1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * arch/parisc/kernel/firmware.c - safe PDC access routines 4 * 5 * PDC == Processor Dependent Code 6 * 7 * See PDC documentation at 8 * https://parisc.wiki.kernel.org/index.php/Technical_Documentation 9 * for documentation describing the entry points and calling 10 * conventions defined below. 11 * 12 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org) 13 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy) 14 * Copyright 2003 Grant Grundler <grundler parisc-linux org> 15 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org> 16 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org> 17 */ 18 19 /* I think it would be in everyone's best interest to follow this 20 * guidelines when writing PDC wrappers: 21 * 22 * - the name of the pdc wrapper should match one of the macros 23 * used for the first two arguments 24 * - don't use caps for random parts of the name 25 * - use the static PDC result buffers and "copyout" to structs 26 * supplied by the caller to encapsulate alignment restrictions 27 * - hold pdc_lock while in PDC or using static result buffers 28 * - use __pa() to convert virtual (kernel) pointers to physical 29 * ones. 30 * - the name of the struct used for pdc return values should equal 31 * one of the macros used for the first two arguments to the 32 * corresponding PDC call 33 * - keep the order of arguments 34 * - don't be smart (setting trailing NUL bytes for strings, return 35 * something useful even if the call failed) unless you are sure 36 * it's not going to affect functionality or performance 37 * 38 * Example: 39 * int pdc_cache_info(struct pdc_cache_info *cache_info ) 40 * { 41 * int retval; 42 * 43 * spin_lock_irq(&pdc_lock); 44 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0); 45 * convert_to_wide(pdc_result); 46 * memcpy(cache_info, pdc_result, sizeof(*cache_info)); 47 * spin_unlock_irq(&pdc_lock); 48 * 49 * return retval; 50 * } 51 * prumpf 991016 52 */ 53 54 #include <linux/stdarg.h> 55 56 #include <linux/delay.h> 57 #include <linux/init.h> 58 #include <linux/kernel.h> 59 #include <linux/module.h> 60 #include <linux/string.h> 61 #include <linux/spinlock.h> 62 63 #include <asm/page.h> 64 #include <asm/pdc.h> 65 #include <asm/pdcpat.h> 66 #include <asm/processor.h> /* for boot_cpu_data */ 67 68 #if defined(BOOTLOADER) 69 # undef spin_lock_irqsave 70 # define spin_lock_irqsave(a, b) { b = 1; } 71 # undef spin_unlock_irqrestore 72 # define spin_unlock_irqrestore(a, b) 73 #else 74 static DEFINE_SPINLOCK(pdc_lock); 75 #endif 76 77 static unsigned long pdc_result[NUM_PDC_RESULT] __aligned(8); 78 static unsigned long pdc_result2[NUM_PDC_RESULT] __aligned(8); 79 80 #ifdef CONFIG_64BIT 81 #define WIDE_FIRMWARE PDC_MODEL_OS64 82 #define NARROW_FIRMWARE PDC_MODEL_OS32 83 84 /* Firmware needs to be initially set to narrow to determine the 85 * actual firmware width. */ 86 int parisc_narrow_firmware __ro_after_init = NARROW_FIRMWARE; 87 #endif 88 89 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls 90 * and MEM_PDC calls are always the same width as the OS. 91 * Some PAT boxes may have 64-bit IODC I/O. 92 * 93 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow 94 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls. 95 * This allowed wide kernels to run on Cxxx boxes. 96 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode 97 * when running a 64-bit kernel on such boxes (e.g. C200 or C360). 98 */ 99 100 #ifdef CONFIG_64BIT 101 long real64_call(unsigned long function, ...); 102 #endif 103 long real32_call(unsigned long function, ...); 104 105 #ifdef CONFIG_64BIT 106 # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc 107 # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args) 108 #else 109 # define MEM_PDC (unsigned long)PAGE0->mem_pdc 110 # define mem_pdc_call(args...) real32_call(MEM_PDC, args) 111 #endif 112 113 114 /** 115 * f_extend - Convert PDC addresses to kernel addresses. 116 * @address: Address returned from PDC. 117 * 118 * This function is used to convert PDC addresses into kernel addresses 119 * when the PDC address size and kernel address size are different. 120 */ 121 static unsigned long f_extend(unsigned long address) 122 { 123 #ifdef CONFIG_64BIT 124 if(unlikely(parisc_narrow_firmware)) { 125 if((address & 0xff000000) == 0xf0000000) 126 return (0xfffffff0UL << 32) | (u32)address; 127 128 if((address & 0xf0000000) == 0xf0000000) 129 return (0xffffffffUL << 32) | (u32)address; 130 } 131 #endif 132 return address; 133 } 134 135 /** 136 * convert_to_wide - Convert the return buffer addresses into kernel addresses. 137 * @addr: The return buffer from PDC. 138 * 139 * This function is used to convert the return buffer addresses retrieved from PDC 140 * into kernel addresses when the PDC address size and kernel address size are 141 * different. 142 */ 143 static void convert_to_wide(unsigned long *addr) 144 { 145 #ifdef CONFIG_64BIT 146 int i; 147 unsigned int *p = (unsigned int *)addr; 148 149 if (unlikely(parisc_narrow_firmware)) { 150 for (i = (NUM_PDC_RESULT-1); i >= 0; --i) 151 addr[i] = p[i]; 152 } 153 #endif 154 } 155 156 #ifdef CONFIG_64BIT 157 void set_firmware_width_unlocked(void) 158 { 159 int ret; 160 161 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, 162 __pa(pdc_result), 0); 163 if (ret < 0) 164 return; 165 convert_to_wide(pdc_result); 166 if (pdc_result[0] != NARROW_FIRMWARE) 167 parisc_narrow_firmware = 0; 168 } 169 170 /** 171 * set_firmware_width - Determine if the firmware is wide or narrow. 172 * 173 * This function must be called before any pdc_* function that uses the 174 * convert_to_wide function. 175 */ 176 void set_firmware_width(void) 177 { 178 unsigned long flags; 179 180 /* already initialized? */ 181 if (parisc_narrow_firmware != NARROW_FIRMWARE) 182 return; 183 184 spin_lock_irqsave(&pdc_lock, flags); 185 set_firmware_width_unlocked(); 186 spin_unlock_irqrestore(&pdc_lock, flags); 187 } 188 #else 189 void set_firmware_width_unlocked(void) 190 { 191 return; 192 } 193 194 void set_firmware_width(void) 195 { 196 return; 197 } 198 #endif /*CONFIG_64BIT*/ 199 200 201 #if !defined(BOOTLOADER) 202 /** 203 * pdc_emergency_unlock - Unlock the linux pdc lock 204 * 205 * This call unlocks the linux pdc lock in case we need some PDC functions 206 * (like pdc_add_valid) during kernel stack dump. 207 */ 208 void pdc_emergency_unlock(void) 209 { 210 /* Spinlock DEBUG code freaks out if we unconditionally unlock */ 211 if (spin_is_locked(&pdc_lock)) 212 spin_unlock(&pdc_lock); 213 } 214 215 216 /** 217 * pdc_add_valid - Verify address can be accessed without causing a HPMC. 218 * @address: Address to be verified. 219 * 220 * This PDC call attempts to read from the specified address and verifies 221 * if the address is valid. 222 * 223 * The return value is PDC_OK (0) in case accessing this address is valid. 224 */ 225 int pdc_add_valid(unsigned long address) 226 { 227 int retval; 228 unsigned long flags; 229 230 spin_lock_irqsave(&pdc_lock, flags); 231 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address); 232 spin_unlock_irqrestore(&pdc_lock, flags); 233 234 return retval; 235 } 236 EXPORT_SYMBOL(pdc_add_valid); 237 238 /** 239 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler. 240 * @instr: Pointer to variable which will get instruction opcode. 241 * 242 * The return value is PDC_OK (0) in case call succeeded. 243 */ 244 int __init pdc_instr(unsigned int *instr) 245 { 246 int retval; 247 unsigned long flags; 248 249 spin_lock_irqsave(&pdc_lock, flags); 250 retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result)); 251 convert_to_wide(pdc_result); 252 *instr = pdc_result[0]; 253 spin_unlock_irqrestore(&pdc_lock, flags); 254 255 return retval; 256 } 257 258 /** 259 * pdc_chassis_info - Return chassis information. 260 * @chassis_info: The memory buffer address. 261 * @led_info: The size of the memory buffer address. 262 * @len: The size of the memory buffer address. 263 * 264 * An HVERSION dependent call for returning the chassis information. 265 */ 266 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len) 267 { 268 int retval; 269 unsigned long flags; 270 271 spin_lock_irqsave(&pdc_lock, flags); 272 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info)); 273 memcpy(&pdc_result2, led_info, len); 274 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO, 275 __pa(pdc_result), __pa(pdc_result2), len); 276 memcpy(chassis_info, pdc_result, sizeof(*chassis_info)); 277 memcpy(led_info, pdc_result2, len); 278 spin_unlock_irqrestore(&pdc_lock, flags); 279 280 return retval; 281 } 282 283 /** 284 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message. 285 * @state: state of the machine 286 * @data: value for that state 287 * 288 * Must be correctly formatted or expect system crash 289 */ 290 #ifdef CONFIG_64BIT 291 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data) 292 { 293 int retval = 0; 294 unsigned long flags; 295 296 if (!is_pdc_pat()) 297 return -1; 298 299 spin_lock_irqsave(&pdc_lock, flags); 300 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data)); 301 spin_unlock_irqrestore(&pdc_lock, flags); 302 303 return retval; 304 } 305 #endif 306 307 /** 308 * pdc_chassis_disp - Updates chassis code 309 * @disp: value to show on display 310 */ 311 int pdc_chassis_disp(unsigned long disp) 312 { 313 int retval = 0; 314 unsigned long flags; 315 316 spin_lock_irqsave(&pdc_lock, flags); 317 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp); 318 spin_unlock_irqrestore(&pdc_lock, flags); 319 320 return retval; 321 } 322 323 /** 324 * __pdc_cpu_rendezvous - Stop currently executing CPU and do not return. 325 */ 326 int __pdc_cpu_rendezvous(void) 327 { 328 if (is_pdc_pat()) 329 return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS); 330 else 331 return mem_pdc_call(PDC_PROC, 1, 0); 332 } 333 334 /** 335 * pdc_cpu_rendezvous_lock - Lock PDC while transitioning to rendezvous state 336 */ 337 void pdc_cpu_rendezvous_lock(void) __acquires(&pdc_lock) 338 { 339 spin_lock(&pdc_lock); 340 } 341 342 /** 343 * pdc_cpu_rendezvous_unlock - Unlock PDC after reaching rendezvous state 344 */ 345 void pdc_cpu_rendezvous_unlock(void) __releases(&pdc_lock) 346 { 347 spin_unlock(&pdc_lock); 348 } 349 350 /** 351 * pdc_pat_get_PDC_entrypoint - Get PDC entry point for current CPU 352 * @pdc_entry: pointer to where the PDC entry point should be stored 353 */ 354 int pdc_pat_get_PDC_entrypoint(unsigned long *pdc_entry) 355 { 356 int retval = 0; 357 unsigned long flags; 358 359 if (!IS_ENABLED(CONFIG_SMP) || !is_pdc_pat()) { 360 *pdc_entry = MEM_PDC; 361 return 0; 362 } 363 364 spin_lock_irqsave(&pdc_lock, flags); 365 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_PDC_ENTRYPOINT, 366 __pa(pdc_result)); 367 *pdc_entry = pdc_result[0]; 368 spin_unlock_irqrestore(&pdc_lock, flags); 369 370 return retval; 371 } 372 /** 373 * pdc_chassis_warn - Fetches chassis warnings 374 * @warn: The warning value to be shown 375 */ 376 int pdc_chassis_warn(unsigned long *warn) 377 { 378 int retval = 0; 379 unsigned long flags; 380 381 spin_lock_irqsave(&pdc_lock, flags); 382 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result)); 383 *warn = pdc_result[0]; 384 spin_unlock_irqrestore(&pdc_lock, flags); 385 386 return retval; 387 } 388 389 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info) 390 { 391 int ret; 392 393 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result)); 394 convert_to_wide(pdc_result); 395 pdc_coproc_info->ccr_functional = pdc_result[0]; 396 pdc_coproc_info->ccr_present = pdc_result[1]; 397 pdc_coproc_info->revision = pdc_result[17]; 398 pdc_coproc_info->model = pdc_result[18]; 399 400 return ret; 401 } 402 403 /** 404 * pdc_coproc_cfg - To identify coprocessors attached to the processor. 405 * @pdc_coproc_info: Return buffer address. 406 * 407 * This PDC call returns the presence and status of all the coprocessors 408 * attached to the processor. 409 */ 410 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info) 411 { 412 int ret; 413 unsigned long flags; 414 415 spin_lock_irqsave(&pdc_lock, flags); 416 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info); 417 spin_unlock_irqrestore(&pdc_lock, flags); 418 419 return ret; 420 } 421 422 /** 423 * pdc_iodc_read - Read data from the modules IODC. 424 * @actcnt: The actual number of bytes. 425 * @hpa: The HPA of the module for the iodc read. 426 * @index: The iodc entry point. 427 * @iodc_data: A buffer memory for the iodc options. 428 * @iodc_data_size: Size of the memory buffer. 429 * 430 * This PDC call reads from the IODC of the module specified by the hpa 431 * argument. 432 */ 433 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index, 434 void *iodc_data, unsigned int iodc_data_size) 435 { 436 int retval; 437 unsigned long flags; 438 439 spin_lock_irqsave(&pdc_lock, flags); 440 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 441 index, __pa(pdc_result2), iodc_data_size); 442 convert_to_wide(pdc_result); 443 *actcnt = pdc_result[0]; 444 memcpy(iodc_data, pdc_result2, iodc_data_size); 445 spin_unlock_irqrestore(&pdc_lock, flags); 446 447 return retval; 448 } 449 EXPORT_SYMBOL(pdc_iodc_read); 450 451 /** 452 * pdc_system_map_find_mods - Locate unarchitected modules. 453 * @pdc_mod_info: Return buffer address. 454 * @mod_path: pointer to dev path structure. 455 * @mod_index: fixed address module index. 456 * 457 * To locate and identify modules which reside at fixed I/O addresses, which 458 * do not self-identify via architected bus walks. 459 */ 460 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info, 461 struct pdc_module_path *mod_path, long mod_index) 462 { 463 int retval; 464 unsigned long flags; 465 466 spin_lock_irqsave(&pdc_lock, flags); 467 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 468 __pa(pdc_result2), mod_index); 469 convert_to_wide(pdc_result); 470 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info)); 471 memcpy(mod_path, pdc_result2, sizeof(*mod_path)); 472 spin_unlock_irqrestore(&pdc_lock, flags); 473 474 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr); 475 return retval; 476 } 477 478 /** 479 * pdc_system_map_find_addrs - Retrieve additional address ranges. 480 * @pdc_addr_info: Return buffer address. 481 * @mod_index: Fixed address module index. 482 * @addr_index: Address range index. 483 * 484 * Retrieve additional information about subsequent address ranges for modules 485 * with multiple address ranges. 486 */ 487 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 488 long mod_index, long addr_index) 489 { 490 int retval; 491 unsigned long flags; 492 493 spin_lock_irqsave(&pdc_lock, flags); 494 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result), 495 mod_index, addr_index); 496 convert_to_wide(pdc_result); 497 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info)); 498 spin_unlock_irqrestore(&pdc_lock, flags); 499 500 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr); 501 return retval; 502 } 503 504 /** 505 * pdc_model_info - Return model information about the processor. 506 * @model: The return buffer. 507 * 508 * Returns the version numbers, identifiers, and capabilities from the processor module. 509 */ 510 int pdc_model_info(struct pdc_model *model) 511 { 512 int retval; 513 unsigned long flags; 514 515 spin_lock_irqsave(&pdc_lock, flags); 516 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0); 517 convert_to_wide(pdc_result); 518 memcpy(model, pdc_result, sizeof(*model)); 519 spin_unlock_irqrestore(&pdc_lock, flags); 520 521 return retval; 522 } 523 524 /** 525 * pdc_model_sysmodel - Get the system model name. 526 * @os_id: The operating system ID asked for (an OS_ID_* value) 527 * @name: A char array of at least 81 characters. 528 * 529 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L). 530 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command 531 * on HP/UX. 532 */ 533 int pdc_model_sysmodel(unsigned int os_id, char *name) 534 { 535 int retval; 536 unsigned long flags; 537 538 spin_lock_irqsave(&pdc_lock, flags); 539 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result), 540 os_id, __pa(name)); 541 convert_to_wide(pdc_result); 542 543 if (retval == PDC_OK) { 544 name[pdc_result[0]] = '\0'; /* add trailing '\0' */ 545 } else { 546 name[0] = 0; 547 } 548 spin_unlock_irqrestore(&pdc_lock, flags); 549 550 return retval; 551 } 552 553 /** 554 * pdc_model_versions - Identify the version number of each processor. 555 * @versions: The return buffer. 556 * @id: The id of the processor to check. 557 * 558 * Returns the version number for each processor component. 559 * 560 * This comment was here before, but I do not know what it means :( -RB 561 * id: 0 = cpu revision, 1 = boot-rom-version 562 */ 563 int pdc_model_versions(unsigned long *versions, int id) 564 { 565 int retval; 566 unsigned long flags; 567 568 spin_lock_irqsave(&pdc_lock, flags); 569 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id); 570 convert_to_wide(pdc_result); 571 *versions = pdc_result[0]; 572 spin_unlock_irqrestore(&pdc_lock, flags); 573 574 return retval; 575 } 576 577 /** 578 * pdc_model_cpuid - Returns the CPU_ID. 579 * @cpu_id: The return buffer. 580 * 581 * Returns the CPU_ID value which uniquely identifies the cpu portion of 582 * the processor module. 583 */ 584 int pdc_model_cpuid(unsigned long *cpu_id) 585 { 586 int retval; 587 unsigned long flags; 588 589 spin_lock_irqsave(&pdc_lock, flags); 590 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ 591 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0); 592 convert_to_wide(pdc_result); 593 *cpu_id = pdc_result[0]; 594 spin_unlock_irqrestore(&pdc_lock, flags); 595 596 return retval; 597 } 598 599 /** 600 * pdc_model_capabilities - Returns the platform capabilities. 601 * @capabilities: The return buffer. 602 * 603 * Returns information about platform support for 32- and/or 64-bit 604 * OSes, IO-PDIR coherency, and virtual aliasing. 605 */ 606 int pdc_model_capabilities(unsigned long *capabilities) 607 { 608 int retval; 609 unsigned long flags; 610 611 spin_lock_irqsave(&pdc_lock, flags); 612 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ 613 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0); 614 convert_to_wide(pdc_result); 615 if (retval == PDC_OK) { 616 *capabilities = pdc_result[0]; 617 } else { 618 *capabilities = PDC_MODEL_OS32; 619 } 620 spin_unlock_irqrestore(&pdc_lock, flags); 621 622 return retval; 623 } 624 625 /** 626 * pdc_model_platform_info - Returns machine product and serial number. 627 * @orig_prod_num: Return buffer for original product number. 628 * @current_prod_num: Return buffer for current product number. 629 * @serial_no: Return buffer for serial number. 630 * 631 * Returns strings containing the original and current product numbers and the 632 * serial number of the system. 633 */ 634 int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num, 635 char *serial_no) 636 { 637 int retval; 638 unsigned long flags; 639 640 spin_lock_irqsave(&pdc_lock, flags); 641 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO, 642 __pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no)); 643 convert_to_wide(pdc_result); 644 spin_unlock_irqrestore(&pdc_lock, flags); 645 646 return retval; 647 } 648 649 /** 650 * pdc_cache_info - Return cache and TLB information. 651 * @cache_info: The return buffer. 652 * 653 * Returns information about the processor's cache and TLB. 654 */ 655 int pdc_cache_info(struct pdc_cache_info *cache_info) 656 { 657 int retval; 658 unsigned long flags; 659 660 spin_lock_irqsave(&pdc_lock, flags); 661 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0); 662 convert_to_wide(pdc_result); 663 memcpy(cache_info, pdc_result, sizeof(*cache_info)); 664 spin_unlock_irqrestore(&pdc_lock, flags); 665 666 return retval; 667 } 668 669 /** 670 * pdc_spaceid_bits - Return whether Space ID hashing is turned on. 671 * @space_bits: Should be 0, if not, bad mojo! 672 * 673 * Returns information about Space ID hashing. 674 */ 675 int pdc_spaceid_bits(unsigned long *space_bits) 676 { 677 int retval; 678 unsigned long flags; 679 680 spin_lock_irqsave(&pdc_lock, flags); 681 pdc_result[0] = 0; 682 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0); 683 convert_to_wide(pdc_result); 684 *space_bits = pdc_result[0]; 685 spin_unlock_irqrestore(&pdc_lock, flags); 686 687 return retval; 688 } 689 690 /** 691 * pdc_btlb_info - Return block TLB information. 692 * @btlb: The return buffer. 693 * 694 * Returns information about the hardware Block TLB. 695 */ 696 int pdc_btlb_info(struct pdc_btlb_info *btlb) 697 { 698 int retval; 699 unsigned long flags; 700 701 if (IS_ENABLED(CONFIG_PA20)) 702 return PDC_BAD_PROC; 703 704 spin_lock_irqsave(&pdc_lock, flags); 705 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0); 706 memcpy(btlb, pdc_result, sizeof(*btlb)); 707 spin_unlock_irqrestore(&pdc_lock, flags); 708 709 if(retval < 0) { 710 btlb->max_size = 0; 711 } 712 return retval; 713 } 714 715 int pdc_btlb_insert(unsigned long long vpage, unsigned long physpage, unsigned long len, 716 unsigned long entry_info, unsigned long slot) 717 { 718 int retval; 719 unsigned long flags; 720 721 if (IS_ENABLED(CONFIG_PA20)) 722 return PDC_BAD_PROC; 723 724 spin_lock_irqsave(&pdc_lock, flags); 725 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INSERT, (unsigned long) (vpage >> 32), 726 (unsigned long) vpage, physpage, len, entry_info, slot); 727 spin_unlock_irqrestore(&pdc_lock, flags); 728 return retval; 729 } 730 731 int pdc_btlb_purge_all(void) 732 { 733 int retval; 734 unsigned long flags; 735 736 if (IS_ENABLED(CONFIG_PA20)) 737 return PDC_BAD_PROC; 738 739 spin_lock_irqsave(&pdc_lock, flags); 740 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_PURGE_ALL); 741 spin_unlock_irqrestore(&pdc_lock, flags); 742 return retval; 743 } 744 745 /** 746 * pdc_mem_map_hpa - Find fixed module information. 747 * @address: The return buffer 748 * @mod_path: pointer to dev path structure. 749 * 750 * This call was developed for S700 workstations to allow the kernel to find 751 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this 752 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP 753 * call. 754 * 755 * This call is supported by all existing S700 workstations (up to Gecko). 756 */ 757 int pdc_mem_map_hpa(struct pdc_memory_map *address, 758 struct pdc_module_path *mod_path) 759 { 760 int retval; 761 unsigned long flags; 762 763 if (IS_ENABLED(CONFIG_PA20)) 764 return PDC_BAD_PROC; 765 766 spin_lock_irqsave(&pdc_lock, flags); 767 memcpy(pdc_result2, mod_path, sizeof(*mod_path)); 768 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result), 769 __pa(pdc_result2)); 770 memcpy(address, pdc_result, sizeof(*address)); 771 spin_unlock_irqrestore(&pdc_lock, flags); 772 773 return retval; 774 } 775 776 /** 777 * pdc_lan_station_id - Get the LAN address. 778 * @lan_addr: The return buffer. 779 * @hpa: The network device HPA. 780 * 781 * Get the LAN station address when it is not directly available from the LAN hardware. 782 */ 783 int pdc_lan_station_id(char *lan_addr, unsigned long hpa) 784 { 785 int retval; 786 unsigned long flags; 787 788 spin_lock_irqsave(&pdc_lock, flags); 789 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ, 790 __pa(pdc_result), hpa); 791 if (retval < 0) { 792 /* FIXME: else read MAC from NVRAM */ 793 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE); 794 } else { 795 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE); 796 } 797 spin_unlock_irqrestore(&pdc_lock, flags); 798 799 return retval; 800 } 801 EXPORT_SYMBOL(pdc_lan_station_id); 802 803 /** 804 * pdc_stable_read - Read data from Stable Storage. 805 * @staddr: Stable Storage address to access. 806 * @memaddr: The memory address where Stable Storage data shall be copied. 807 * @count: number of bytes to transfer. count is multiple of 4. 808 * 809 * This PDC call reads from the Stable Storage address supplied in staddr 810 * and copies count bytes to the memory address memaddr. 811 * The call will fail if staddr+count > PDC_STABLE size. 812 */ 813 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count) 814 { 815 int retval; 816 unsigned long flags; 817 818 spin_lock_irqsave(&pdc_lock, flags); 819 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr, 820 __pa(pdc_result), count); 821 convert_to_wide(pdc_result); 822 memcpy(memaddr, pdc_result, count); 823 spin_unlock_irqrestore(&pdc_lock, flags); 824 825 return retval; 826 } 827 EXPORT_SYMBOL(pdc_stable_read); 828 829 /** 830 * pdc_stable_write - Write data to Stable Storage. 831 * @staddr: Stable Storage address to access. 832 * @memaddr: The memory address where Stable Storage data shall be read from. 833 * @count: number of bytes to transfer. count is multiple of 4. 834 * 835 * This PDC call reads count bytes from the supplied memaddr address, 836 * and copies count bytes to the Stable Storage address staddr. 837 * The call will fail if staddr+count > PDC_STABLE size. 838 */ 839 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count) 840 { 841 int retval; 842 unsigned long flags; 843 844 spin_lock_irqsave(&pdc_lock, flags); 845 memcpy(pdc_result, memaddr, count); 846 convert_to_wide(pdc_result); 847 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr, 848 __pa(pdc_result), count); 849 spin_unlock_irqrestore(&pdc_lock, flags); 850 851 return retval; 852 } 853 EXPORT_SYMBOL(pdc_stable_write); 854 855 /** 856 * pdc_stable_get_size - Get Stable Storage size in bytes. 857 * @size: pointer where the size will be stored. 858 * 859 * This PDC call returns the number of bytes in the processor's Stable 860 * Storage, which is the number of contiguous bytes implemented in Stable 861 * Storage starting from staddr=0. size in an unsigned 64-bit integer 862 * which is a multiple of four. 863 */ 864 int pdc_stable_get_size(unsigned long *size) 865 { 866 int retval; 867 unsigned long flags; 868 869 spin_lock_irqsave(&pdc_lock, flags); 870 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result)); 871 *size = pdc_result[0]; 872 spin_unlock_irqrestore(&pdc_lock, flags); 873 874 return retval; 875 } 876 EXPORT_SYMBOL(pdc_stable_get_size); 877 878 /** 879 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid. 880 * 881 * This PDC call is meant to be used to check the integrity of the current 882 * contents of Stable Storage. 883 */ 884 int pdc_stable_verify_contents(void) 885 { 886 int retval; 887 unsigned long flags; 888 889 spin_lock_irqsave(&pdc_lock, flags); 890 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS); 891 spin_unlock_irqrestore(&pdc_lock, flags); 892 893 return retval; 894 } 895 EXPORT_SYMBOL(pdc_stable_verify_contents); 896 897 /** 898 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize 899 * the validity indicator. 900 * 901 * This PDC call will erase all contents of Stable Storage. Use with care! 902 */ 903 int pdc_stable_initialize(void) 904 { 905 int retval; 906 unsigned long flags; 907 908 spin_lock_irqsave(&pdc_lock, flags); 909 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE); 910 spin_unlock_irqrestore(&pdc_lock, flags); 911 912 return retval; 913 } 914 EXPORT_SYMBOL(pdc_stable_initialize); 915 916 /** 917 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD) 918 * @hwpath: fully bc.mod style path to the device. 919 * @initiator: the array to return the result into 920 * 921 * Get the SCSI operational parameters from PDC. 922 * Needed since HPUX never used BIOS or symbios card NVRAM. 923 * Most ncr/sym cards won't have an entry and just use whatever 924 * capabilities of the card are (eg Ultra, LVD). But there are 925 * several cases where it's useful: 926 * o set SCSI id for Multi-initiator clusters, 927 * o cable too long (ie SE scsi 10Mhz won't support 6m length), 928 * o bus width exported is less than what the interface chip supports. 929 */ 930 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator) 931 { 932 int retval; 933 unsigned long flags; 934 935 spin_lock_irqsave(&pdc_lock, flags); 936 937 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */ 938 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \ 939 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0) 940 941 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 942 __pa(pdc_result), __pa(hwpath)); 943 if (retval < PDC_OK) 944 goto out; 945 946 if (pdc_result[0] < 16) { 947 initiator->host_id = pdc_result[0]; 948 } else { 949 initiator->host_id = -1; 950 } 951 952 /* 953 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns 954 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively 955 */ 956 switch (pdc_result[1]) { 957 case 1: initiator->factor = 50; break; 958 case 2: initiator->factor = 25; break; 959 case 5: initiator->factor = 12; break; 960 case 25: initiator->factor = 10; break; 961 case 20: initiator->factor = 12; break; 962 case 40: initiator->factor = 10; break; 963 default: initiator->factor = -1; break; 964 } 965 966 if (IS_SPROCKETS()) { 967 initiator->width = pdc_result[4]; 968 initiator->mode = pdc_result[5]; 969 } else { 970 initiator->width = -1; 971 initiator->mode = -1; 972 } 973 974 out: 975 spin_unlock_irqrestore(&pdc_lock, flags); 976 977 return (retval >= PDC_OK); 978 } 979 EXPORT_SYMBOL(pdc_get_initiator); 980 981 982 /** 983 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table. 984 * @num_entries: The return value. 985 * @hpa: The HPA for the device. 986 * 987 * This PDC function returns the number of entries in the specified cell's 988 * interrupt table. 989 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes 990 */ 991 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa) 992 { 993 int retval; 994 unsigned long flags; 995 996 spin_lock_irqsave(&pdc_lock, flags); 997 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 998 __pa(pdc_result), hpa); 999 convert_to_wide(pdc_result); 1000 *num_entries = pdc_result[0]; 1001 spin_unlock_irqrestore(&pdc_lock, flags); 1002 1003 return retval; 1004 } 1005 1006 /** 1007 * pdc_pci_irt - Get the PCI interrupt routing table. 1008 * @num_entries: The number of entries in the table. 1009 * @hpa: The Hard Physical Address of the device. 1010 * @tbl: 1011 * 1012 * Get the PCI interrupt routing table for the device at the given HPA. 1013 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes 1014 */ 1015 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl) 1016 { 1017 int retval; 1018 unsigned long flags; 1019 1020 BUG_ON((unsigned long)tbl & 0x7); 1021 1022 spin_lock_irqsave(&pdc_lock, flags); 1023 pdc_result[0] = num_entries; 1024 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 1025 __pa(pdc_result), hpa, __pa(tbl)); 1026 spin_unlock_irqrestore(&pdc_lock, flags); 1027 1028 return retval; 1029 } 1030 1031 1032 #if 0 /* UNTEST CODE - left here in case someone needs it */ 1033 1034 /** 1035 * pdc_pci_config_read - read PCI config space. 1036 * @hpa: Token from PDC to indicate which PCI device 1037 * @cfg_addr: Configuration space address to read from 1038 * 1039 * Read PCI Configuration space *before* linux PCI subsystem is running. 1040 */ 1041 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr) 1042 { 1043 int retval; 1044 unsigned long flags; 1045 1046 spin_lock_irqsave(&pdc_lock, flags); 1047 pdc_result[0] = 0; 1048 pdc_result[1] = 0; 1049 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 1050 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL); 1051 spin_unlock_irqrestore(&pdc_lock, flags); 1052 1053 return retval ? ~0 : (unsigned int) pdc_result[0]; 1054 } 1055 1056 1057 /** 1058 * pdc_pci_config_write - read PCI config space. 1059 * @hpa: Token from PDC to indicate which PCI device 1060 * @cfg_addr: Configuration space address to write 1061 * @val: Value we want in the 32-bit register 1062 * 1063 * Write PCI Configuration space *before* linux PCI subsystem is running. 1064 */ 1065 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val) 1066 { 1067 int retval; 1068 unsigned long flags; 1069 1070 spin_lock_irqsave(&pdc_lock, flags); 1071 pdc_result[0] = 0; 1072 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 1073 __pa(pdc_result), hpa, 1074 cfg_addr&~3UL, 4UL, (unsigned long) val); 1075 spin_unlock_irqrestore(&pdc_lock, flags); 1076 1077 return retval; 1078 } 1079 #endif /* UNTESTED CODE */ 1080 1081 /** 1082 * pdc_tod_read - Read the Time-Of-Day clock. 1083 * @tod: The return buffer: 1084 * 1085 * Read the Time-Of-Day clock 1086 */ 1087 int pdc_tod_read(struct pdc_tod *tod) 1088 { 1089 int retval; 1090 unsigned long flags; 1091 1092 spin_lock_irqsave(&pdc_lock, flags); 1093 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0); 1094 convert_to_wide(pdc_result); 1095 memcpy(tod, pdc_result, sizeof(*tod)); 1096 spin_unlock_irqrestore(&pdc_lock, flags); 1097 1098 return retval; 1099 } 1100 EXPORT_SYMBOL(pdc_tod_read); 1101 1102 int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo) 1103 { 1104 int retval; 1105 unsigned long flags; 1106 1107 spin_lock_irqsave(&pdc_lock, flags); 1108 retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0); 1109 convert_to_wide(pdc_result); 1110 memcpy(rinfo, pdc_result, sizeof(*rinfo)); 1111 spin_unlock_irqrestore(&pdc_lock, flags); 1112 1113 return retval; 1114 } 1115 1116 int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret, 1117 unsigned long *pdt_entries_ptr) 1118 { 1119 int retval; 1120 unsigned long flags; 1121 1122 spin_lock_irqsave(&pdc_lock, flags); 1123 retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result), 1124 __pa(pdt_entries_ptr)); 1125 if (retval == PDC_OK) { 1126 convert_to_wide(pdc_result); 1127 memcpy(pret, pdc_result, sizeof(*pret)); 1128 } 1129 spin_unlock_irqrestore(&pdc_lock, flags); 1130 1131 #ifdef CONFIG_64BIT 1132 /* 1133 * 64-bit kernels should not call this PDT function in narrow mode. 1134 * The pdt_entries_ptr array above will now contain 32-bit values 1135 */ 1136 if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware)) 1137 return PDC_ERROR; 1138 #endif 1139 1140 return retval; 1141 } 1142 1143 /** 1144 * pdc_pim_toc11 - Fetch TOC PIM 1.1 data from firmware. 1145 * @ret: pointer to return buffer 1146 */ 1147 int pdc_pim_toc11(struct pdc_toc_pim_11 *ret) 1148 { 1149 int retval; 1150 unsigned long flags; 1151 1152 spin_lock_irqsave(&pdc_lock, flags); 1153 retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result), 1154 __pa(ret), sizeof(*ret)); 1155 spin_unlock_irqrestore(&pdc_lock, flags); 1156 return retval; 1157 } 1158 1159 /** 1160 * pdc_pim_toc20 - Fetch TOC PIM 2.0 data from firmware. 1161 * @ret: pointer to return buffer 1162 */ 1163 int pdc_pim_toc20(struct pdc_toc_pim_20 *ret) 1164 { 1165 int retval; 1166 unsigned long flags; 1167 1168 spin_lock_irqsave(&pdc_lock, flags); 1169 retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result), 1170 __pa(ret), sizeof(*ret)); 1171 spin_unlock_irqrestore(&pdc_lock, flags); 1172 return retval; 1173 } 1174 1175 /** 1176 * pdc_tod_set - Set the Time-Of-Day clock. 1177 * @sec: The number of seconds since epoch. 1178 * @usec: The number of micro seconds. 1179 * 1180 * Set the Time-Of-Day clock. 1181 */ 1182 int pdc_tod_set(unsigned long sec, unsigned long usec) 1183 { 1184 int retval; 1185 unsigned long flags; 1186 1187 spin_lock_irqsave(&pdc_lock, flags); 1188 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec); 1189 spin_unlock_irqrestore(&pdc_lock, flags); 1190 1191 return retval; 1192 } 1193 EXPORT_SYMBOL(pdc_tod_set); 1194 1195 #ifdef CONFIG_64BIT 1196 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr, 1197 struct pdc_memory_table *tbl, unsigned long entries) 1198 { 1199 int retval; 1200 unsigned long flags; 1201 1202 spin_lock_irqsave(&pdc_lock, flags); 1203 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries); 1204 convert_to_wide(pdc_result); 1205 memcpy(r_addr, pdc_result, sizeof(*r_addr)); 1206 memcpy(tbl, pdc_result2, entries * sizeof(*tbl)); 1207 spin_unlock_irqrestore(&pdc_lock, flags); 1208 1209 return retval; 1210 } 1211 #endif /* CONFIG_64BIT */ 1212 1213 /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap 1214 * so I guessed at unsigned long. Someone who knows what this does, can fix 1215 * it later. :) 1216 */ 1217 int pdc_do_firm_test_reset(unsigned long ftc_bitmap) 1218 { 1219 int retval; 1220 unsigned long flags; 1221 1222 spin_lock_irqsave(&pdc_lock, flags); 1223 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET, 1224 PDC_FIRM_TEST_MAGIC, ftc_bitmap); 1225 spin_unlock_irqrestore(&pdc_lock, flags); 1226 1227 return retval; 1228 } 1229 1230 /* 1231 * pdc_do_reset - Reset the system. 1232 * 1233 * Reset the system. 1234 */ 1235 int pdc_do_reset(void) 1236 { 1237 int retval; 1238 unsigned long flags; 1239 1240 spin_lock_irqsave(&pdc_lock, flags); 1241 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET); 1242 spin_unlock_irqrestore(&pdc_lock, flags); 1243 1244 return retval; 1245 } 1246 1247 /* 1248 * pdc_soft_power_info - Enable soft power switch. 1249 * @power_reg: address of soft power register 1250 * 1251 * Return the absolute address of the soft power switch register 1252 */ 1253 int __init pdc_soft_power_info(unsigned long *power_reg) 1254 { 1255 int retval; 1256 unsigned long flags; 1257 1258 *power_reg = (unsigned long) (-1); 1259 1260 spin_lock_irqsave(&pdc_lock, flags); 1261 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0); 1262 if (retval == PDC_OK) { 1263 convert_to_wide(pdc_result); 1264 *power_reg = f_extend(pdc_result[0]); 1265 } 1266 spin_unlock_irqrestore(&pdc_lock, flags); 1267 1268 return retval; 1269 } 1270 1271 /* 1272 * pdc_soft_power_button{_panic} - Control the soft power button behaviour 1273 * @sw_control: 0 for hardware control, 1 for software control 1274 * 1275 * 1276 * This PDC function places the soft power button under software or 1277 * hardware control. 1278 * Under software control the OS may control to when to allow to shut 1279 * down the system. Under hardware control pressing the power button 1280 * powers off the system immediately. 1281 * 1282 * The _panic version relies on spin_trylock to prevent deadlock 1283 * on panic path. 1284 */ 1285 int pdc_soft_power_button(int sw_control) 1286 { 1287 int retval; 1288 unsigned long flags; 1289 1290 spin_lock_irqsave(&pdc_lock, flags); 1291 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control); 1292 spin_unlock_irqrestore(&pdc_lock, flags); 1293 1294 return retval; 1295 } 1296 1297 int pdc_soft_power_button_panic(int sw_control) 1298 { 1299 int retval; 1300 unsigned long flags; 1301 1302 if (!spin_trylock_irqsave(&pdc_lock, flags)) { 1303 pr_emerg("Couldn't enable soft power button\n"); 1304 return -EBUSY; /* ignored by the panic notifier */ 1305 } 1306 1307 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control); 1308 spin_unlock_irqrestore(&pdc_lock, flags); 1309 1310 return retval; 1311 } 1312 1313 /* 1314 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices. 1315 * Primarily a problem on T600 (which parisc-linux doesn't support) but 1316 * who knows what other platform firmware might do with this OS "hook". 1317 */ 1318 void pdc_io_reset(void) 1319 { 1320 unsigned long flags; 1321 1322 spin_lock_irqsave(&pdc_lock, flags); 1323 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0); 1324 spin_unlock_irqrestore(&pdc_lock, flags); 1325 } 1326 1327 /* 1328 * pdc_io_reset_devices - Hack to Stop USB controller 1329 * 1330 * If PDC used the usb controller, the usb controller 1331 * is still running and will crash the machines during iommu 1332 * setup, because of still running DMA. This PDC call 1333 * stops the USB controller. 1334 * Normally called after calling pdc_io_reset(). 1335 */ 1336 void pdc_io_reset_devices(void) 1337 { 1338 unsigned long flags; 1339 1340 spin_lock_irqsave(&pdc_lock, flags); 1341 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0); 1342 spin_unlock_irqrestore(&pdc_lock, flags); 1343 } 1344 1345 #endif /* defined(BOOTLOADER) */ 1346 1347 /* locked by pdc_lock */ 1348 static char iodc_dbuf[4096] __page_aligned_bss; 1349 1350 /** 1351 * pdc_iodc_print - Console print using IODC. 1352 * @str: the string to output. 1353 * @count: length of str 1354 * 1355 * Note that only these special chars are architected for console IODC io: 1356 * BEL, BS, CR, and LF. Others are passed through. 1357 * Since the HP console requires CR+LF to perform a 'newline', we translate 1358 * "\n" to "\r\n". 1359 */ 1360 int pdc_iodc_print(const unsigned char *str, unsigned count) 1361 { 1362 unsigned int i, found = 0; 1363 unsigned long flags; 1364 1365 count = min_t(unsigned int, count, sizeof(iodc_dbuf)); 1366 1367 spin_lock_irqsave(&pdc_lock, flags); 1368 for (i = 0; i < count;) { 1369 switch(str[i]) { 1370 case '\n': 1371 iodc_dbuf[i+0] = '\r'; 1372 iodc_dbuf[i+1] = '\n'; 1373 i += 2; 1374 found = 1; 1375 goto print; 1376 default: 1377 iodc_dbuf[i] = str[i]; 1378 i++; 1379 break; 1380 } 1381 } 1382 1383 print: 1384 real32_call(PAGE0->mem_cons.iodc_io, 1385 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT, 1386 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers), 1387 __pa(pdc_result), 0, __pa(iodc_dbuf), i, 0); 1388 spin_unlock_irqrestore(&pdc_lock, flags); 1389 1390 return i - found; 1391 } 1392 1393 #if !defined(BOOTLOADER) 1394 /** 1395 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console. 1396 * 1397 * Read a character (non-blocking) from the PDC console, returns -1 if 1398 * key is not present. 1399 */ 1400 int pdc_iodc_getc(void) 1401 { 1402 int ch; 1403 int status; 1404 unsigned long flags; 1405 1406 /* Bail if no console input device. */ 1407 if (!PAGE0->mem_kbd.iodc_io) 1408 return 0; 1409 1410 /* wait for a keyboard (rs232)-input */ 1411 spin_lock_irqsave(&pdc_lock, flags); 1412 real32_call(PAGE0->mem_kbd.iodc_io, 1413 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN, 1414 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 1415 __pa(pdc_result), 0, __pa(iodc_dbuf), 1, 0); 1416 1417 ch = *iodc_dbuf; 1418 /* like convert_to_wide() but for first return value only: */ 1419 status = *(int *)&pdc_result; 1420 spin_unlock_irqrestore(&pdc_lock, flags); 1421 1422 if (status == 0) 1423 return -1; 1424 1425 return ch; 1426 } 1427 1428 int pdc_sti_call(unsigned long func, unsigned long flags, 1429 unsigned long inptr, unsigned long outputr, 1430 unsigned long glob_cfg, int do_call64) 1431 { 1432 int retval = 0; 1433 unsigned long irqflags; 1434 1435 spin_lock_irqsave(&pdc_lock, irqflags); 1436 if (IS_ENABLED(CONFIG_64BIT) && do_call64) { 1437 #ifdef CONFIG_64BIT 1438 retval = real64_call(func, flags, inptr, outputr, glob_cfg); 1439 #else 1440 WARN_ON(1); 1441 #endif 1442 } else { 1443 retval = real32_call(func, flags, inptr, outputr, glob_cfg); 1444 } 1445 spin_unlock_irqrestore(&pdc_lock, irqflags); 1446 1447 return retval; 1448 } 1449 EXPORT_SYMBOL(pdc_sti_call); 1450 1451 #ifdef CONFIG_64BIT 1452 /** 1453 * pdc_pat_cell_get_number - Returns the cell number. 1454 * @cell_info: The return buffer. 1455 * 1456 * This PDC call returns the cell number of the cell from which the call 1457 * is made. 1458 */ 1459 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info) 1460 { 1461 int retval; 1462 unsigned long flags; 1463 1464 spin_lock_irqsave(&pdc_lock, flags); 1465 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result)); 1466 memcpy(cell_info, pdc_result, sizeof(*cell_info)); 1467 spin_unlock_irqrestore(&pdc_lock, flags); 1468 1469 return retval; 1470 } 1471 1472 /** 1473 * pdc_pat_cell_module - Retrieve the cell's module information. 1474 * @actcnt: The number of bytes written to mem_addr. 1475 * @ploc: The physical location. 1476 * @mod: The module index. 1477 * @view_type: The view of the address type. 1478 * @mem_addr: The return buffer. 1479 * 1480 * This PDC call returns information about each module attached to the cell 1481 * at the specified location. 1482 */ 1483 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod, 1484 unsigned long view_type, void *mem_addr) 1485 { 1486 int retval; 1487 unsigned long flags; 1488 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8))); 1489 1490 spin_lock_irqsave(&pdc_lock, flags); 1491 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 1492 ploc, mod, view_type, __pa(&result)); 1493 if(!retval) { 1494 *actcnt = pdc_result[0]; 1495 memcpy(mem_addr, &result, *actcnt); 1496 } 1497 spin_unlock_irqrestore(&pdc_lock, flags); 1498 1499 return retval; 1500 } 1501 1502 /** 1503 * pdc_pat_cell_info - Retrieve the cell's information. 1504 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block. 1505 * @actcnt: The number of bytes which should be written to info. 1506 * @offset: offset of the structure. 1507 * @cell_number: The cell number which should be asked, or -1 for current cell. 1508 * 1509 * This PDC call returns information about the given cell (or all cells). 1510 */ 1511 int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info, 1512 unsigned long *actcnt, unsigned long offset, 1513 unsigned long cell_number) 1514 { 1515 int retval; 1516 unsigned long flags; 1517 struct pdc_pat_cell_info_rtn_block result; 1518 1519 spin_lock_irqsave(&pdc_lock, flags); 1520 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO, 1521 __pa(pdc_result), __pa(&result), *actcnt, 1522 offset, cell_number); 1523 if (!retval) { 1524 *actcnt = pdc_result[0]; 1525 memcpy(info, &result, *actcnt); 1526 } 1527 spin_unlock_irqrestore(&pdc_lock, flags); 1528 1529 return retval; 1530 } 1531 1532 /** 1533 * pdc_pat_cpu_get_number - Retrieve the cpu number. 1534 * @cpu_info: The return buffer. 1535 * @hpa: The Hard Physical Address of the CPU. 1536 * 1537 * Retrieve the cpu number for the cpu at the specified HPA. 1538 */ 1539 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa) 1540 { 1541 int retval; 1542 unsigned long flags; 1543 1544 spin_lock_irqsave(&pdc_lock, flags); 1545 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER, 1546 __pa(&pdc_result), hpa); 1547 memcpy(cpu_info, pdc_result, sizeof(*cpu_info)); 1548 spin_unlock_irqrestore(&pdc_lock, flags); 1549 1550 return retval; 1551 } 1552 1553 /** 1554 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table. 1555 * @num_entries: The return value. 1556 * @cell_num: The target cell. 1557 * 1558 * This PDC function returns the number of entries in the specified cell's 1559 * interrupt table. 1560 */ 1561 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num) 1562 { 1563 int retval; 1564 unsigned long flags; 1565 1566 spin_lock_irqsave(&pdc_lock, flags); 1567 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE, 1568 __pa(pdc_result), cell_num); 1569 *num_entries = pdc_result[0]; 1570 spin_unlock_irqrestore(&pdc_lock, flags); 1571 1572 return retval; 1573 } 1574 1575 /** 1576 * pdc_pat_get_irt - Retrieve the cell's interrupt table. 1577 * @r_addr: The return buffer. 1578 * @cell_num: The target cell. 1579 * 1580 * This PDC function returns the actual interrupt table for the specified cell. 1581 */ 1582 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num) 1583 { 1584 int retval; 1585 unsigned long flags; 1586 1587 spin_lock_irqsave(&pdc_lock, flags); 1588 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE, 1589 __pa(r_addr), cell_num); 1590 spin_unlock_irqrestore(&pdc_lock, flags); 1591 1592 return retval; 1593 } 1594 1595 /** 1596 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges. 1597 * @actual_len: The return buffer. 1598 * @mem_addr: Pointer to the memory buffer. 1599 * @count: The number of bytes to read from the buffer. 1600 * @offset: The offset with respect to the beginning of the buffer. 1601 * 1602 */ 1603 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 1604 unsigned long count, unsigned long offset) 1605 { 1606 int retval; 1607 unsigned long flags; 1608 1609 spin_lock_irqsave(&pdc_lock, flags); 1610 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 1611 __pa(pdc_result2), count, offset); 1612 *actual_len = pdc_result[0]; 1613 memcpy(mem_addr, pdc_result2, *actual_len); 1614 spin_unlock_irqrestore(&pdc_lock, flags); 1615 1616 return retval; 1617 } 1618 1619 /** 1620 * pdc_pat_pd_get_pdc_revisions - Retrieve PDC interface revisions. 1621 * @legacy_rev: The legacy revision. 1622 * @pat_rev: The PAT revision. 1623 * @pdc_cap: The PDC capabilities. 1624 * 1625 */ 1626 int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev, 1627 unsigned long *pat_rev, unsigned long *pdc_cap) 1628 { 1629 int retval; 1630 unsigned long flags; 1631 1632 spin_lock_irqsave(&pdc_lock, flags); 1633 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV, 1634 __pa(pdc_result)); 1635 if (retval == PDC_OK) { 1636 *legacy_rev = pdc_result[0]; 1637 *pat_rev = pdc_result[1]; 1638 *pdc_cap = pdc_result[2]; 1639 } 1640 spin_unlock_irqrestore(&pdc_lock, flags); 1641 1642 return retval; 1643 } 1644 1645 1646 /** 1647 * pdc_pat_io_pci_cfg_read - Read PCI configuration space. 1648 * @pci_addr: PCI configuration space address for which the read request is being made. 1649 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 1650 * @mem_addr: Pointer to return memory buffer. 1651 * 1652 */ 1653 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr) 1654 { 1655 int retval; 1656 unsigned long flags; 1657 1658 spin_lock_irqsave(&pdc_lock, flags); 1659 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ, 1660 __pa(pdc_result), pci_addr, pci_size); 1661 switch(pci_size) { 1662 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; break; 1663 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; break; 1664 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; break; 1665 } 1666 spin_unlock_irqrestore(&pdc_lock, flags); 1667 1668 return retval; 1669 } 1670 1671 /** 1672 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges. 1673 * @pci_addr: PCI configuration space address for which the write request is being made. 1674 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 1675 * @val: Pointer to 1, 2, or 4 byte value in low order end of argument to be 1676 * written to PCI Config space. 1677 * 1678 */ 1679 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val) 1680 { 1681 int retval; 1682 unsigned long flags; 1683 1684 spin_lock_irqsave(&pdc_lock, flags); 1685 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE, 1686 pci_addr, pci_size, val); 1687 spin_unlock_irqrestore(&pdc_lock, flags); 1688 1689 return retval; 1690 } 1691 1692 /** 1693 * pdc_pat_mem_pdt_info - Retrieve information about page deallocation table 1694 * @rinfo: memory pdt information 1695 * 1696 */ 1697 int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo) 1698 { 1699 int retval; 1700 unsigned long flags; 1701 1702 spin_lock_irqsave(&pdc_lock, flags); 1703 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO, 1704 __pa(&pdc_result)); 1705 if (retval == PDC_OK) 1706 memcpy(rinfo, &pdc_result, sizeof(*rinfo)); 1707 spin_unlock_irqrestore(&pdc_lock, flags); 1708 1709 return retval; 1710 } 1711 1712 /** 1713 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation 1714 * table of a cell 1715 * @rinfo: memory pdt information 1716 * @cell: cell number 1717 * 1718 */ 1719 int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo, 1720 unsigned long cell) 1721 { 1722 int retval; 1723 unsigned long flags; 1724 1725 spin_lock_irqsave(&pdc_lock, flags); 1726 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO, 1727 __pa(&pdc_result), cell); 1728 if (retval == PDC_OK) 1729 memcpy(rinfo, &pdc_result, sizeof(*rinfo)); 1730 spin_unlock_irqrestore(&pdc_lock, flags); 1731 1732 return retval; 1733 } 1734 1735 /** 1736 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware 1737 * @pret: array of PDT entries 1738 * @pdt_entries_ptr: ptr to hold number of PDT entries 1739 * @max_entries: maximum number of entries to be read 1740 * 1741 */ 1742 int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret, 1743 unsigned long *pdt_entries_ptr, unsigned long max_entries) 1744 { 1745 int retval; 1746 unsigned long flags, entries; 1747 1748 spin_lock_irqsave(&pdc_lock, flags); 1749 /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */ 1750 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ, 1751 __pa(&pdc_result), parisc_cell_num, 1752 __pa(pdt_entries_ptr)); 1753 1754 if (retval == PDC_OK) { 1755 /* build up return value as for PDC_PAT_MEM_PD_READ */ 1756 entries = min(pdc_result[0], max_entries); 1757 pret->pdt_entries = entries; 1758 pret->actual_count_bytes = entries * sizeof(unsigned long); 1759 } 1760 1761 spin_unlock_irqrestore(&pdc_lock, flags); 1762 WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries); 1763 1764 return retval; 1765 } 1766 /** 1767 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware 1768 * @pret: array of PDT entries 1769 * @pdt_entries_ptr: ptr to hold number of PDT entries 1770 * @count: number of bytes to read 1771 * @offset: offset to start (in bytes) 1772 * 1773 */ 1774 int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret, 1775 unsigned long *pdt_entries_ptr, unsigned long count, 1776 unsigned long offset) 1777 { 1778 int retval; 1779 unsigned long flags, entries; 1780 1781 spin_lock_irqsave(&pdc_lock, flags); 1782 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ, 1783 __pa(&pdc_result), __pa(pdt_entries_ptr), 1784 count, offset); 1785 1786 if (retval == PDC_OK) { 1787 entries = min(pdc_result[0], count); 1788 pret->actual_count_bytes = entries; 1789 pret->pdt_entries = entries / sizeof(unsigned long); 1790 } 1791 1792 spin_unlock_irqrestore(&pdc_lock, flags); 1793 1794 return retval; 1795 } 1796 1797 /** 1798 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware 1799 * @pret: ptr to hold returned information 1800 * @phys_addr: physical address to examine 1801 * 1802 */ 1803 int pdc_pat_mem_get_dimm_phys_location( 1804 struct pdc_pat_mem_phys_mem_location *pret, 1805 unsigned long phys_addr) 1806 { 1807 int retval; 1808 unsigned long flags; 1809 1810 spin_lock_irqsave(&pdc_lock, flags); 1811 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS, 1812 __pa(&pdc_result), phys_addr); 1813 1814 if (retval == PDC_OK) 1815 memcpy(pret, &pdc_result, sizeof(*pret)); 1816 1817 spin_unlock_irqrestore(&pdc_lock, flags); 1818 1819 return retval; 1820 } 1821 #endif /* CONFIG_64BIT */ 1822 #endif /* defined(BOOTLOADER) */ 1823 1824 1825 /***************** 32-bit real-mode calls ***********/ 1826 /* The struct below is used 1827 * to overlay real_stack (real2.S), preparing a 32-bit call frame. 1828 * real32_call_asm() then uses this stack in narrow real mode 1829 */ 1830 1831 struct narrow_stack { 1832 /* use int, not long which is 64 bits */ 1833 unsigned int arg13; 1834 unsigned int arg12; 1835 unsigned int arg11; 1836 unsigned int arg10; 1837 unsigned int arg9; 1838 unsigned int arg8; 1839 unsigned int arg7; 1840 unsigned int arg6; 1841 unsigned int arg5; 1842 unsigned int arg4; 1843 unsigned int arg3; 1844 unsigned int arg2; 1845 unsigned int arg1; 1846 unsigned int arg0; 1847 unsigned int frame_marker[8]; 1848 unsigned int sp; 1849 /* in reality, there's nearly 8k of stack after this */ 1850 }; 1851 1852 long real32_call(unsigned long fn, ...) 1853 { 1854 va_list args; 1855 extern struct narrow_stack real_stack; 1856 extern unsigned long real32_call_asm(unsigned int *, 1857 unsigned int *, 1858 unsigned int); 1859 1860 va_start(args, fn); 1861 real_stack.arg0 = va_arg(args, unsigned int); 1862 real_stack.arg1 = va_arg(args, unsigned int); 1863 real_stack.arg2 = va_arg(args, unsigned int); 1864 real_stack.arg3 = va_arg(args, unsigned int); 1865 real_stack.arg4 = va_arg(args, unsigned int); 1866 real_stack.arg5 = va_arg(args, unsigned int); 1867 real_stack.arg6 = va_arg(args, unsigned int); 1868 real_stack.arg7 = va_arg(args, unsigned int); 1869 real_stack.arg8 = va_arg(args, unsigned int); 1870 real_stack.arg9 = va_arg(args, unsigned int); 1871 real_stack.arg10 = va_arg(args, unsigned int); 1872 real_stack.arg11 = va_arg(args, unsigned int); 1873 real_stack.arg12 = va_arg(args, unsigned int); 1874 real_stack.arg13 = va_arg(args, unsigned int); 1875 va_end(args); 1876 1877 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn); 1878 } 1879 1880 #ifdef CONFIG_64BIT 1881 /***************** 64-bit real-mode calls ***********/ 1882 1883 struct wide_stack { 1884 unsigned long arg0; 1885 unsigned long arg1; 1886 unsigned long arg2; 1887 unsigned long arg3; 1888 unsigned long arg4; 1889 unsigned long arg5; 1890 unsigned long arg6; 1891 unsigned long arg7; 1892 unsigned long arg8; 1893 unsigned long arg9; 1894 unsigned long arg10; 1895 unsigned long arg11; 1896 unsigned long arg12; 1897 unsigned long arg13; 1898 unsigned long frame_marker[2]; /* rp, previous sp */ 1899 unsigned long sp; 1900 /* in reality, there's nearly 8k of stack after this */ 1901 }; 1902 1903 long real64_call(unsigned long fn, ...) 1904 { 1905 va_list args; 1906 extern struct wide_stack real64_stack; 1907 extern unsigned long real64_call_asm(unsigned long *, 1908 unsigned long *, 1909 unsigned long); 1910 1911 va_start(args, fn); 1912 real64_stack.arg0 = va_arg(args, unsigned long); 1913 real64_stack.arg1 = va_arg(args, unsigned long); 1914 real64_stack.arg2 = va_arg(args, unsigned long); 1915 real64_stack.arg3 = va_arg(args, unsigned long); 1916 real64_stack.arg4 = va_arg(args, unsigned long); 1917 real64_stack.arg5 = va_arg(args, unsigned long); 1918 real64_stack.arg6 = va_arg(args, unsigned long); 1919 real64_stack.arg7 = va_arg(args, unsigned long); 1920 real64_stack.arg8 = va_arg(args, unsigned long); 1921 real64_stack.arg9 = va_arg(args, unsigned long); 1922 real64_stack.arg10 = va_arg(args, unsigned long); 1923 real64_stack.arg11 = va_arg(args, unsigned long); 1924 real64_stack.arg12 = va_arg(args, unsigned long); 1925 real64_stack.arg13 = va_arg(args, unsigned long); 1926 va_end(args); 1927 1928 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn); 1929 } 1930 1931 #endif /* CONFIG_64BIT */ 1932