number of entries in the specified cell's 791 * interrupt table. 792 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes 793 */ 794 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa) 795 { 796 int retval; 797 798 spin_lock_irq(&pdc_lock); 799 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 800 __pa(pdc_result), hpa); 801 convert_to_wide(pdc_result); 802 *num_entries = pdc_result[0]; 803 spin_unlock_irq(&pdc_lock); 804 805 return retval; 806 } 807 808 /** 809 * pdc_pci_irt - Get the PCI interrupt routing table. 810 * @num_entries: The number of entries in the table. 811 * @hpa: The Hard Physical Address of the device. 812 * @tbl: 813 * 814 * Get the PCI interrupt routing table for the device at the given HPA. 815 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes 816 */ 817 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl) 818 { 819 int retval; 820 821 BUG_ON((unsigned long)tbl & 0x7); 822 823 spin_lock_irq(&pdc_lock); 824 pdc_result[0] = num_entries; 825 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 826 __pa(pdc_result), hpa, __pa(tbl)); 827 spin_unlock_irq(&pdc_lock); 828 829 return retval; 830 } 831 832 833 #if 0 /* UNTEST CODE - left here in case someone needs it */ 834 835 /** 836 * pdc_pci_config_read - read PCI config space. 837 * @hpa token from PDC to indicate which PCI device 838 * @pci_addr configuration space address to read from 839 * 840 * Read PCI Configuration space *before* linux PCI subsystem is running. 841 */ 842 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr) 843 { 844 int retval; 845 spin_lock_irq(&pdc_lock); 846 pdc_result[0] = 0; 847 pdc_result[1] = 0; 848 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 849 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL); 850 spin_unlock_irq(&pdc_lock); 851 return retval ? ~0 : (unsigned int) pdc_result[0]; 852 } 853 854 855 /** 856 * pdc_pci_config_write - read PCI config space. 857 * @hpa token from PDC to indicate which PCI device 858 * @pci_addr configuration space address to write 859 * @val value we want in the 32-bit register 860 * 861 * Write PCI Configuration space *before* linux PCI subsystem is running. 862 */ 863 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val) 864 { 865 int retval; 866 spin_lock_irq(&pdc_lock); 867 pdc_result[0] = 0; 868 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 869 __pa(pdc_result), hpa, 870 cfg_addr&~3UL, 4UL, (unsigned long) val); 871 spin_unlock_irq(&pdc_lock); 872 return retval; 873 } 874 #endif /* UNTESTED CODE */ 875 876 /** 877 * pdc_tod_read - Read the Time-Of-Day clock. 878 * @tod: The return buffer: 879 * 880 * Read the Time-Of-Day clock 881 */ 882 int pdc_tod_read(struct pdc_tod *tod) 883 { 884 int retval; 885 886 spin_lock_irq(&pdc_lock); 887 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0); 888 convert_to_wide(pdc_result); 889 memcpy(tod, pdc_result, sizeof(*tod)); 890 spin_unlock_irq(&pdc_lock); 891 892 return retval; 893 } 894 EXPORT_SYMBOL(pdc_tod_read); 895 896 /** 897 * pdc_tod_set - Set the Time-Of-Day clock. 898 * @sec: The number of seconds since epoch. 899 * @usec: The number of micro seconds. 900 * 901 * Set the Time-Of-Day clock. 902 */ 903 int pdc_tod_set(unsigned long sec, unsigned long usec) 904 { 905 int retval; 906 907 spin_lock_irq(&pdc_lock); 908 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec); 909 spin_unlock_irq(&pdc_lock); 910 911 return retval; 912 } 913 EXPORT_SYMBOL(pdc_tod_set); 914 915 #ifdef __LP64__ 916 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr, 917 struct pdc_memory_table *tbl, unsigned long entries) 918 { 919 int retval; 920 921 spin_lock_irq(&pdc_lock); 922 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries); 923 convert_to_wide(pdc_result); 924 memcpy(r_addr, pdc_result, sizeof(*r_addr)); 925 memcpy(tbl, pdc_result2, entries * sizeof(*tbl)); 926 spin_unlock_irq(&pdc_lock); 927 928 return retval; 929 } 930 #endif /* __LP64__ */ 931 932 /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap 933 * so I guessed at unsigned long. Someone who knows what this does, can fix 934 * it later. :) 935 */ 936 int pdc_do_firm_test_reset(unsigned long ftc_bitmap) 937 { 938 int retval; 939 940 spin_lock_irq(&pdc_lock); 941 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET, 942 PDC_FIRM_TEST_MAGIC, ftc_bitmap); 943 spin_unlock_irq(&pdc_lock); 944 945 return retval; 946 } 947 948 /* 949 * pdc_do_reset - Reset the system. 950 * 951 * Reset the system. 952 */ 953 int pdc_do_reset(void) 954 { 955 int retval; 956 957 spin_lock_irq(&pdc_lock); 958 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET); 959 spin_unlock_irq(&pdc_lock); 960 961 return retval; 962 } 963 964 /* 965 * pdc_soft_power_info - Enable soft power switch. 966 * @power_reg: address of soft power register 967 * 968 * Return the absolute address of the soft power switch register 969 */ 970 int __init pdc_soft_power_info(unsigned long *power_reg) 971 { 972 int retval; 973 974 *power_reg = (unsigned long) (-1); 975 976 spin_lock_irq(&pdc_lock); 977 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0); 978 if (retval == PDC_OK) { 979 convert_to_wide(pdc_result); 980 *power_reg = f_extend(pdc_result[0]); 981 } 982 spin_unlock_irq(&pdc_lock); 983 984 return retval; 985 } 986 987 /* 988 * pdc_soft_power_button - Control the soft power button behaviour 989 * @sw_control: 0 for hardware control, 1 for software control 990 * 991 * 992 * This PDC function places the soft power button under software or 993 * hardware control. 994 * Under software control the OS may control to when to allow to shut 995 * down the system. Under hardware control pressing the power button 996 * powers off the system immediately. 997 */ 998 int pdc_soft_power_button(int sw_control) 999 { 1000 int retval; 1001 spin_lock_irq(&pdc_lock); 1002 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control); 1003 spin_unlock_irq(&pdc_lock); 1004 return retval; 1005 } 1006 1007 /* 1008 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices. 1009 * Primarily a problem on T600 (which parisc-linux doesn't support) but 1010 * who knows what other platform firmware might do with this OS "hook". 1011 */ 1012 void pdc_io_reset(void) 1013 { 1014 spin_lock_irq(&pdc_lock); 1015 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0); 1016 spin_unlock_irq(&pdc_lock); 1017 } 1018 1019 /* 1020 * pdc_io_reset_devices - Hack to Stop USB controller 1021 * 1022 * If PDC used the usb controller, the usb controller 1023 * is still running and will crash the machines during iommu 1024 * setup, because of still running DMA. This PDC call 1025 * stops the USB controller. 1026 * Normally called after calling pdc_io_reset(). 1027 */ 1028 void pdc_io_reset_devices(void) 1029 { 1030 spin_lock_irq(&pdc_lock); 1031 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0); 1032 spin_unlock_irq(&pdc_lock); 1033 } 1034 1035 1036 /** 1037 * pdc_iodc_putc - Console character print using IODC. 1038 * @c: the character to output. 1039 * 1040 * Note that only these special chars are architected for console IODC io: 1041 * BEL, BS, CR, and LF. Others are passed through. 1042 * Since the HP console requires CR+LF to perform a 'newline', we translate 1043 * "\n" to "\r\n". 1044 */ 1045 void pdc_iodc_putc(unsigned char c) 1046 { 1047 /* XXX Should we spinlock posx usage */ 1048 static int posx; /* for simple TAB-Simulation... */ 1049 static int __attribute__((aligned(8))) iodc_retbuf[32]; 1050 static char __attribute__((aligned(64))) iodc_dbuf[4096]; 1051 unsigned int n; 1052 unsigned int flags; 1053 1054 switch (c) { 1055 case '\n': 1056 iodc_dbuf[0] = '\r'; 1057 iodc_dbuf[1] = '\n'; 1058 n = 2; 1059 posx = 0; 1060 break; 1061 case '\t': 1062 pdc_iodc_putc(' '); 1063 while (posx & 7) /* expand TAB */ 1064 pdc_iodc_putc(' '); 1065 return; /* return since IODC can't handle this */ 1066 case '\b': 1067 posx-=2; /* BS */ 1068 default: 1069 iodc_dbuf[0] = c; 1070 n = 1; 1071 posx++; 1072 break; 1073 } 1074 1075 spin_lock_irqsave(&pdc_lock, flags); 1076 real32_call(PAGE0->mem_cons.iodc_io, 1077 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT, 1078 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers), 1079 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0); 1080 spin_unlock_irqrestore(&pdc_lock, flags); 1081 } 1082 1083 /** 1084 * pdc_iodc_outc - Console character print using IODC (without conversions). 1085 * @c: the character to output. 1086 * 1087 * Write the character directly to the IODC console. 1088 */ 1089 void pdc_iodc_outc(unsigned char c) 1090 { 1091 unsigned int n, flags; 1092 1093 /* fill buffer with one caracter and print it */ 1094 static int __attribute__((aligned(8))) iodc_retbuf[32]; 1095 static char __attribute__((aligned(64))) iodc_dbuf[4096]; 1096 1097 n = 1; 1098 iodc_dbuf[0] = c; 1099 1100 spin_lock_irqsave(&pdc_lock, flags); 1101 real32_call(PAGE0->mem_cons.iodc_io, 1102 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT, 1103 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers), 1104 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0); 1105 spin_unlock_irqrestore(&pdc_lock, flags); 1106 } 1107 1108 /** 1109 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console. 1110 * 1111 * Read a character (non-blocking) from the PDC console, returns -1 if 1112 * key is not present. 1113 */ 1114 int pdc_iodc_getc(void) 1115 { 1116 unsigned int flags; 1117 static int __attribute__((aligned(8))) iodc_retbuf[32]; 1118 static char __attribute__((aligned(64))) iodc_dbuf[4096]; 1119 int ch; 1120 int status; 1121 1122 /* Bail if no console input device. */ 1123 if (!PAGE0->mem_kbd.iodc_io) 1124 return 0; 1125 1126 /* wait for a keyboard (rs232)-input */ 1127 spin_lock_irqsave(&pdc_lock, flags); 1128 real32_call(PAGE0->mem_kbd.iodc_io, 1129 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN, 1130 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 1131 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0); 1132 1133 ch = *iodc_dbuf; 1134 status = *iodc_retbuf; 1135 spin_unlock_irqrestore(&pdc_lock, flags); 1136 1137 if (status == 0) 1138 return -1; 1139 1140 return ch; 1141 } 1142 1143 int pdc_sti_call(unsigned long func, unsigned long flags, 1144 unsigned long inptr, unsigned long outputr, 1145 unsigned long glob_cfg) 1146 { 1147 int retval; 1148 1149 spin_lock_irq(&pdc_lock); 1150 retval = real32_call(func, flags, inptr, outputr, glob_cfg); 1151 spin_unlock_irq(&pdc_lock); 1152 1153 return retval; 1154 } 1155 EXPORT_SYMBOL(pdc_sti_call); 1156 1157 #ifdef __LP64__ 1158 /** 1159 * pdc_pat_cell_get_number - Returns the cell number. 1160 * @cell_info: The return buffer. 1161 * 1162 * This PDC call returns the cell number of the cell from which the call 1163 * is made. 1164 */ 1165 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info) 1166 { 1167 int retval; 1168 1169 spin_lock_irq(&pdc_lock); 1170 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result)); 1171 memcpy(cell_info, pdc_result, sizeof(*cell_info)); 1172 spin_unlock_irq(&pdc_lock); 1173 1174 return retval; 1175 } 1176 1177 /** 1178 * pdc_pat_cell_module - Retrieve the cell's module information. 1179 * @actcnt: The number of bytes written to mem_addr. 1180 * @ploc: The physical location. 1181 * @mod: The module index. 1182 * @view_type: The view of the address type. 1183 * @mem_addr: The return buffer. 1184 * 1185 * This PDC call returns information about each module attached to the cell 1186 * at the specified location. 1187 */ 1188 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod, 1189 unsigned long view_type, void *mem_addr) 1190 { 1191 int retval; 1192 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8))); 1193 1194 spin_lock_irq(&pdc_lock); 1195 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 1196 ploc, mod, view_type, __pa(&result)); 1197 if(!retval) { 1198 *actcnt = pdc_result[0]; 1199 memcpy(mem_addr, &result, *actcnt); 1200 } 1201 spin_unlock_irq(&pdc_lock); 1202 1203 return retval; 1204 } 1205 1206 /** 1207 * pdc_pat_cpu_get_number - Retrieve the cpu number. 1208 * @cpu_info: The return buffer. 1209 * @hpa: The Hard Physical Address of the CPU. 1210 * 1211 * Retrieve the cpu number for the cpu at the specified HPA. 1212 */ 1213 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa) 1214 { 1215 int retval; 1216 1217 spin_lock_irq(&pdc_lock); 1218 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER, 1219 __pa(&pdc_result), hpa); 1220 memcpy(cpu_info, pdc_result, sizeof(*cpu_info)); 1221 spin_unlock_irq(&pdc_lock); 1222 1223 return retval; 1224 } 1225 1226 /** 1227 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table. 1228 * @num_entries: The return value. 1229 * @cell_num: The target cell. 1230 * 1231 * This PDC function returns the number of entries in the specified cell's 1232 * interrupt table. 1233 */ 1234 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num) 1235 { 1236 int retval; 1237 1238 spin_lock_irq(&pdc_lock); 1239 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE, 1240 __pa(pdc_result), cell_num); 1241 *num_entries = pdc_result[0]; 1242 spin_unlock_irq(&pdc_lock); 1243 1244 return retval; 1245 } 1246 1247 /** 1248 * pdc_pat_get_irt - Retrieve the cell's interrupt table. 1249 * @r_addr: The return buffer. 1250 * @cell_num: The target cell. 1251 * 1252 * This PDC function returns the actual interrupt table for the specified cell. 1253 */ 1254 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num) 1255 { 1256 int retval; 1257 1258 spin_lock_irq(&pdc_lock); 1259 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE, 1260 __pa(r_addr), cell_num); 1261 spin_unlock_irq(&pdc_lock); 1262 1263 return retval; 1264 } 1265 1266 /** 1267 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges. 1268 * @actlen: The return buffer. 1269 * @mem_addr: Pointer to the memory buffer. 1270 * @count: The number of bytes to read from the buffer. 1271 * @offset: The offset with respect to the beginning of the buffer. 1272 * 1273 */ 1274 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 1275 unsigned long count, unsigned long offset) 1276 { 1277 int retval; 1278 1279 spin_lock_irq(&pdc_lock); 1280 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 1281 __pa(pdc_result2), count, offset); 1282 *actual_len = pdc_result[0]; 1283 memcpy(mem_addr, pdc_result2, *actual_len); 1284 spin_unlock_irq(&pdc_lock); 1285 1286 return retval; 1287 } 1288 1289 /** 1290 * pdc_pat_io_pci_cfg_read - Read PCI configuration space. 1291 * @pci_addr: PCI configuration space address for which the read request is being made. 1292 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 1293 * @mem_addr: Pointer to return memory buffer. 1294 * 1295 */ 1296 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr) 1297 { 1298 int retval; 1299 spin_lock_irq(&pdc_lock); 1300 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ, 1301 __pa(pdc_result), pci_addr, pci_size); 1302 switch(pci_size) { 1303 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; 1304 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; 1305 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; 1306 } 1307 spin_unlock_irq(&pdc_lock); 1308 1309 return retval; 1310 } 1311 1312 /** 1313 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges. 1314 * @pci_addr: PCI configuration space address for which the write request is being made. 1315 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 1316 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 1317 * written to PCI Config space. 1318 * 1319 */ 1320 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val) 1321 { 1322 int retval; 1323 1324 spin_lock_irq(&pdc_lock); 1325 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE, 1326 pci_addr, pci_size, val); 1327 spin_unlock_irq(&pdc_lock); 1328 1329 return retval; 1330 } 1331 #endif /* __LP64__ */ 1332 1333 1334 /***************** 32-bit real-mode calls ***********/ 1335 /* The struct below is used 1336 * to overlay real_stack (real2.S), preparing a 32-bit call frame. 1337 * real32_call_asm() then uses this stack in narrow real mode 1338 */ 1339 1340 struct narrow_stack { 1341 /* use int, not long which is 64 bits */ 1342 unsigned int arg13; 1343 unsigned int arg12; 1344 unsigned int arg11; 1345 unsigned int arg10; 1346 unsigned int arg9; 1347 unsigned int arg8; 1348 unsigned int arg7; 1349 unsigned int arg6; 1350 unsigned int arg5; 1351 unsigned int arg4; 1352 unsigned int arg3; 1353 unsigned int arg2; 1354 unsigned int arg1; 1355 unsigned int arg0; 1356 unsigned int frame_marker[8]; 1357 unsigned int sp; 1358 /* in reality, there's nearly 8k of stack after this */ 1359 }; 1360 1361 long real32_call(unsigned long fn, ...) 1362 { 1363 va_list args; 1364 extern struct narrow_stack real_stack; 1365 extern unsigned long real32_call_asm(unsigned int *, 1366 unsigned int *, 1367 unsigned int); 1368 1369 va_start(args, fn); 1370 real_stack.arg0 = va_arg(args, unsigned int); 1371 real_stack.arg1 = va_arg(args, unsigned int); 1372 real_stack.arg2 = va_arg(args, unsigned int); 1373 real_stack.arg3 = va_arg(args, unsigned int); 1374 real_stack.arg4 = va_arg(args, unsigned int); 1375 real_stack.arg5 = va_arg(args, unsigned int); 1376 real_stack.arg6 = va_arg(args, unsigned int); 1377 real_stack.arg7 = va_arg(args, unsigned int); 1378 real_stack.arg8 = va_arg(args, unsigned int); 1379 real_stack.arg9 = va_arg(args, unsigned int); 1380 real_stack.arg10 = va_arg(args, unsigned int); 1381 real_stack.arg11 = va_arg(args, unsigned int); 1382 real_stack.arg12 = va_arg(args, unsigned int); 1383 real_stack.arg13 = va_arg(args, unsigned int); 1384 va_end(args); 1385 1386 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn); 1387 } 1388 1389 #ifdef __LP64__ 1390 /***************** 64-bit real-mode calls ***********/ 1391 1392 struct wide_stack { 1393 unsigned long arg0; 1394 unsigned long arg1; 1395 unsigned long arg2; 1396 unsigned long arg3; 1397 unsigned long arg4; 1398 unsigned long arg5; 1399 unsigned long arg6; 1400 unsigned long arg7; 1401 unsigned long arg8; 1402 unsigned long arg9; 1403 unsigned long arg10; 1404 unsigned long arg11; 1405 unsigned long arg12; 1406 unsigned long arg13; 1407 unsigned long frame_marker[2]; /* rp, previous sp */ 1408 unsigned long sp; 1409 /* in reality, there's nearly 8k of stack after this */ 1410 }; 1411 1412 long real64_call(unsigned long fn, ...) 1413 { 1414 va_list args; 1415 extern struct wide_stack real64_stack; 1416 extern unsigned long real64_call_asm(unsigned long *, 1417 unsigned long *, 1418 unsigned long); 1419 1420 va_start(args, fn); 1421 real64_stack.arg0 = va_arg(args, unsigned long); 1422 real64_stack.arg1 = va_arg(args, unsigned long); 1423 real64_stack.arg2 = va_arg(args, unsigned long); 1424 real64_stack.arg3 = va_arg(args, unsigned long); 1425 real64_stack.arg4 = va_arg(args, unsigned long); 1426 real64_stack.arg5 = va_arg(args, unsigned long); 1427 real64_stack.arg6 = va_arg(args, unsigned long); 1428 real64_stack.arg7 = va_arg(args, unsigned long); 1429 real64_stack.arg8 = va_arg(args, unsigned long); 1430 real64_stack.arg9 = va_arg(args, unsigned long); 1431 real64_stack.arg10 = va_arg(args, unsigned long); 1432 real64_stack.arg11 = va_arg(args, unsigned long); 1433 real64_stack.arg12 = va_arg(args, unsigned long); 1434 real64_stack.arg13 = va_arg(args, unsigned long); 1435 va_end(args); 1436 1437 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn); 1438 } 1439 1440 #endif /* __LP64__ */ 1441 1442