xref: /linux/arch/parisc/kernel/firmware.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  * arch/parisc/kernel/firmware.c  - safe PDC access routines
3  *
4  *	PDC == Processor Dependent Code
5  *
6  * See http://www.parisc-linux.org/documentation/index.html
7  * for documentation describing the entry points and calling
8  * conventions defined below.
9  *
10  * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11  * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12  * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13  * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14  * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15  *
16  *    This program is free software; you can redistribute it and/or modify
17  *    it under the terms of the GNU General Public License as published by
18  *    the Free Software Foundation; either version 2 of the License, or
19  *    (at your option) any later version.
20  *
21  */
22 
23 /*	I think it would be in everyone's best interest to follow this
24  *	guidelines when writing PDC wrappers:
25  *
26  *	 - the name of the pdc wrapper should match one of the macros
27  *	   used for the first two arguments
28  *	 - don't use caps for random parts of the name
29  *	 - use the static PDC result buffers and "copyout" to structs
30  *	   supplied by the caller to encapsulate alignment restrictions
31  *	 - hold pdc_lock while in PDC or using static result buffers
32  *	 - use __pa() to convert virtual (kernel) pointers to physical
33  *	   ones.
34  *	 - the name of the struct used for pdc return values should equal
35  *	   one of the macros used for the first two arguments to the
36  *	   corresponding PDC call
37  *	 - keep the order of arguments
38  *	 - don't be smart (setting trailing NUL bytes for strings, return
39  *	   something useful even if the call failed) unless you are sure
40  *	   it's not going to affect functionality or performance
41  *
42  *	Example:
43  *	int pdc_cache_info(struct pdc_cache_info *cache_info )
44  *	{
45  *		int retval;
46  *
47  *		spin_lock_irq(&pdc_lock);
48  *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49  *		convert_to_wide(pdc_result);
50  *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
51  *		spin_unlock_irq(&pdc_lock);
52  *
53  *		return retval;
54  *	}
55  *					prumpf	991016
56  */
57 
58 #include <stdarg.h>
59 
60 #include <linux/delay.h>
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/spinlock.h>
66 
67 #include <asm/page.h>
68 #include <asm/pdc.h>
69 #include <asm/pdcpat.h>
70 #include <asm/processor.h>	/* for boot_cpu_data */
71 
72 static DEFINE_SPINLOCK(pdc_lock);
73 extern unsigned long pdc_result[NUM_PDC_RESULT];
74 extern unsigned long pdc_result2[NUM_PDC_RESULT];
75 
76 #ifdef CONFIG_64BIT
77 #define WIDE_FIRMWARE 0x1
78 #define NARROW_FIRMWARE 0x2
79 
80 /* Firmware needs to be initially set to narrow to determine the
81  * actual firmware width. */
82 int parisc_narrow_firmware __read_mostly = 1;
83 #endif
84 
85 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
86  * and MEM_PDC calls are always the same width as the OS.
87  * Some PAT boxes may have 64-bit IODC I/O.
88  *
89  * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
90  * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
91  * This allowed wide kernels to run on Cxxx boxes.
92  * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
93  * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
94  */
95 
96 #ifdef CONFIG_64BIT
97 long real64_call(unsigned long function, ...);
98 #endif
99 long real32_call(unsigned long function, ...);
100 
101 #ifdef CONFIG_64BIT
102 #   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
103 #   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
104 #else
105 #   define MEM_PDC (unsigned long)PAGE0->mem_pdc
106 #   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
107 #endif
108 
109 
110 /**
111  * f_extend - Convert PDC addresses to kernel addresses.
112  * @address: Address returned from PDC.
113  *
114  * This function is used to convert PDC addresses into kernel addresses
115  * when the PDC address size and kernel address size are different.
116  */
117 static unsigned long f_extend(unsigned long address)
118 {
119 #ifdef CONFIG_64BIT
120 	if(unlikely(parisc_narrow_firmware)) {
121 		if((address & 0xff000000) == 0xf0000000)
122 			return 0xf0f0f0f000000000UL | (u32)address;
123 
124 		if((address & 0xf0000000) == 0xf0000000)
125 			return 0xffffffff00000000UL | (u32)address;
126 	}
127 #endif
128 	return address;
129 }
130 
131 /**
132  * convert_to_wide - Convert the return buffer addresses into kernel addresses.
133  * @address: The return buffer from PDC.
134  *
135  * This function is used to convert the return buffer addresses retrieved from PDC
136  * into kernel addresses when the PDC address size and kernel address size are
137  * different.
138  */
139 static void convert_to_wide(unsigned long *addr)
140 {
141 #ifdef CONFIG_64BIT
142 	int i;
143 	unsigned int *p = (unsigned int *)addr;
144 
145 	if(unlikely(parisc_narrow_firmware)) {
146 		for(i = 31; i >= 0; --i)
147 			addr[i] = p[i];
148 	}
149 #endif
150 }
151 
152 #ifdef CONFIG_64BIT
153 void __cpuinit set_firmware_width_unlocked(void)
154 {
155 	int ret;
156 
157 	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
158 		__pa(pdc_result), 0);
159 	convert_to_wide(pdc_result);
160 	if (pdc_result[0] != NARROW_FIRMWARE)
161 		parisc_narrow_firmware = 0;
162 }
163 
164 /**
165  * set_firmware_width - Determine if the firmware is wide or narrow.
166  *
167  * This function must be called before any pdc_* function that uses the
168  * convert_to_wide function.
169  */
170 void __cpuinit set_firmware_width(void)
171 {
172 	unsigned long flags;
173 	spin_lock_irqsave(&pdc_lock, flags);
174 	set_firmware_width_unlocked();
175 	spin_unlock_irqrestore(&pdc_lock, flags);
176 }
177 #else
178 void __cpuinit set_firmware_width_unlocked(void) {
179 	return;
180 }
181 
182 void __cpuinit set_firmware_width(void) {
183 	return;
184 }
185 #endif /*CONFIG_64BIT*/
186 
187 /**
188  * pdc_emergency_unlock - Unlock the linux pdc lock
189  *
190  * This call unlocks the linux pdc lock in case we need some PDC functions
191  * (like pdc_add_valid) during kernel stack dump.
192  */
193 void pdc_emergency_unlock(void)
194 {
195  	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
196         if (spin_is_locked(&pdc_lock))
197 		spin_unlock(&pdc_lock);
198 }
199 
200 
201 /**
202  * pdc_add_valid - Verify address can be accessed without causing a HPMC.
203  * @address: Address to be verified.
204  *
205  * This PDC call attempts to read from the specified address and verifies
206  * if the address is valid.
207  *
208  * The return value is PDC_OK (0) in case accessing this address is valid.
209  */
210 int pdc_add_valid(unsigned long address)
211 {
212         int retval;
213 	unsigned long flags;
214 
215         spin_lock_irqsave(&pdc_lock, flags);
216         retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
217         spin_unlock_irqrestore(&pdc_lock, flags);
218 
219         return retval;
220 }
221 EXPORT_SYMBOL(pdc_add_valid);
222 
223 /**
224  * pdc_chassis_info - Return chassis information.
225  * @result: The return buffer.
226  * @chassis_info: The memory buffer address.
227  * @len: The size of the memory buffer address.
228  *
229  * An HVERSION dependent call for returning the chassis information.
230  */
231 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
232 {
233         int retval;
234 	unsigned long flags;
235 
236         spin_lock_irqsave(&pdc_lock, flags);
237         memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
238         memcpy(&pdc_result2, led_info, len);
239         retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
240                               __pa(pdc_result), __pa(pdc_result2), len);
241         memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
242         memcpy(led_info, pdc_result2, len);
243         spin_unlock_irqrestore(&pdc_lock, flags);
244 
245         return retval;
246 }
247 
248 /**
249  * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
250  * @retval: -1 on error, 0 on success. Other value are PDC errors
251  *
252  * Must be correctly formatted or expect system crash
253  */
254 #ifdef CONFIG_64BIT
255 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
256 {
257 	int retval = 0;
258 	unsigned long flags;
259 
260 	if (!is_pdc_pat())
261 		return -1;
262 
263 	spin_lock_irqsave(&pdc_lock, flags);
264 	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
265 	spin_unlock_irqrestore(&pdc_lock, flags);
266 
267 	return retval;
268 }
269 #endif
270 
271 /**
272  * pdc_chassis_disp - Updates chassis code
273  * @retval: -1 on error, 0 on success
274  */
275 int pdc_chassis_disp(unsigned long disp)
276 {
277 	int retval = 0;
278 	unsigned long flags;
279 
280 	spin_lock_irqsave(&pdc_lock, flags);
281 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
282 	spin_unlock_irqrestore(&pdc_lock, flags);
283 
284 	return retval;
285 }
286 
287 /**
288  * pdc_chassis_warn - Fetches chassis warnings
289  * @retval: -1 on error, 0 on success
290  */
291 int pdc_chassis_warn(unsigned long *warn)
292 {
293 	int retval = 0;
294 	unsigned long flags;
295 
296 	spin_lock_irqsave(&pdc_lock, flags);
297 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
298 	*warn = pdc_result[0];
299 	spin_unlock_irqrestore(&pdc_lock, flags);
300 
301 	return retval;
302 }
303 
304 int __cpuinit pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
305 {
306 	int ret;
307 
308 	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
309 	convert_to_wide(pdc_result);
310 	pdc_coproc_info->ccr_functional = pdc_result[0];
311 	pdc_coproc_info->ccr_present = pdc_result[1];
312 	pdc_coproc_info->revision = pdc_result[17];
313 	pdc_coproc_info->model = pdc_result[18];
314 
315 	return ret;
316 }
317 
318 /**
319  * pdc_coproc_cfg - To identify coprocessors attached to the processor.
320  * @pdc_coproc_info: Return buffer address.
321  *
322  * This PDC call returns the presence and status of all the coprocessors
323  * attached to the processor.
324  */
325 int __cpuinit pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
326 {
327 	int ret;
328 	unsigned long flags;
329 
330 	spin_lock_irqsave(&pdc_lock, flags);
331 	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
332 	spin_unlock_irqrestore(&pdc_lock, flags);
333 
334 	return ret;
335 }
336 
337 /**
338  * pdc_iodc_read - Read data from the modules IODC.
339  * @actcnt: The actual number of bytes.
340  * @hpa: The HPA of the module for the iodc read.
341  * @index: The iodc entry point.
342  * @iodc_data: A buffer memory for the iodc options.
343  * @iodc_data_size: Size of the memory buffer.
344  *
345  * This PDC call reads from the IODC of the module specified by the hpa
346  * argument.
347  */
348 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
349 		  void *iodc_data, unsigned int iodc_data_size)
350 {
351 	int retval;
352 	unsigned long flags;
353 
354 	spin_lock_irqsave(&pdc_lock, flags);
355 	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
356 			      index, __pa(pdc_result2), iodc_data_size);
357 	convert_to_wide(pdc_result);
358 	*actcnt = pdc_result[0];
359 	memcpy(iodc_data, pdc_result2, iodc_data_size);
360 	spin_unlock_irqrestore(&pdc_lock, flags);
361 
362 	return retval;
363 }
364 EXPORT_SYMBOL(pdc_iodc_read);
365 
366 /**
367  * pdc_system_map_find_mods - Locate unarchitected modules.
368  * @pdc_mod_info: Return buffer address.
369  * @mod_path: pointer to dev path structure.
370  * @mod_index: fixed address module index.
371  *
372  * To locate and identify modules which reside at fixed I/O addresses, which
373  * do not self-identify via architected bus walks.
374  */
375 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
376 			     struct pdc_module_path *mod_path, long mod_index)
377 {
378 	int retval;
379 	unsigned long flags;
380 
381 	spin_lock_irqsave(&pdc_lock, flags);
382 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
383 			      __pa(pdc_result2), mod_index);
384 	convert_to_wide(pdc_result);
385 	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
386 	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
387 	spin_unlock_irqrestore(&pdc_lock, flags);
388 
389 	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
390 	return retval;
391 }
392 
393 /**
394  * pdc_system_map_find_addrs - Retrieve additional address ranges.
395  * @pdc_addr_info: Return buffer address.
396  * @mod_index: Fixed address module index.
397  * @addr_index: Address range index.
398  *
399  * Retrieve additional information about subsequent address ranges for modules
400  * with multiple address ranges.
401  */
402 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
403 			      long mod_index, long addr_index)
404 {
405 	int retval;
406 	unsigned long flags;
407 
408 	spin_lock_irqsave(&pdc_lock, flags);
409 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
410 			      mod_index, addr_index);
411 	convert_to_wide(pdc_result);
412 	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
413 	spin_unlock_irqrestore(&pdc_lock, flags);
414 
415 	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
416 	return retval;
417 }
418 
419 /**
420  * pdc_model_info - Return model information about the processor.
421  * @model: The return buffer.
422  *
423  * Returns the version numbers, identifiers, and capabilities from the processor module.
424  */
425 int pdc_model_info(struct pdc_model *model)
426 {
427 	int retval;
428 	unsigned long flags;
429 
430 	spin_lock_irqsave(&pdc_lock, flags);
431 	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
432 	convert_to_wide(pdc_result);
433 	memcpy(model, pdc_result, sizeof(*model));
434 	spin_unlock_irqrestore(&pdc_lock, flags);
435 
436 	return retval;
437 }
438 
439 /**
440  * pdc_model_sysmodel - Get the system model name.
441  * @name: A char array of at least 81 characters.
442  *
443  * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
444  * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
445  * on HP/UX.
446  */
447 int pdc_model_sysmodel(char *name)
448 {
449         int retval;
450 	unsigned long flags;
451 
452         spin_lock_irqsave(&pdc_lock, flags);
453         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
454                               OS_ID_HPUX, __pa(name));
455         convert_to_wide(pdc_result);
456 
457         if (retval == PDC_OK) {
458                 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
459         } else {
460                 name[0] = 0;
461         }
462         spin_unlock_irqrestore(&pdc_lock, flags);
463 
464         return retval;
465 }
466 
467 /**
468  * pdc_model_versions - Identify the version number of each processor.
469  * @cpu_id: The return buffer.
470  * @id: The id of the processor to check.
471  *
472  * Returns the version number for each processor component.
473  *
474  * This comment was here before, but I do not know what it means :( -RB
475  * id: 0 = cpu revision, 1 = boot-rom-version
476  */
477 int pdc_model_versions(unsigned long *versions, int id)
478 {
479         int retval;
480 	unsigned long flags;
481 
482         spin_lock_irqsave(&pdc_lock, flags);
483         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
484         convert_to_wide(pdc_result);
485         *versions = pdc_result[0];
486         spin_unlock_irqrestore(&pdc_lock, flags);
487 
488         return retval;
489 }
490 
491 /**
492  * pdc_model_cpuid - Returns the CPU_ID.
493  * @cpu_id: The return buffer.
494  *
495  * Returns the CPU_ID value which uniquely identifies the cpu portion of
496  * the processor module.
497  */
498 int pdc_model_cpuid(unsigned long *cpu_id)
499 {
500         int retval;
501 	unsigned long flags;
502 
503         spin_lock_irqsave(&pdc_lock, flags);
504         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
505         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
506         convert_to_wide(pdc_result);
507         *cpu_id = pdc_result[0];
508         spin_unlock_irqrestore(&pdc_lock, flags);
509 
510         return retval;
511 }
512 
513 /**
514  * pdc_model_capabilities - Returns the platform capabilities.
515  * @capabilities: The return buffer.
516  *
517  * Returns information about platform support for 32- and/or 64-bit
518  * OSes, IO-PDIR coherency, and virtual aliasing.
519  */
520 int pdc_model_capabilities(unsigned long *capabilities)
521 {
522         int retval;
523 	unsigned long flags;
524 
525         spin_lock_irqsave(&pdc_lock, flags);
526         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
527         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
528         convert_to_wide(pdc_result);
529         if (retval == PDC_OK) {
530                 *capabilities = pdc_result[0];
531         } else {
532                 *capabilities = PDC_MODEL_OS32;
533         }
534         spin_unlock_irqrestore(&pdc_lock, flags);
535 
536         return retval;
537 }
538 
539 /**
540  * pdc_cache_info - Return cache and TLB information.
541  * @cache_info: The return buffer.
542  *
543  * Returns information about the processor's cache and TLB.
544  */
545 int pdc_cache_info(struct pdc_cache_info *cache_info)
546 {
547         int retval;
548 	unsigned long flags;
549 
550         spin_lock_irqsave(&pdc_lock, flags);
551         retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
552         convert_to_wide(pdc_result);
553         memcpy(cache_info, pdc_result, sizeof(*cache_info));
554         spin_unlock_irqrestore(&pdc_lock, flags);
555 
556         return retval;
557 }
558 
559 /**
560  * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
561  * @space_bits: Should be 0, if not, bad mojo!
562  *
563  * Returns information about Space ID hashing.
564  */
565 int pdc_spaceid_bits(unsigned long *space_bits)
566 {
567 	int retval;
568 	unsigned long flags;
569 
570 	spin_lock_irqsave(&pdc_lock, flags);
571 	pdc_result[0] = 0;
572 	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
573 	convert_to_wide(pdc_result);
574 	*space_bits = pdc_result[0];
575 	spin_unlock_irqrestore(&pdc_lock, flags);
576 
577 	return retval;
578 }
579 
580 #ifndef CONFIG_PA20
581 /**
582  * pdc_btlb_info - Return block TLB information.
583  * @btlb: The return buffer.
584  *
585  * Returns information about the hardware Block TLB.
586  */
587 int pdc_btlb_info(struct pdc_btlb_info *btlb)
588 {
589         int retval;
590 	unsigned long flags;
591 
592         spin_lock_irqsave(&pdc_lock, flags);
593         retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
594         memcpy(btlb, pdc_result, sizeof(*btlb));
595         spin_unlock_irqrestore(&pdc_lock, flags);
596 
597         if(retval < 0) {
598                 btlb->max_size = 0;
599         }
600         return retval;
601 }
602 
603 /**
604  * pdc_mem_map_hpa - Find fixed module information.
605  * @address: The return buffer
606  * @mod_path: pointer to dev path structure.
607  *
608  * This call was developed for S700 workstations to allow the kernel to find
609  * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
610  * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
611  * call.
612  *
613  * This call is supported by all existing S700 workstations (up to  Gecko).
614  */
615 int pdc_mem_map_hpa(struct pdc_memory_map *address,
616 		struct pdc_module_path *mod_path)
617 {
618         int retval;
619 	unsigned long flags;
620 
621         spin_lock_irqsave(&pdc_lock, flags);
622         memcpy(pdc_result2, mod_path, sizeof(*mod_path));
623         retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
624 				__pa(pdc_result2));
625         memcpy(address, pdc_result, sizeof(*address));
626         spin_unlock_irqrestore(&pdc_lock, flags);
627 
628         return retval;
629 }
630 #endif	/* !CONFIG_PA20 */
631 
632 /**
633  * pdc_lan_station_id - Get the LAN address.
634  * @lan_addr: The return buffer.
635  * @hpa: The network device HPA.
636  *
637  * Get the LAN station address when it is not directly available from the LAN hardware.
638  */
639 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
640 {
641 	int retval;
642 	unsigned long flags;
643 
644 	spin_lock_irqsave(&pdc_lock, flags);
645 	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
646 			__pa(pdc_result), hpa);
647 	if (retval < 0) {
648 		/* FIXME: else read MAC from NVRAM */
649 		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
650 	} else {
651 		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
652 	}
653 	spin_unlock_irqrestore(&pdc_lock, flags);
654 
655 	return retval;
656 }
657 EXPORT_SYMBOL(pdc_lan_station_id);
658 
659 /**
660  * pdc_stable_read - Read data from Stable Storage.
661  * @staddr: Stable Storage address to access.
662  * @memaddr: The memory address where Stable Storage data shall be copied.
663  * @count: number of bytes to transfer. count is multiple of 4.
664  *
665  * This PDC call reads from the Stable Storage address supplied in staddr
666  * and copies count bytes to the memory address memaddr.
667  * The call will fail if staddr+count > PDC_STABLE size.
668  */
669 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
670 {
671        int retval;
672 	unsigned long flags;
673 
674        spin_lock_irqsave(&pdc_lock, flags);
675        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
676                __pa(pdc_result), count);
677        convert_to_wide(pdc_result);
678        memcpy(memaddr, pdc_result, count);
679        spin_unlock_irqrestore(&pdc_lock, flags);
680 
681        return retval;
682 }
683 EXPORT_SYMBOL(pdc_stable_read);
684 
685 /**
686  * pdc_stable_write - Write data to Stable Storage.
687  * @staddr: Stable Storage address to access.
688  * @memaddr: The memory address where Stable Storage data shall be read from.
689  * @count: number of bytes to transfer. count is multiple of 4.
690  *
691  * This PDC call reads count bytes from the supplied memaddr address,
692  * and copies count bytes to the Stable Storage address staddr.
693  * The call will fail if staddr+count > PDC_STABLE size.
694  */
695 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
696 {
697        int retval;
698 	unsigned long flags;
699 
700        spin_lock_irqsave(&pdc_lock, flags);
701        memcpy(pdc_result, memaddr, count);
702        convert_to_wide(pdc_result);
703        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
704                __pa(pdc_result), count);
705        spin_unlock_irqrestore(&pdc_lock, flags);
706 
707        return retval;
708 }
709 EXPORT_SYMBOL(pdc_stable_write);
710 
711 /**
712  * pdc_stable_get_size - Get Stable Storage size in bytes.
713  * @size: pointer where the size will be stored.
714  *
715  * This PDC call returns the number of bytes in the processor's Stable
716  * Storage, which is the number of contiguous bytes implemented in Stable
717  * Storage starting from staddr=0. size in an unsigned 64-bit integer
718  * which is a multiple of four.
719  */
720 int pdc_stable_get_size(unsigned long *size)
721 {
722        int retval;
723 	unsigned long flags;
724 
725        spin_lock_irqsave(&pdc_lock, flags);
726        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
727        *size = pdc_result[0];
728        spin_unlock_irqrestore(&pdc_lock, flags);
729 
730        return retval;
731 }
732 EXPORT_SYMBOL(pdc_stable_get_size);
733 
734 /**
735  * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
736  *
737  * This PDC call is meant to be used to check the integrity of the current
738  * contents of Stable Storage.
739  */
740 int pdc_stable_verify_contents(void)
741 {
742        int retval;
743 	unsigned long flags;
744 
745        spin_lock_irqsave(&pdc_lock, flags);
746        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
747        spin_unlock_irqrestore(&pdc_lock, flags);
748 
749        return retval;
750 }
751 EXPORT_SYMBOL(pdc_stable_verify_contents);
752 
753 /**
754  * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
755  * the validity indicator.
756  *
757  * This PDC call will erase all contents of Stable Storage. Use with care!
758  */
759 int pdc_stable_initialize(void)
760 {
761        int retval;
762 	unsigned long flags;
763 
764        spin_lock_irqsave(&pdc_lock, flags);
765        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
766        spin_unlock_irqrestore(&pdc_lock, flags);
767 
768        return retval;
769 }
770 EXPORT_SYMBOL(pdc_stable_initialize);
771 
772 /**
773  * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
774  * @hwpath: fully bc.mod style path to the device.
775  * @initiator: the array to return the result into
776  *
777  * Get the SCSI operational parameters from PDC.
778  * Needed since HPUX never used BIOS or symbios card NVRAM.
779  * Most ncr/sym cards won't have an entry and just use whatever
780  * capabilities of the card are (eg Ultra, LVD). But there are
781  * several cases where it's useful:
782  *    o set SCSI id for Multi-initiator clusters,
783  *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
784  *    o bus width exported is less than what the interface chip supports.
785  */
786 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
787 {
788 	int retval;
789 	unsigned long flags;
790 
791 	spin_lock_irqsave(&pdc_lock, flags);
792 
793 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
794 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
795 	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
796 
797 	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
798 			      __pa(pdc_result), __pa(hwpath));
799 	if (retval < PDC_OK)
800 		goto out;
801 
802 	if (pdc_result[0] < 16) {
803 		initiator->host_id = pdc_result[0];
804 	} else {
805 		initiator->host_id = -1;
806 	}
807 
808 	/*
809 	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
810 	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
811 	 */
812 	switch (pdc_result[1]) {
813 		case  1: initiator->factor = 50; break;
814 		case  2: initiator->factor = 25; break;
815 		case  5: initiator->factor = 12; break;
816 		case 25: initiator->factor = 10; break;
817 		case 20: initiator->factor = 12; break;
818 		case 40: initiator->factor = 10; break;
819 		default: initiator->factor = -1; break;
820 	}
821 
822 	if (IS_SPROCKETS()) {
823 		initiator->width = pdc_result[4];
824 		initiator->mode = pdc_result[5];
825 	} else {
826 		initiator->width = -1;
827 		initiator->mode = -1;
828 	}
829 
830  out:
831 	spin_unlock_irqrestore(&pdc_lock, flags);
832 
833 	return (retval >= PDC_OK);
834 }
835 EXPORT_SYMBOL(pdc_get_initiator);
836 
837 
838 /**
839  * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
840  * @num_entries: The return value.
841  * @hpa: The HPA for the device.
842  *
843  * This PDC function returns the number of entries in the specified cell's
844  * interrupt table.
845  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
846  */
847 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
848 {
849 	int retval;
850 	unsigned long flags;
851 
852 	spin_lock_irqsave(&pdc_lock, flags);
853 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
854 			      __pa(pdc_result), hpa);
855 	convert_to_wide(pdc_result);
856 	*num_entries = pdc_result[0];
857 	spin_unlock_irqrestore(&pdc_lock, flags);
858 
859 	return retval;
860 }
861 
862 /**
863  * pdc_pci_irt - Get the PCI interrupt routing table.
864  * @num_entries: The number of entries in the table.
865  * @hpa: The Hard Physical Address of the device.
866  * @tbl:
867  *
868  * Get the PCI interrupt routing table for the device at the given HPA.
869  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
870  */
871 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
872 {
873 	int retval;
874 	unsigned long flags;
875 
876 	BUG_ON((unsigned long)tbl & 0x7);
877 
878 	spin_lock_irqsave(&pdc_lock, flags);
879 	pdc_result[0] = num_entries;
880 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
881 			      __pa(pdc_result), hpa, __pa(tbl));
882 	spin_unlock_irqrestore(&pdc_lock, flags);
883 
884 	return retval;
885 }
886 
887 
888 #if 0	/* UNTEST CODE - left here in case someone needs it */
889 
890 /**
891  * pdc_pci_config_read - read PCI config space.
892  * @hpa		token from PDC to indicate which PCI device
893  * @pci_addr	configuration space address to read from
894  *
895  * Read PCI Configuration space *before* linux PCI subsystem is running.
896  */
897 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
898 {
899 	int retval;
900 	unsigned long flags;
901 
902 	spin_lock_irqsave(&pdc_lock, flags);
903 	pdc_result[0] = 0;
904 	pdc_result[1] = 0;
905 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
906 			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
907 	spin_unlock_irqrestore(&pdc_lock, flags);
908 
909 	return retval ? ~0 : (unsigned int) pdc_result[0];
910 }
911 
912 
913 /**
914  * pdc_pci_config_write - read PCI config space.
915  * @hpa		token from PDC to indicate which PCI device
916  * @pci_addr	configuration space address to write
917  * @val		value we want in the 32-bit register
918  *
919  * Write PCI Configuration space *before* linux PCI subsystem is running.
920  */
921 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
922 {
923 	int retval;
924 	unsigned long flags;
925 
926 	spin_lock_irqsave(&pdc_lock, flags);
927 	pdc_result[0] = 0;
928 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
929 			      __pa(pdc_result), hpa,
930 			      cfg_addr&~3UL, 4UL, (unsigned long) val);
931 	spin_unlock_irqrestore(&pdc_lock, flags);
932 
933 	return retval;
934 }
935 #endif /* UNTESTED CODE */
936 
937 /**
938  * pdc_tod_read - Read the Time-Of-Day clock.
939  * @tod: The return buffer:
940  *
941  * Read the Time-Of-Day clock
942  */
943 int pdc_tod_read(struct pdc_tod *tod)
944 {
945         int retval;
946 	unsigned long flags;
947 
948         spin_lock_irqsave(&pdc_lock, flags);
949         retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
950         convert_to_wide(pdc_result);
951         memcpy(tod, pdc_result, sizeof(*tod));
952         spin_unlock_irqrestore(&pdc_lock, flags);
953 
954         return retval;
955 }
956 EXPORT_SYMBOL(pdc_tod_read);
957 
958 /**
959  * pdc_tod_set - Set the Time-Of-Day clock.
960  * @sec: The number of seconds since epoch.
961  * @usec: The number of micro seconds.
962  *
963  * Set the Time-Of-Day clock.
964  */
965 int pdc_tod_set(unsigned long sec, unsigned long usec)
966 {
967         int retval;
968 	unsigned long flags;
969 
970         spin_lock_irqsave(&pdc_lock, flags);
971         retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
972         spin_unlock_irqrestore(&pdc_lock, flags);
973 
974         return retval;
975 }
976 EXPORT_SYMBOL(pdc_tod_set);
977 
978 #ifdef CONFIG_64BIT
979 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
980 		struct pdc_memory_table *tbl, unsigned long entries)
981 {
982 	int retval;
983 	unsigned long flags;
984 
985 	spin_lock_irqsave(&pdc_lock, flags);
986 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
987 	convert_to_wide(pdc_result);
988 	memcpy(r_addr, pdc_result, sizeof(*r_addr));
989 	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
990 	spin_unlock_irqrestore(&pdc_lock, flags);
991 
992 	return retval;
993 }
994 #endif /* CONFIG_64BIT */
995 
996 /* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
997  * so I guessed at unsigned long.  Someone who knows what this does, can fix
998  * it later. :)
999  */
1000 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1001 {
1002         int retval;
1003 	unsigned long flags;
1004 
1005         spin_lock_irqsave(&pdc_lock, flags);
1006         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1007                               PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1008         spin_unlock_irqrestore(&pdc_lock, flags);
1009 
1010         return retval;
1011 }
1012 
1013 /*
1014  * pdc_do_reset - Reset the system.
1015  *
1016  * Reset the system.
1017  */
1018 int pdc_do_reset(void)
1019 {
1020         int retval;
1021 	unsigned long flags;
1022 
1023         spin_lock_irqsave(&pdc_lock, flags);
1024         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1025         spin_unlock_irqrestore(&pdc_lock, flags);
1026 
1027         return retval;
1028 }
1029 
1030 /*
1031  * pdc_soft_power_info - Enable soft power switch.
1032  * @power_reg: address of soft power register
1033  *
1034  * Return the absolute address of the soft power switch register
1035  */
1036 int __init pdc_soft_power_info(unsigned long *power_reg)
1037 {
1038 	int retval;
1039 	unsigned long flags;
1040 
1041 	*power_reg = (unsigned long) (-1);
1042 
1043 	spin_lock_irqsave(&pdc_lock, flags);
1044 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1045 	if (retval == PDC_OK) {
1046                 convert_to_wide(pdc_result);
1047                 *power_reg = f_extend(pdc_result[0]);
1048 	}
1049 	spin_unlock_irqrestore(&pdc_lock, flags);
1050 
1051 	return retval;
1052 }
1053 
1054 /*
1055  * pdc_soft_power_button - Control the soft power button behaviour
1056  * @sw_control: 0 for hardware control, 1 for software control
1057  *
1058  *
1059  * This PDC function places the soft power button under software or
1060  * hardware control.
1061  * Under software control the OS may control to when to allow to shut
1062  * down the system. Under hardware control pressing the power button
1063  * powers off the system immediately.
1064  */
1065 int pdc_soft_power_button(int sw_control)
1066 {
1067 	int retval;
1068 	unsigned long flags;
1069 
1070 	spin_lock_irqsave(&pdc_lock, flags);
1071 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1072 	spin_unlock_irqrestore(&pdc_lock, flags);
1073 
1074 	return retval;
1075 }
1076 
1077 /*
1078  * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1079  * Primarily a problem on T600 (which parisc-linux doesn't support) but
1080  * who knows what other platform firmware might do with this OS "hook".
1081  */
1082 void pdc_io_reset(void)
1083 {
1084 	unsigned long flags;
1085 
1086 	spin_lock_irqsave(&pdc_lock, flags);
1087 	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1088 	spin_unlock_irqrestore(&pdc_lock, flags);
1089 }
1090 
1091 /*
1092  * pdc_io_reset_devices - Hack to Stop USB controller
1093  *
1094  * If PDC used the usb controller, the usb controller
1095  * is still running and will crash the machines during iommu
1096  * setup, because of still running DMA. This PDC call
1097  * stops the USB controller.
1098  * Normally called after calling pdc_io_reset().
1099  */
1100 void pdc_io_reset_devices(void)
1101 {
1102 	unsigned long flags;
1103 
1104 	spin_lock_irqsave(&pdc_lock, flags);
1105 	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1106 	spin_unlock_irqrestore(&pdc_lock, flags);
1107 }
1108 
1109 /* locked by pdc_console_lock */
1110 static int __attribute__((aligned(8)))   iodc_retbuf[32];
1111 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1112 
1113 /**
1114  * pdc_iodc_print - Console print using IODC.
1115  * @str: the string to output.
1116  * @count: length of str
1117  *
1118  * Note that only these special chars are architected for console IODC io:
1119  * BEL, BS, CR, and LF. Others are passed through.
1120  * Since the HP console requires CR+LF to perform a 'newline', we translate
1121  * "\n" to "\r\n".
1122  */
1123 int pdc_iodc_print(const unsigned char *str, unsigned count)
1124 {
1125 	unsigned int i;
1126 	unsigned long flags;
1127 
1128 	for (i = 0; i < count;) {
1129 		switch(str[i]) {
1130 		case '\n':
1131 			iodc_dbuf[i+0] = '\r';
1132 			iodc_dbuf[i+1] = '\n';
1133 			i += 2;
1134 			goto print;
1135 		default:
1136 			iodc_dbuf[i] = str[i];
1137 			i++;
1138 			break;
1139 		}
1140 	}
1141 
1142 print:
1143         spin_lock_irqsave(&pdc_lock, flags);
1144         real32_call(PAGE0->mem_cons.iodc_io,
1145                     (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1146                     PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1147                     __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1148         spin_unlock_irqrestore(&pdc_lock, flags);
1149 
1150 	return i;
1151 }
1152 
1153 /**
1154  * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1155  *
1156  * Read a character (non-blocking) from the PDC console, returns -1 if
1157  * key is not present.
1158  */
1159 int pdc_iodc_getc(void)
1160 {
1161 	int ch;
1162 	int status;
1163 	unsigned long flags;
1164 
1165 	/* Bail if no console input device. */
1166 	if (!PAGE0->mem_kbd.iodc_io)
1167 		return 0;
1168 
1169 	/* wait for a keyboard (rs232)-input */
1170 	spin_lock_irqsave(&pdc_lock, flags);
1171 	real32_call(PAGE0->mem_kbd.iodc_io,
1172 		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1173 		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1174 		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1175 
1176 	ch = *iodc_dbuf;
1177 	status = *iodc_retbuf;
1178 	spin_unlock_irqrestore(&pdc_lock, flags);
1179 
1180 	if (status == 0)
1181 	    return -1;
1182 
1183 	return ch;
1184 }
1185 
1186 int pdc_sti_call(unsigned long func, unsigned long flags,
1187                  unsigned long inptr, unsigned long outputr,
1188                  unsigned long glob_cfg)
1189 {
1190         int retval;
1191 	unsigned long irqflags;
1192 
1193         spin_lock_irqsave(&pdc_lock, irqflags);
1194         retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1195         spin_unlock_irqrestore(&pdc_lock, irqflags);
1196 
1197         return retval;
1198 }
1199 EXPORT_SYMBOL(pdc_sti_call);
1200 
1201 #ifdef CONFIG_64BIT
1202 /**
1203  * pdc_pat_cell_get_number - Returns the cell number.
1204  * @cell_info: The return buffer.
1205  *
1206  * This PDC call returns the cell number of the cell from which the call
1207  * is made.
1208  */
1209 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1210 {
1211 	int retval;
1212 	unsigned long flags;
1213 
1214 	spin_lock_irqsave(&pdc_lock, flags);
1215 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1216 	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1217 	spin_unlock_irqrestore(&pdc_lock, flags);
1218 
1219 	return retval;
1220 }
1221 
1222 /**
1223  * pdc_pat_cell_module - Retrieve the cell's module information.
1224  * @actcnt: The number of bytes written to mem_addr.
1225  * @ploc: The physical location.
1226  * @mod: The module index.
1227  * @view_type: The view of the address type.
1228  * @mem_addr: The return buffer.
1229  *
1230  * This PDC call returns information about each module attached to the cell
1231  * at the specified location.
1232  */
1233 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1234 			unsigned long view_type, void *mem_addr)
1235 {
1236 	int retval;
1237 	unsigned long flags;
1238 	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1239 
1240 	spin_lock_irqsave(&pdc_lock, flags);
1241 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1242 			      ploc, mod, view_type, __pa(&result));
1243 	if(!retval) {
1244 		*actcnt = pdc_result[0];
1245 		memcpy(mem_addr, &result, *actcnt);
1246 	}
1247 	spin_unlock_irqrestore(&pdc_lock, flags);
1248 
1249 	return retval;
1250 }
1251 
1252 /**
1253  * pdc_pat_cpu_get_number - Retrieve the cpu number.
1254  * @cpu_info: The return buffer.
1255  * @hpa: The Hard Physical Address of the CPU.
1256  *
1257  * Retrieve the cpu number for the cpu at the specified HPA.
1258  */
1259 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1260 {
1261 	int retval;
1262 	unsigned long flags;
1263 
1264 	spin_lock_irqsave(&pdc_lock, flags);
1265 	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1266 			      __pa(&pdc_result), hpa);
1267 	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1268 	spin_unlock_irqrestore(&pdc_lock, flags);
1269 
1270 	return retval;
1271 }
1272 
1273 /**
1274  * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1275  * @num_entries: The return value.
1276  * @cell_num: The target cell.
1277  *
1278  * This PDC function returns the number of entries in the specified cell's
1279  * interrupt table.
1280  */
1281 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1282 {
1283 	int retval;
1284 	unsigned long flags;
1285 
1286 	spin_lock_irqsave(&pdc_lock, flags);
1287 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1288 			      __pa(pdc_result), cell_num);
1289 	*num_entries = pdc_result[0];
1290 	spin_unlock_irqrestore(&pdc_lock, flags);
1291 
1292 	return retval;
1293 }
1294 
1295 /**
1296  * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1297  * @r_addr: The return buffer.
1298  * @cell_num: The target cell.
1299  *
1300  * This PDC function returns the actual interrupt table for the specified cell.
1301  */
1302 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1303 {
1304 	int retval;
1305 	unsigned long flags;
1306 
1307 	spin_lock_irqsave(&pdc_lock, flags);
1308 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1309 			      __pa(r_addr), cell_num);
1310 	spin_unlock_irqrestore(&pdc_lock, flags);
1311 
1312 	return retval;
1313 }
1314 
1315 /**
1316  * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1317  * @actlen: The return buffer.
1318  * @mem_addr: Pointer to the memory buffer.
1319  * @count: The number of bytes to read from the buffer.
1320  * @offset: The offset with respect to the beginning of the buffer.
1321  *
1322  */
1323 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1324 			    unsigned long count, unsigned long offset)
1325 {
1326 	int retval;
1327 	unsigned long flags;
1328 
1329 	spin_lock_irqsave(&pdc_lock, flags);
1330 	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1331 			      __pa(pdc_result2), count, offset);
1332 	*actual_len = pdc_result[0];
1333 	memcpy(mem_addr, pdc_result2, *actual_len);
1334 	spin_unlock_irqrestore(&pdc_lock, flags);
1335 
1336 	return retval;
1337 }
1338 
1339 /**
1340  * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1341  * @pci_addr: PCI configuration space address for which the read request is being made.
1342  * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1343  * @mem_addr: Pointer to return memory buffer.
1344  *
1345  */
1346 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1347 {
1348 	int retval;
1349 	unsigned long flags;
1350 
1351 	spin_lock_irqsave(&pdc_lock, flags);
1352 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1353 					__pa(pdc_result), pci_addr, pci_size);
1354 	switch(pci_size) {
1355 		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0];
1356 		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0];
1357 		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0];
1358 	}
1359 	spin_unlock_irqrestore(&pdc_lock, flags);
1360 
1361 	return retval;
1362 }
1363 
1364 /**
1365  * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1366  * @pci_addr: PCI configuration space address for which the write  request is being made.
1367  * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1368  * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1369  *         written to PCI Config space.
1370  *
1371  */
1372 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1373 {
1374 	int retval;
1375 	unsigned long flags;
1376 
1377 	spin_lock_irqsave(&pdc_lock, flags);
1378 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1379 				pci_addr, pci_size, val);
1380 	spin_unlock_irqrestore(&pdc_lock, flags);
1381 
1382 	return retval;
1383 }
1384 #endif /* CONFIG_64BIT */
1385 
1386 
1387 /***************** 32-bit real-mode calls ***********/
1388 /* The struct below is used
1389  * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1390  * real32_call_asm() then uses this stack in narrow real mode
1391  */
1392 
1393 struct narrow_stack {
1394 	/* use int, not long which is 64 bits */
1395 	unsigned int arg13;
1396 	unsigned int arg12;
1397 	unsigned int arg11;
1398 	unsigned int arg10;
1399 	unsigned int arg9;
1400 	unsigned int arg8;
1401 	unsigned int arg7;
1402 	unsigned int arg6;
1403 	unsigned int arg5;
1404 	unsigned int arg4;
1405 	unsigned int arg3;
1406 	unsigned int arg2;
1407 	unsigned int arg1;
1408 	unsigned int arg0;
1409 	unsigned int frame_marker[8];
1410 	unsigned int sp;
1411 	/* in reality, there's nearly 8k of stack after this */
1412 };
1413 
1414 long real32_call(unsigned long fn, ...)
1415 {
1416 	va_list args;
1417 	extern struct narrow_stack real_stack;
1418 	extern unsigned long real32_call_asm(unsigned int *,
1419 					     unsigned int *,
1420 					     unsigned int);
1421 
1422 	va_start(args, fn);
1423 	real_stack.arg0 = va_arg(args, unsigned int);
1424 	real_stack.arg1 = va_arg(args, unsigned int);
1425 	real_stack.arg2 = va_arg(args, unsigned int);
1426 	real_stack.arg3 = va_arg(args, unsigned int);
1427 	real_stack.arg4 = va_arg(args, unsigned int);
1428 	real_stack.arg5 = va_arg(args, unsigned int);
1429 	real_stack.arg6 = va_arg(args, unsigned int);
1430 	real_stack.arg7 = va_arg(args, unsigned int);
1431 	real_stack.arg8 = va_arg(args, unsigned int);
1432 	real_stack.arg9 = va_arg(args, unsigned int);
1433 	real_stack.arg10 = va_arg(args, unsigned int);
1434 	real_stack.arg11 = va_arg(args, unsigned int);
1435 	real_stack.arg12 = va_arg(args, unsigned int);
1436 	real_stack.arg13 = va_arg(args, unsigned int);
1437 	va_end(args);
1438 
1439 	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1440 }
1441 
1442 #ifdef CONFIG_64BIT
1443 /***************** 64-bit real-mode calls ***********/
1444 
1445 struct wide_stack {
1446 	unsigned long arg0;
1447 	unsigned long arg1;
1448 	unsigned long arg2;
1449 	unsigned long arg3;
1450 	unsigned long arg4;
1451 	unsigned long arg5;
1452 	unsigned long arg6;
1453 	unsigned long arg7;
1454 	unsigned long arg8;
1455 	unsigned long arg9;
1456 	unsigned long arg10;
1457 	unsigned long arg11;
1458 	unsigned long arg12;
1459 	unsigned long arg13;
1460 	unsigned long frame_marker[2];	/* rp, previous sp */
1461 	unsigned long sp;
1462 	/* in reality, there's nearly 8k of stack after this */
1463 };
1464 
1465 long real64_call(unsigned long fn, ...)
1466 {
1467 	va_list args;
1468 	extern struct wide_stack real64_stack;
1469 	extern unsigned long real64_call_asm(unsigned long *,
1470 					     unsigned long *,
1471 					     unsigned long);
1472 
1473 	va_start(args, fn);
1474 	real64_stack.arg0 = va_arg(args, unsigned long);
1475 	real64_stack.arg1 = va_arg(args, unsigned long);
1476 	real64_stack.arg2 = va_arg(args, unsigned long);
1477 	real64_stack.arg3 = va_arg(args, unsigned long);
1478 	real64_stack.arg4 = va_arg(args, unsigned long);
1479 	real64_stack.arg5 = va_arg(args, unsigned long);
1480 	real64_stack.arg6 = va_arg(args, unsigned long);
1481 	real64_stack.arg7 = va_arg(args, unsigned long);
1482 	real64_stack.arg8 = va_arg(args, unsigned long);
1483 	real64_stack.arg9 = va_arg(args, unsigned long);
1484 	real64_stack.arg10 = va_arg(args, unsigned long);
1485 	real64_stack.arg11 = va_arg(args, unsigned long);
1486 	real64_stack.arg12 = va_arg(args, unsigned long);
1487 	real64_stack.arg13 = va_arg(args, unsigned long);
1488 	va_end(args);
1489 
1490 	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1491 }
1492 
1493 #endif /* CONFIG_64BIT */
1494 
1495