xref: /linux/arch/parisc/kernel/firmware.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  * arch/parisc/kernel/firmware.c  - safe PDC access routines
3  *
4  *	PDC == Processor Dependent Code
5  *
6  * See http://www.parisc-linux.org/documentation/index.html
7  * for documentation describing the entry points and calling
8  * conventions defined below.
9  *
10  * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11  * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12  * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13  * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14  * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15  *
16  *    This program is free software; you can redistribute it and/or modify
17  *    it under the terms of the GNU General Public License as published by
18  *    the Free Software Foundation; either version 2 of the License, or
19  *    (at your option) any later version.
20  *
21  */
22 
23 /*	I think it would be in everyone's best interest to follow this
24  *	guidelines when writing PDC wrappers:
25  *
26  *	 - the name of the pdc wrapper should match one of the macros
27  *	   used for the first two arguments
28  *	 - don't use caps for random parts of the name
29  *	 - use the static PDC result buffers and "copyout" to structs
30  *	   supplied by the caller to encapsulate alignment restrictions
31  *	 - hold pdc_lock while in PDC or using static result buffers
32  *	 - use __pa() to convert virtual (kernel) pointers to physical
33  *	   ones.
34  *	 - the name of the struct used for pdc return values should equal
35  *	   one of the macros used for the first two arguments to the
36  *	   corresponding PDC call
37  *	 - keep the order of arguments
38  *	 - don't be smart (setting trailing NUL bytes for strings, return
39  *	   something useful even if the call failed) unless you are sure
40  *	   it's not going to affect functionality or performance
41  *
42  *	Example:
43  *	int pdc_cache_info(struct pdc_cache_info *cache_info )
44  *	{
45  *		int retval;
46  *
47  *		spin_lock_irq(&pdc_lock);
48  *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49  *		convert_to_wide(pdc_result);
50  *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
51  *		spin_unlock_irq(&pdc_lock);
52  *
53  *		return retval;
54  *	}
55  *					prumpf	991016
56  */
57 
58 #include <stdarg.h>
59 
60 #include <linux/delay.h>
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/spinlock.h>
66 
67 #include <asm/page.h>
68 #include <asm/pdc.h>
69 #include <asm/pdcpat.h>
70 #include <asm/system.h>
71 #include <asm/processor.h>	/* for boot_cpu_data */
72 
73 static DEFINE_SPINLOCK(pdc_lock);
74 static unsigned long pdc_result[32] __attribute__ ((aligned (8)));
75 static unsigned long pdc_result2[32] __attribute__ ((aligned (8)));
76 
77 #ifdef __LP64__
78 #define WIDE_FIRMWARE 0x1
79 #define NARROW_FIRMWARE 0x2
80 
81 /* Firmware needs to be initially set to narrow to determine the
82  * actual firmware width. */
83 int parisc_narrow_firmware __read_mostly = 1;
84 #endif
85 
86 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
87  * and MEM_PDC calls are always the same width as the OS.
88  * Some PAT boxes may have 64-bit IODC I/O.
89  *
90  * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
91  * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
92  * This allowed wide kernels to run on Cxxx boxes.
93  * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
94  * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
95  */
96 
97 #ifdef __LP64__
98 long real64_call(unsigned long function, ...);
99 #endif
100 long real32_call(unsigned long function, ...);
101 
102 #ifdef __LP64__
103 #   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
104 #   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
105 #else
106 #   define MEM_PDC (unsigned long)PAGE0->mem_pdc
107 #   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
108 #endif
109 
110 
111 /**
112  * f_extend - Convert PDC addresses to kernel addresses.
113  * @address: Address returned from PDC.
114  *
115  * This function is used to convert PDC addresses into kernel addresses
116  * when the PDC address size and kernel address size are different.
117  */
118 static unsigned long f_extend(unsigned long address)
119 {
120 #ifdef __LP64__
121 	if(unlikely(parisc_narrow_firmware)) {
122 		if((address & 0xff000000) == 0xf0000000)
123 			return 0xf0f0f0f000000000UL | (u32)address;
124 
125 		if((address & 0xf0000000) == 0xf0000000)
126 			return 0xffffffff00000000UL | (u32)address;
127 	}
128 #endif
129 	return address;
130 }
131 
132 /**
133  * convert_to_wide - Convert the return buffer addresses into kernel addresses.
134  * @address: The return buffer from PDC.
135  *
136  * This function is used to convert the return buffer addresses retrieved from PDC
137  * into kernel addresses when the PDC address size and kernel address size are
138  * different.
139  */
140 static void convert_to_wide(unsigned long *addr)
141 {
142 #ifdef __LP64__
143 	int i;
144 	unsigned int *p = (unsigned int *)addr;
145 
146 	if(unlikely(parisc_narrow_firmware)) {
147 		for(i = 31; i >= 0; --i)
148 			addr[i] = p[i];
149 	}
150 #endif
151 }
152 
153 /**
154  * set_firmware_width - Determine if the firmware is wide or narrow.
155  *
156  * This function must be called before any pdc_* function that uses the convert_to_wide
157  * function.
158  */
159 void __init set_firmware_width(void)
160 {
161 #ifdef __LP64__
162 	int retval;
163 
164         spin_lock_irq(&pdc_lock);
165 	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
166 	convert_to_wide(pdc_result);
167 	if(pdc_result[0] != NARROW_FIRMWARE)
168 		parisc_narrow_firmware = 0;
169         spin_unlock_irq(&pdc_lock);
170 #endif
171 }
172 
173 /**
174  * pdc_emergency_unlock - Unlock the linux pdc lock
175  *
176  * This call unlocks the linux pdc lock in case we need some PDC functions
177  * (like pdc_add_valid) during kernel stack dump.
178  */
179 void pdc_emergency_unlock(void)
180 {
181  	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
182         if (spin_is_locked(&pdc_lock))
183 		spin_unlock(&pdc_lock);
184 }
185 
186 
187 /**
188  * pdc_add_valid - Verify address can be accessed without causing a HPMC.
189  * @address: Address to be verified.
190  *
191  * This PDC call attempts to read from the specified address and verifies
192  * if the address is valid.
193  *
194  * The return value is PDC_OK (0) in case accessing this address is valid.
195  */
196 int pdc_add_valid(unsigned long address)
197 {
198         int retval;
199 
200         spin_lock_irq(&pdc_lock);
201         retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
202         spin_unlock_irq(&pdc_lock);
203 
204         return retval;
205 }
206 EXPORT_SYMBOL(pdc_add_valid);
207 
208 /**
209  * pdc_chassis_info - Return chassis information.
210  * @result: The return buffer.
211  * @chassis_info: The memory buffer address.
212  * @len: The size of the memory buffer address.
213  *
214  * An HVERSION dependent call for returning the chassis information.
215  */
216 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
217 {
218         int retval;
219 
220         spin_lock_irq(&pdc_lock);
221         memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
222         memcpy(&pdc_result2, led_info, len);
223         retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
224                               __pa(pdc_result), __pa(pdc_result2), len);
225         memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
226         memcpy(led_info, pdc_result2, len);
227         spin_unlock_irq(&pdc_lock);
228 
229         return retval;
230 }
231 
232 /**
233  * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
234  * @retval: -1 on error, 0 on success. Other value are PDC errors
235  *
236  * Must be correctly formatted or expect system crash
237  */
238 #ifdef __LP64__
239 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
240 {
241 	int retval = 0;
242 
243 	if (!is_pdc_pat())
244 		return -1;
245 
246 	spin_lock_irq(&pdc_lock);
247 	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
248 	spin_unlock_irq(&pdc_lock);
249 
250 	return retval;
251 }
252 #endif
253 
254 /**
255  * pdc_chassis_disp - Updates chassis code
256  * @retval: -1 on error, 0 on success
257  */
258 int pdc_chassis_disp(unsigned long disp)
259 {
260 	int retval = 0;
261 
262 	spin_lock_irq(&pdc_lock);
263 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
264 	spin_unlock_irq(&pdc_lock);
265 
266 	return retval;
267 }
268 
269 /**
270  * pdc_chassis_warn - Fetches chassis warnings
271  * @retval: -1 on error, 0 on success
272  */
273 int pdc_chassis_warn(unsigned long *warn)
274 {
275 	int retval = 0;
276 
277 	spin_lock_irq(&pdc_lock);
278 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
279 	*warn = pdc_result[0];
280 	spin_unlock_irq(&pdc_lock);
281 
282 	return retval;
283 }
284 
285 /**
286  * pdc_coproc_cfg - To identify coprocessors attached to the processor.
287  * @pdc_coproc_info: Return buffer address.
288  *
289  * This PDC call returns the presence and status of all the coprocessors
290  * attached to the processor.
291  */
292 int __init pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
293 {
294         int retval;
295 
296         spin_lock_irq(&pdc_lock);
297         retval = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
298         convert_to_wide(pdc_result);
299         pdc_coproc_info->ccr_functional = pdc_result[0];
300         pdc_coproc_info->ccr_present = pdc_result[1];
301         pdc_coproc_info->revision = pdc_result[17];
302         pdc_coproc_info->model = pdc_result[18];
303         spin_unlock_irq(&pdc_lock);
304 
305         return retval;
306 }
307 
308 /**
309  * pdc_iodc_read - Read data from the modules IODC.
310  * @actcnt: The actual number of bytes.
311  * @hpa: The HPA of the module for the iodc read.
312  * @index: The iodc entry point.
313  * @iodc_data: A buffer memory for the iodc options.
314  * @iodc_data_size: Size of the memory buffer.
315  *
316  * This PDC call reads from the IODC of the module specified by the hpa
317  * argument.
318  */
319 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
320 		  void *iodc_data, unsigned int iodc_data_size)
321 {
322 	int retval;
323 
324 	spin_lock_irq(&pdc_lock);
325 	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
326 			      index, __pa(pdc_result2), iodc_data_size);
327 	convert_to_wide(pdc_result);
328 	*actcnt = pdc_result[0];
329 	memcpy(iodc_data, pdc_result2, iodc_data_size);
330 	spin_unlock_irq(&pdc_lock);
331 
332 	return retval;
333 }
334 EXPORT_SYMBOL(pdc_iodc_read);
335 
336 /**
337  * pdc_system_map_find_mods - Locate unarchitected modules.
338  * @pdc_mod_info: Return buffer address.
339  * @mod_path: pointer to dev path structure.
340  * @mod_index: fixed address module index.
341  *
342  * To locate and identify modules which reside at fixed I/O addresses, which
343  * do not self-identify via architected bus walks.
344  */
345 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
346 			     struct pdc_module_path *mod_path, long mod_index)
347 {
348 	int retval;
349 
350 	spin_lock_irq(&pdc_lock);
351 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
352 			      __pa(pdc_result2), mod_index);
353 	convert_to_wide(pdc_result);
354 	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
355 	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
356 	spin_unlock_irq(&pdc_lock);
357 
358 	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
359 	return retval;
360 }
361 
362 /**
363  * pdc_system_map_find_addrs - Retrieve additional address ranges.
364  * @pdc_addr_info: Return buffer address.
365  * @mod_index: Fixed address module index.
366  * @addr_index: Address range index.
367  *
368  * Retrieve additional information about subsequent address ranges for modules
369  * with multiple address ranges.
370  */
371 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
372 			      long mod_index, long addr_index)
373 {
374 	int retval;
375 
376 	spin_lock_irq(&pdc_lock);
377 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
378 			      mod_index, addr_index);
379 	convert_to_wide(pdc_result);
380 	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
381 	spin_unlock_irq(&pdc_lock);
382 
383 	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
384 	return retval;
385 }
386 
387 /**
388  * pdc_model_info - Return model information about the processor.
389  * @model: The return buffer.
390  *
391  * Returns the version numbers, identifiers, and capabilities from the processor module.
392  */
393 int pdc_model_info(struct pdc_model *model)
394 {
395 	int retval;
396 
397 	spin_lock_irq(&pdc_lock);
398 	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
399 	convert_to_wide(pdc_result);
400 	memcpy(model, pdc_result, sizeof(*model));
401 	spin_unlock_irq(&pdc_lock);
402 
403 	return retval;
404 }
405 
406 /**
407  * pdc_model_sysmodel - Get the system model name.
408  * @name: A char array of at least 81 characters.
409  *
410  * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
411  * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
412  * on HP/UX.
413  */
414 int pdc_model_sysmodel(char *name)
415 {
416         int retval;
417 
418         spin_lock_irq(&pdc_lock);
419         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
420                               OS_ID_HPUX, __pa(name));
421         convert_to_wide(pdc_result);
422 
423         if (retval == PDC_OK) {
424                 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
425         } else {
426                 name[0] = 0;
427         }
428         spin_unlock_irq(&pdc_lock);
429 
430         return retval;
431 }
432 
433 /**
434  * pdc_model_versions - Identify the version number of each processor.
435  * @cpu_id: The return buffer.
436  * @id: The id of the processor to check.
437  *
438  * Returns the version number for each processor component.
439  *
440  * This comment was here before, but I do not know what it means :( -RB
441  * id: 0 = cpu revision, 1 = boot-rom-version
442  */
443 int pdc_model_versions(unsigned long *versions, int id)
444 {
445         int retval;
446 
447         spin_lock_irq(&pdc_lock);
448         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
449         convert_to_wide(pdc_result);
450         *versions = pdc_result[0];
451         spin_unlock_irq(&pdc_lock);
452 
453         return retval;
454 }
455 
456 /**
457  * pdc_model_cpuid - Returns the CPU_ID.
458  * @cpu_id: The return buffer.
459  *
460  * Returns the CPU_ID value which uniquely identifies the cpu portion of
461  * the processor module.
462  */
463 int pdc_model_cpuid(unsigned long *cpu_id)
464 {
465         int retval;
466 
467         spin_lock_irq(&pdc_lock);
468         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
469         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
470         convert_to_wide(pdc_result);
471         *cpu_id = pdc_result[0];
472         spin_unlock_irq(&pdc_lock);
473 
474         return retval;
475 }
476 
477 /**
478  * pdc_model_capabilities - Returns the platform capabilities.
479  * @capabilities: The return buffer.
480  *
481  * Returns information about platform support for 32- and/or 64-bit
482  * OSes, IO-PDIR coherency, and virtual aliasing.
483  */
484 int pdc_model_capabilities(unsigned long *capabilities)
485 {
486         int retval;
487 
488         spin_lock_irq(&pdc_lock);
489         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
490         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
491         convert_to_wide(pdc_result);
492         *capabilities = pdc_result[0];
493         spin_unlock_irq(&pdc_lock);
494 
495         return retval;
496 }
497 
498 /**
499  * pdc_cache_info - Return cache and TLB information.
500  * @cache_info: The return buffer.
501  *
502  * Returns information about the processor's cache and TLB.
503  */
504 int pdc_cache_info(struct pdc_cache_info *cache_info)
505 {
506         int retval;
507 
508         spin_lock_irq(&pdc_lock);
509         retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
510         convert_to_wide(pdc_result);
511         memcpy(cache_info, pdc_result, sizeof(*cache_info));
512         spin_unlock_irq(&pdc_lock);
513 
514         return retval;
515 }
516 
517 /**
518  * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
519  * @space_bits: Should be 0, if not, bad mojo!
520  *
521  * Returns information about Space ID hashing.
522  */
523 int pdc_spaceid_bits(unsigned long *space_bits)
524 {
525 	int retval;
526 
527 	spin_lock_irq(&pdc_lock);
528 	pdc_result[0] = 0;
529 	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
530 	convert_to_wide(pdc_result);
531 	*space_bits = pdc_result[0];
532 	spin_unlock_irq(&pdc_lock);
533 
534 	return retval;
535 }
536 
537 #ifndef CONFIG_PA20
538 /**
539  * pdc_btlb_info - Return block TLB information.
540  * @btlb: The return buffer.
541  *
542  * Returns information about the hardware Block TLB.
543  */
544 int pdc_btlb_info(struct pdc_btlb_info *btlb)
545 {
546         int retval;
547 
548         spin_lock_irq(&pdc_lock);
549         retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
550         memcpy(btlb, pdc_result, sizeof(*btlb));
551         spin_unlock_irq(&pdc_lock);
552 
553         if(retval < 0) {
554                 btlb->max_size = 0;
555         }
556         return retval;
557 }
558 
559 /**
560  * pdc_mem_map_hpa - Find fixed module information.
561  * @address: The return buffer
562  * @mod_path: pointer to dev path structure.
563  *
564  * This call was developed for S700 workstations to allow the kernel to find
565  * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
566  * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
567  * call.
568  *
569  * This call is supported by all existing S700 workstations (up to  Gecko).
570  */
571 int pdc_mem_map_hpa(struct pdc_memory_map *address,
572 		struct pdc_module_path *mod_path)
573 {
574         int retval;
575 
576         spin_lock_irq(&pdc_lock);
577         memcpy(pdc_result2, mod_path, sizeof(*mod_path));
578         retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
579 				__pa(pdc_result2));
580         memcpy(address, pdc_result, sizeof(*address));
581         spin_unlock_irq(&pdc_lock);
582 
583         return retval;
584 }
585 #endif	/* !CONFIG_PA20 */
586 
587 /**
588  * pdc_lan_station_id - Get the LAN address.
589  * @lan_addr: The return buffer.
590  * @hpa: The network device HPA.
591  *
592  * Get the LAN station address when it is not directly available from the LAN hardware.
593  */
594 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
595 {
596 	int retval;
597 
598 	spin_lock_irq(&pdc_lock);
599 	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
600 			__pa(pdc_result), hpa);
601 	if (retval < 0) {
602 		/* FIXME: else read MAC from NVRAM */
603 		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
604 	} else {
605 		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
606 	}
607 	spin_unlock_irq(&pdc_lock);
608 
609 	return retval;
610 }
611 EXPORT_SYMBOL(pdc_lan_station_id);
612 
613 /**
614  * pdc_stable_read - Read data from Stable Storage.
615  * @staddr: Stable Storage address to access.
616  * @memaddr: The memory address where Stable Storage data shall be copied.
617  * @count: number of bytes to transfert. count is multiple of 4.
618  *
619  * This PDC call reads from the Stable Storage address supplied in staddr
620  * and copies count bytes to the memory address memaddr.
621  * The call will fail if staddr+count > PDC_STABLE size.
622  */
623 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
624 {
625        int retval;
626 
627        spin_lock_irq(&pdc_lock);
628        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
629                __pa(pdc_result), count);
630        convert_to_wide(pdc_result);
631        memcpy(memaddr, pdc_result, count);
632        spin_unlock_irq(&pdc_lock);
633 
634        return retval;
635 }
636 EXPORT_SYMBOL(pdc_stable_read);
637 
638 /**
639  * pdc_stable_write - Write data to Stable Storage.
640  * @staddr: Stable Storage address to access.
641  * @memaddr: The memory address where Stable Storage data shall be read from.
642  * @count: number of bytes to transfert. count is multiple of 4.
643  *
644  * This PDC call reads count bytes from the supplied memaddr address,
645  * and copies count bytes to the Stable Storage address staddr.
646  * The call will fail if staddr+count > PDC_STABLE size.
647  */
648 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
649 {
650        int retval;
651 
652        spin_lock_irq(&pdc_lock);
653        memcpy(pdc_result, memaddr, count);
654        convert_to_wide(pdc_result);
655        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
656                __pa(pdc_result), count);
657        spin_unlock_irq(&pdc_lock);
658 
659        return retval;
660 }
661 EXPORT_SYMBOL(pdc_stable_write);
662 
663 /**
664  * pdc_stable_get_size - Get Stable Storage size in bytes.
665  * @size: pointer where the size will be stored.
666  *
667  * This PDC call returns the number of bytes in the processor's Stable
668  * Storage, which is the number of contiguous bytes implemented in Stable
669  * Storage starting from staddr=0. size in an unsigned 64-bit integer
670  * which is a multiple of four.
671  */
672 int pdc_stable_get_size(unsigned long *size)
673 {
674        int retval;
675 
676        spin_lock_irq(&pdc_lock);
677        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
678        *size = pdc_result[0];
679        spin_unlock_irq(&pdc_lock);
680 
681        return retval;
682 }
683 EXPORT_SYMBOL(pdc_stable_get_size);
684 
685 /**
686  * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
687  *
688  * This PDC call is meant to be used to check the integrity of the current
689  * contents of Stable Storage.
690  */
691 int pdc_stable_verify_contents(void)
692 {
693        int retval;
694 
695        spin_lock_irq(&pdc_lock);
696        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
697        spin_unlock_irq(&pdc_lock);
698 
699        return retval;
700 }
701 EXPORT_SYMBOL(pdc_stable_verify_contents);
702 
703 /**
704  * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
705  * the validity indicator.
706  *
707  * This PDC call will erase all contents of Stable Storage. Use with care!
708  */
709 int pdc_stable_initialize(void)
710 {
711        int retval;
712 
713        spin_lock_irq(&pdc_lock);
714        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
715        spin_unlock_irq(&pdc_lock);
716 
717        return retval;
718 }
719 EXPORT_SYMBOL(pdc_stable_initialize);
720 
721 /**
722  * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
723  * @hwpath: fully bc.mod style path to the device.
724  * @initiator: the array to return the result into
725  *
726  * Get the SCSI operational parameters from PDC.
727  * Needed since HPUX never used BIOS or symbios card NVRAM.
728  * Most ncr/sym cards won't have an entry and just use whatever
729  * capabilities of the card are (eg Ultra, LVD). But there are
730  * several cases where it's useful:
731  *    o set SCSI id for Multi-initiator clusters,
732  *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
733  *    o bus width exported is less than what the interface chip supports.
734  */
735 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
736 {
737 	int retval;
738 
739 	spin_lock_irq(&pdc_lock);
740 
741 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
742 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
743 	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
744 
745 	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
746 			      __pa(pdc_result), __pa(hwpath));
747 	if (retval < PDC_OK)
748 		goto out;
749 
750 	if (pdc_result[0] < 16) {
751 		initiator->host_id = pdc_result[0];
752 	} else {
753 		initiator->host_id = -1;
754 	}
755 
756 	/*
757 	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
758 	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
759 	 */
760 	switch (pdc_result[1]) {
761 		case  1: initiator->factor = 50; break;
762 		case  2: initiator->factor = 25; break;
763 		case  5: initiator->factor = 12; break;
764 		case 25: initiator->factor = 10; break;
765 		case 20: initiator->factor = 12; break;
766 		case 40: initiator->factor = 10; break;
767 		default: initiator->factor = -1; break;
768 	}
769 
770 	if (IS_SPROCKETS()) {
771 		initiator->width = pdc_result[4];
772 		initiator->mode = pdc_result[5];
773 	} else {
774 		initiator->width = -1;
775 		initiator->mode = -1;
776 	}
777 
778  out:
779 	spin_unlock_irq(&pdc_lock);
780 	return (retval >= PDC_OK);
781 }
782 EXPORT_SYMBOL(pdc_get_initiator);
783 
784 
785 /**
786  * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
787  * @num_entries: The return value.
788  * @hpa: The HPA for the device.
789  *
790  * This PDC function returns the number of entries in the specified cell's
791  * interrupt table.
792  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
793  */
794 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
795 {
796 	int retval;
797 
798 	spin_lock_irq(&pdc_lock);
799 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
800 			      __pa(pdc_result), hpa);
801 	convert_to_wide(pdc_result);
802 	*num_entries = pdc_result[0];
803 	spin_unlock_irq(&pdc_lock);
804 
805 	return retval;
806 }
807 
808 /**
809  * pdc_pci_irt - Get the PCI interrupt routing table.
810  * @num_entries: The number of entries in the table.
811  * @hpa: The Hard Physical Address of the device.
812  * @tbl:
813  *
814  * Get the PCI interrupt routing table for the device at the given HPA.
815  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
816  */
817 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
818 {
819 	int retval;
820 
821 	BUG_ON((unsigned long)tbl & 0x7);
822 
823 	spin_lock_irq(&pdc_lock);
824 	pdc_result[0] = num_entries;
825 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
826 			      __pa(pdc_result), hpa, __pa(tbl));
827 	spin_unlock_irq(&pdc_lock);
828 
829 	return retval;
830 }
831 
832 
833 #if 0	/* UNTEST CODE - left here in case someone needs it */
834 
835 /**
836  * pdc_pci_config_read - read PCI config space.
837  * @hpa		token from PDC to indicate which PCI device
838  * @pci_addr	configuration space address to read from
839  *
840  * Read PCI Configuration space *before* linux PCI subsystem is running.
841  */
842 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
843 {
844 	int retval;
845 	spin_lock_irq(&pdc_lock);
846 	pdc_result[0] = 0;
847 	pdc_result[1] = 0;
848 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
849 			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
850 	spin_unlock_irq(&pdc_lock);
851 	return retval ? ~0 : (unsigned int) pdc_result[0];
852 }
853 
854 
855 /**
856  * pdc_pci_config_write - read PCI config space.
857  * @hpa		token from PDC to indicate which PCI device
858  * @pci_addr	configuration space address to write
859  * @val		value we want in the 32-bit register
860  *
861  * Write PCI Configuration space *before* linux PCI subsystem is running.
862  */
863 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
864 {
865 	int retval;
866 	spin_lock_irq(&pdc_lock);
867 	pdc_result[0] = 0;
868 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
869 			      __pa(pdc_result), hpa,
870 			      cfg_addr&~3UL, 4UL, (unsigned long) val);
871 	spin_unlock_irq(&pdc_lock);
872 	return retval;
873 }
874 #endif /* UNTESTED CODE */
875 
876 /**
877  * pdc_tod_read - Read the Time-Of-Day clock.
878  * @tod: The return buffer:
879  *
880  * Read the Time-Of-Day clock
881  */
882 int pdc_tod_read(struct pdc_tod *tod)
883 {
884         int retval;
885 
886         spin_lock_irq(&pdc_lock);
887         retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
888         convert_to_wide(pdc_result);
889         memcpy(tod, pdc_result, sizeof(*tod));
890         spin_unlock_irq(&pdc_lock);
891 
892         return retval;
893 }
894 EXPORT_SYMBOL(pdc_tod_read);
895 
896 /**
897  * pdc_tod_set - Set the Time-Of-Day clock.
898  * @sec: The number of seconds since epoch.
899  * @usec: The number of micro seconds.
900  *
901  * Set the Time-Of-Day clock.
902  */
903 int pdc_tod_set(unsigned long sec, unsigned long usec)
904 {
905         int retval;
906 
907         spin_lock_irq(&pdc_lock);
908         retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
909         spin_unlock_irq(&pdc_lock);
910 
911         return retval;
912 }
913 EXPORT_SYMBOL(pdc_tod_set);
914 
915 #ifdef __LP64__
916 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
917 		struct pdc_memory_table *tbl, unsigned long entries)
918 {
919 	int retval;
920 
921 	spin_lock_irq(&pdc_lock);
922 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
923 	convert_to_wide(pdc_result);
924 	memcpy(r_addr, pdc_result, sizeof(*r_addr));
925 	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
926 	spin_unlock_irq(&pdc_lock);
927 
928 	return retval;
929 }
930 #endif /* __LP64__ */
931 
932 /* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
933  * so I guessed at unsigned long.  Someone who knows what this does, can fix
934  * it later. :)
935  */
936 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
937 {
938         int retval;
939 
940         spin_lock_irq(&pdc_lock);
941         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
942                               PDC_FIRM_TEST_MAGIC, ftc_bitmap);
943         spin_unlock_irq(&pdc_lock);
944 
945         return retval;
946 }
947 
948 /*
949  * pdc_do_reset - Reset the system.
950  *
951  * Reset the system.
952  */
953 int pdc_do_reset(void)
954 {
955         int retval;
956 
957         spin_lock_irq(&pdc_lock);
958         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
959         spin_unlock_irq(&pdc_lock);
960 
961         return retval;
962 }
963 
964 /*
965  * pdc_soft_power_info - Enable soft power switch.
966  * @power_reg: address of soft power register
967  *
968  * Return the absolute address of the soft power switch register
969  */
970 int __init pdc_soft_power_info(unsigned long *power_reg)
971 {
972 	int retval;
973 
974 	*power_reg = (unsigned long) (-1);
975 
976 	spin_lock_irq(&pdc_lock);
977 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
978 	if (retval == PDC_OK) {
979                 convert_to_wide(pdc_result);
980                 *power_reg = f_extend(pdc_result[0]);
981 	}
982 	spin_unlock_irq(&pdc_lock);
983 
984 	return retval;
985 }
986 
987 /*
988  * pdc_soft_power_button - Control the soft power button behaviour
989  * @sw_control: 0 for hardware control, 1 for software control
990  *
991  *
992  * This PDC function places the soft power button under software or
993  * hardware control.
994  * Under software control the OS may control to when to allow to shut
995  * down the system. Under hardware control pressing the power button
996  * powers off the system immediately.
997  */
998 int pdc_soft_power_button(int sw_control)
999 {
1000 	int retval;
1001 	spin_lock_irq(&pdc_lock);
1002 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1003 	spin_unlock_irq(&pdc_lock);
1004 	return retval;
1005 }
1006 
1007 /*
1008  * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1009  * Primarily a problem on T600 (which parisc-linux doesn't support) but
1010  * who knows what other platform firmware might do with this OS "hook".
1011  */
1012 void pdc_io_reset(void)
1013 {
1014 	spin_lock_irq(&pdc_lock);
1015 	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1016 	spin_unlock_irq(&pdc_lock);
1017 }
1018 
1019 /*
1020  * pdc_io_reset_devices - Hack to Stop USB controller
1021  *
1022  * If PDC used the usb controller, the usb controller
1023  * is still running and will crash the machines during iommu
1024  * setup, because of still running DMA. This PDC call
1025  * stops the USB controller.
1026  * Normally called after calling pdc_io_reset().
1027  */
1028 void pdc_io_reset_devices(void)
1029 {
1030 	spin_lock_irq(&pdc_lock);
1031 	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1032 	spin_unlock_irq(&pdc_lock);
1033 }
1034 
1035 
1036 /**
1037  * pdc_iodc_putc - Console character print using IODC.
1038  * @c: the character to output.
1039  *
1040  * Note that only these special chars are architected for console IODC io:
1041  * BEL, BS, CR, and LF. Others are passed through.
1042  * Since the HP console requires CR+LF to perform a 'newline', we translate
1043  * "\n" to "\r\n".
1044  */
1045 void pdc_iodc_putc(unsigned char c)
1046 {
1047         /* XXX Should we spinlock posx usage */
1048         static int posx;        /* for simple TAB-Simulation... */
1049         static int __attribute__((aligned(8)))   iodc_retbuf[32];
1050         static char __attribute__((aligned(64))) iodc_dbuf[4096];
1051         unsigned int n;
1052 	unsigned int flags;
1053 
1054         switch (c) {
1055         case '\n':
1056                 iodc_dbuf[0] = '\r';
1057                 iodc_dbuf[1] = '\n';
1058                 n = 2;
1059                 posx = 0;
1060                 break;
1061         case '\t':
1062                 pdc_iodc_putc(' ');
1063                 while (posx & 7)        /* expand TAB */
1064                         pdc_iodc_putc(' ');
1065                 return;         /* return since IODC can't handle this */
1066         case '\b':
1067                 posx-=2;                /* BS */
1068         default:
1069                 iodc_dbuf[0] = c;
1070                 n = 1;
1071                 posx++;
1072                 break;
1073         }
1074 
1075         spin_lock_irqsave(&pdc_lock, flags);
1076         real32_call(PAGE0->mem_cons.iodc_io,
1077                     (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1078                     PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1079                     __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0);
1080         spin_unlock_irqrestore(&pdc_lock, flags);
1081 }
1082 
1083 /**
1084  * pdc_iodc_outc - Console character print using IODC (without conversions).
1085  * @c: the character to output.
1086  *
1087  * Write the character directly to the IODC console.
1088  */
1089 void pdc_iodc_outc(unsigned char c)
1090 {
1091 	unsigned int n, flags;
1092 
1093 	/* fill buffer with one caracter and print it */
1094         static int __attribute__((aligned(8)))   iodc_retbuf[32];
1095         static char __attribute__((aligned(64))) iodc_dbuf[4096];
1096 
1097 	n = 1;
1098 	iodc_dbuf[0] = c;
1099 
1100 	spin_lock_irqsave(&pdc_lock, flags);
1101 	real32_call(PAGE0->mem_cons.iodc_io,
1102 		    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1103 		    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1104 		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0);
1105 	spin_unlock_irqrestore(&pdc_lock, flags);
1106 }
1107 
1108 /**
1109  * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1110  *
1111  * Read a character (non-blocking) from the PDC console, returns -1 if
1112  * key is not present.
1113  */
1114 int pdc_iodc_getc(void)
1115 {
1116 	unsigned int flags;
1117         static int __attribute__((aligned(8)))   iodc_retbuf[32];
1118         static char __attribute__((aligned(64))) iodc_dbuf[4096];
1119 	int ch;
1120 	int status;
1121 
1122 	/* Bail if no console input device. */
1123 	if (!PAGE0->mem_kbd.iodc_io)
1124 		return 0;
1125 
1126 	/* wait for a keyboard (rs232)-input */
1127 	spin_lock_irqsave(&pdc_lock, flags);
1128 	real32_call(PAGE0->mem_kbd.iodc_io,
1129 		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1130 		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1131 		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1132 
1133 	ch = *iodc_dbuf;
1134 	status = *iodc_retbuf;
1135 	spin_unlock_irqrestore(&pdc_lock, flags);
1136 
1137 	if (status == 0)
1138 	    return -1;
1139 
1140 	return ch;
1141 }
1142 
1143 int pdc_sti_call(unsigned long func, unsigned long flags,
1144                  unsigned long inptr, unsigned long outputr,
1145                  unsigned long glob_cfg)
1146 {
1147         int retval;
1148 
1149         spin_lock_irq(&pdc_lock);
1150         retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1151         spin_unlock_irq(&pdc_lock);
1152 
1153         return retval;
1154 }
1155 EXPORT_SYMBOL(pdc_sti_call);
1156 
1157 #ifdef __LP64__
1158 /**
1159  * pdc_pat_cell_get_number - Returns the cell number.
1160  * @cell_info: The return buffer.
1161  *
1162  * This PDC call returns the cell number of the cell from which the call
1163  * is made.
1164  */
1165 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1166 {
1167 	int retval;
1168 
1169 	spin_lock_irq(&pdc_lock);
1170 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1171 	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1172 	spin_unlock_irq(&pdc_lock);
1173 
1174 	return retval;
1175 }
1176 
1177 /**
1178  * pdc_pat_cell_module - Retrieve the cell's module information.
1179  * @actcnt: The number of bytes written to mem_addr.
1180  * @ploc: The physical location.
1181  * @mod: The module index.
1182  * @view_type: The view of the address type.
1183  * @mem_addr: The return buffer.
1184  *
1185  * This PDC call returns information about each module attached to the cell
1186  * at the specified location.
1187  */
1188 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1189 			unsigned long view_type, void *mem_addr)
1190 {
1191 	int retval;
1192 	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1193 
1194 	spin_lock_irq(&pdc_lock);
1195 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1196 			      ploc, mod, view_type, __pa(&result));
1197 	if(!retval) {
1198 		*actcnt = pdc_result[0];
1199 		memcpy(mem_addr, &result, *actcnt);
1200 	}
1201 	spin_unlock_irq(&pdc_lock);
1202 
1203 	return retval;
1204 }
1205 
1206 /**
1207  * pdc_pat_cpu_get_number - Retrieve the cpu number.
1208  * @cpu_info: The return buffer.
1209  * @hpa: The Hard Physical Address of the CPU.
1210  *
1211  * Retrieve the cpu number for the cpu at the specified HPA.
1212  */
1213 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1214 {
1215 	int retval;
1216 
1217 	spin_lock_irq(&pdc_lock);
1218 	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1219 			      __pa(&pdc_result), hpa);
1220 	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1221 	spin_unlock_irq(&pdc_lock);
1222 
1223 	return retval;
1224 }
1225 
1226 /**
1227  * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1228  * @num_entries: The return value.
1229  * @cell_num: The target cell.
1230  *
1231  * This PDC function returns the number of entries in the specified cell's
1232  * interrupt table.
1233  */
1234 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1235 {
1236 	int retval;
1237 
1238 	spin_lock_irq(&pdc_lock);
1239 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1240 			      __pa(pdc_result), cell_num);
1241 	*num_entries = pdc_result[0];
1242 	spin_unlock_irq(&pdc_lock);
1243 
1244 	return retval;
1245 }
1246 
1247 /**
1248  * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1249  * @r_addr: The return buffer.
1250  * @cell_num: The target cell.
1251  *
1252  * This PDC function returns the actual interrupt table for the specified cell.
1253  */
1254 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1255 {
1256 	int retval;
1257 
1258 	spin_lock_irq(&pdc_lock);
1259 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1260 			      __pa(r_addr), cell_num);
1261 	spin_unlock_irq(&pdc_lock);
1262 
1263 	return retval;
1264 }
1265 
1266 /**
1267  * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1268  * @actlen: The return buffer.
1269  * @mem_addr: Pointer to the memory buffer.
1270  * @count: The number of bytes to read from the buffer.
1271  * @offset: The offset with respect to the beginning of the buffer.
1272  *
1273  */
1274 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1275 			    unsigned long count, unsigned long offset)
1276 {
1277 	int retval;
1278 
1279 	spin_lock_irq(&pdc_lock);
1280 	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1281 			      __pa(pdc_result2), count, offset);
1282 	*actual_len = pdc_result[0];
1283 	memcpy(mem_addr, pdc_result2, *actual_len);
1284 	spin_unlock_irq(&pdc_lock);
1285 
1286 	return retval;
1287 }
1288 
1289 /**
1290  * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1291  * @pci_addr: PCI configuration space address for which the read request is being made.
1292  * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1293  * @mem_addr: Pointer to return memory buffer.
1294  *
1295  */
1296 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1297 {
1298 	int retval;
1299 	spin_lock_irq(&pdc_lock);
1300 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1301 					__pa(pdc_result), pci_addr, pci_size);
1302 	switch(pci_size) {
1303 		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0];
1304 		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0];
1305 		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0];
1306 	}
1307 	spin_unlock_irq(&pdc_lock);
1308 
1309 	return retval;
1310 }
1311 
1312 /**
1313  * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1314  * @pci_addr: PCI configuration space address for which the write  request is being made.
1315  * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1316  * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1317  *         written to PCI Config space.
1318  *
1319  */
1320 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1321 {
1322 	int retval;
1323 
1324 	spin_lock_irq(&pdc_lock);
1325 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1326 				pci_addr, pci_size, val);
1327 	spin_unlock_irq(&pdc_lock);
1328 
1329 	return retval;
1330 }
1331 #endif /* __LP64__ */
1332 
1333 
1334 /***************** 32-bit real-mode calls ***********/
1335 /* The struct below is used
1336  * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1337  * real32_call_asm() then uses this stack in narrow real mode
1338  */
1339 
1340 struct narrow_stack {
1341 	/* use int, not long which is 64 bits */
1342 	unsigned int arg13;
1343 	unsigned int arg12;
1344 	unsigned int arg11;
1345 	unsigned int arg10;
1346 	unsigned int arg9;
1347 	unsigned int arg8;
1348 	unsigned int arg7;
1349 	unsigned int arg6;
1350 	unsigned int arg5;
1351 	unsigned int arg4;
1352 	unsigned int arg3;
1353 	unsigned int arg2;
1354 	unsigned int arg1;
1355 	unsigned int arg0;
1356 	unsigned int frame_marker[8];
1357 	unsigned int sp;
1358 	/* in reality, there's nearly 8k of stack after this */
1359 };
1360 
1361 long real32_call(unsigned long fn, ...)
1362 {
1363 	va_list args;
1364 	extern struct narrow_stack real_stack;
1365 	extern unsigned long real32_call_asm(unsigned int *,
1366 					     unsigned int *,
1367 					     unsigned int);
1368 
1369 	va_start(args, fn);
1370 	real_stack.arg0 = va_arg(args, unsigned int);
1371 	real_stack.arg1 = va_arg(args, unsigned int);
1372 	real_stack.arg2 = va_arg(args, unsigned int);
1373 	real_stack.arg3 = va_arg(args, unsigned int);
1374 	real_stack.arg4 = va_arg(args, unsigned int);
1375 	real_stack.arg5 = va_arg(args, unsigned int);
1376 	real_stack.arg6 = va_arg(args, unsigned int);
1377 	real_stack.arg7 = va_arg(args, unsigned int);
1378 	real_stack.arg8 = va_arg(args, unsigned int);
1379 	real_stack.arg9 = va_arg(args, unsigned int);
1380 	real_stack.arg10 = va_arg(args, unsigned int);
1381 	real_stack.arg11 = va_arg(args, unsigned int);
1382 	real_stack.arg12 = va_arg(args, unsigned int);
1383 	real_stack.arg13 = va_arg(args, unsigned int);
1384 	va_end(args);
1385 
1386 	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1387 }
1388 
1389 #ifdef __LP64__
1390 /***************** 64-bit real-mode calls ***********/
1391 
1392 struct wide_stack {
1393 	unsigned long arg0;
1394 	unsigned long arg1;
1395 	unsigned long arg2;
1396 	unsigned long arg3;
1397 	unsigned long arg4;
1398 	unsigned long arg5;
1399 	unsigned long arg6;
1400 	unsigned long arg7;
1401 	unsigned long arg8;
1402 	unsigned long arg9;
1403 	unsigned long arg10;
1404 	unsigned long arg11;
1405 	unsigned long arg12;
1406 	unsigned long arg13;
1407 	unsigned long frame_marker[2];	/* rp, previous sp */
1408 	unsigned long sp;
1409 	/* in reality, there's nearly 8k of stack after this */
1410 };
1411 
1412 long real64_call(unsigned long fn, ...)
1413 {
1414 	va_list args;
1415 	extern struct wide_stack real64_stack;
1416 	extern unsigned long real64_call_asm(unsigned long *,
1417 					     unsigned long *,
1418 					     unsigned long);
1419 
1420 	va_start(args, fn);
1421 	real64_stack.arg0 = va_arg(args, unsigned long);
1422 	real64_stack.arg1 = va_arg(args, unsigned long);
1423 	real64_stack.arg2 = va_arg(args, unsigned long);
1424 	real64_stack.arg3 = va_arg(args, unsigned long);
1425 	real64_stack.arg4 = va_arg(args, unsigned long);
1426 	real64_stack.arg5 = va_arg(args, unsigned long);
1427 	real64_stack.arg6 = va_arg(args, unsigned long);
1428 	real64_stack.arg7 = va_arg(args, unsigned long);
1429 	real64_stack.arg8 = va_arg(args, unsigned long);
1430 	real64_stack.arg9 = va_arg(args, unsigned long);
1431 	real64_stack.arg10 = va_arg(args, unsigned long);
1432 	real64_stack.arg11 = va_arg(args, unsigned long);
1433 	real64_stack.arg12 = va_arg(args, unsigned long);
1434 	real64_stack.arg13 = va_arg(args, unsigned long);
1435 	va_end(args);
1436 
1437 	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1438 }
1439 
1440 #endif /* __LP64__ */
1441 
1442