xref: /linux/arch/parisc/include/asm/dma-mapping.h (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 #ifndef _PARISC_DMA_MAPPING_H
2 #define _PARISC_DMA_MAPPING_H
3 
4 #include <linux/mm.h>
5 #include <linux/scatterlist.h>
6 #include <asm/cacheflush.h>
7 
8 /* See Documentation/DMA-API-HOWTO.txt */
9 struct hppa_dma_ops {
10 	int  (*dma_supported)(struct device *dev, u64 mask);
11 	void *(*alloc_consistent)(struct device *dev, size_t size, dma_addr_t *iova, gfp_t flag);
12 	void *(*alloc_noncoherent)(struct device *dev, size_t size, dma_addr_t *iova, gfp_t flag);
13 	void (*free_consistent)(struct device *dev, size_t size, void *vaddr, dma_addr_t iova);
14 	dma_addr_t (*map_single)(struct device *dev, void *addr, size_t size, enum dma_data_direction direction);
15 	void (*unmap_single)(struct device *dev, dma_addr_t iova, size_t size, enum dma_data_direction direction);
16 	int  (*map_sg)(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction direction);
17 	void (*unmap_sg)(struct device *dev, struct scatterlist *sg, int nhwents, enum dma_data_direction direction);
18 	void (*dma_sync_single_for_cpu)(struct device *dev, dma_addr_t iova, unsigned long offset, size_t size, enum dma_data_direction direction);
19 	void (*dma_sync_single_for_device)(struct device *dev, dma_addr_t iova, unsigned long offset, size_t size, enum dma_data_direction direction);
20 	void (*dma_sync_sg_for_cpu)(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction direction);
21 	void (*dma_sync_sg_for_device)(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction direction);
22 };
23 
24 /*
25 ** We could live without the hppa_dma_ops indirection if we didn't want
26 ** to support 4 different coherent dma models with one binary (they will
27 ** someday be loadable modules):
28 **     I/O MMU        consistent method           dma_sync behavior
29 **  =============   ======================       =======================
30 **  a) PA-7x00LC    uncachable host memory          flush/purge
31 **  b) U2/Uturn      cachable host memory              NOP
32 **  c) Ike/Astro     cachable host memory              NOP
33 **  d) EPIC/SAGA     memory on EPIC/SAGA         flush/reset DMA channel
34 **
35 ** PA-7[13]00LC processors have a GSC bus interface and no I/O MMU.
36 **
37 ** Systems (eg PCX-T workstations) that don't fall into the above
38 ** categories will need to modify the needed drivers to perform
39 ** flush/purge and allocate "regular" cacheable pages for everything.
40 */
41 
42 #ifdef CONFIG_PA11
43 extern struct hppa_dma_ops pcxl_dma_ops;
44 extern struct hppa_dma_ops pcx_dma_ops;
45 #endif
46 
47 extern struct hppa_dma_ops *hppa_dma_ops;
48 
49 #define dma_alloc_attrs(d, s, h, f, a) dma_alloc_coherent(d, s, h, f)
50 #define dma_free_attrs(d, s, h, f, a) dma_free_coherent(d, s, h, f)
51 
52 static inline void *
53 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
54 		   gfp_t flag)
55 {
56 	return hppa_dma_ops->alloc_consistent(dev, size, dma_handle, flag);
57 }
58 
59 static inline void *
60 dma_alloc_noncoherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
61 		      gfp_t flag)
62 {
63 	return hppa_dma_ops->alloc_noncoherent(dev, size, dma_handle, flag);
64 }
65 
66 static inline void
67 dma_free_coherent(struct device *dev, size_t size,
68 		    void *vaddr, dma_addr_t dma_handle)
69 {
70 	hppa_dma_ops->free_consistent(dev, size, vaddr, dma_handle);
71 }
72 
73 static inline void
74 dma_free_noncoherent(struct device *dev, size_t size,
75 		    void *vaddr, dma_addr_t dma_handle)
76 {
77 	hppa_dma_ops->free_consistent(dev, size, vaddr, dma_handle);
78 }
79 
80 static inline dma_addr_t
81 dma_map_single(struct device *dev, void *ptr, size_t size,
82 	       enum dma_data_direction direction)
83 {
84 	return hppa_dma_ops->map_single(dev, ptr, size, direction);
85 }
86 
87 static inline void
88 dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
89 		 enum dma_data_direction direction)
90 {
91 	hppa_dma_ops->unmap_single(dev, dma_addr, size, direction);
92 }
93 
94 static inline int
95 dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
96 	   enum dma_data_direction direction)
97 {
98 	return hppa_dma_ops->map_sg(dev, sg, nents, direction);
99 }
100 
101 static inline void
102 dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
103 	     enum dma_data_direction direction)
104 {
105 	hppa_dma_ops->unmap_sg(dev, sg, nhwentries, direction);
106 }
107 
108 static inline dma_addr_t
109 dma_map_page(struct device *dev, struct page *page, unsigned long offset,
110 	     size_t size, enum dma_data_direction direction)
111 {
112 	return dma_map_single(dev, (page_address(page) + (offset)), size, direction);
113 }
114 
115 static inline void
116 dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
117 	       enum dma_data_direction direction)
118 {
119 	dma_unmap_single(dev, dma_address, size, direction);
120 }
121 
122 
123 static inline void
124 dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size,
125 		enum dma_data_direction direction)
126 {
127 	if(hppa_dma_ops->dma_sync_single_for_cpu)
128 		hppa_dma_ops->dma_sync_single_for_cpu(dev, dma_handle, 0, size, direction);
129 }
130 
131 static inline void
132 dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, size_t size,
133 		enum dma_data_direction direction)
134 {
135 	if(hppa_dma_ops->dma_sync_single_for_device)
136 		hppa_dma_ops->dma_sync_single_for_device(dev, dma_handle, 0, size, direction);
137 }
138 
139 static inline void
140 dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
141 		      unsigned long offset, size_t size,
142 		      enum dma_data_direction direction)
143 {
144 	if(hppa_dma_ops->dma_sync_single_for_cpu)
145 		hppa_dma_ops->dma_sync_single_for_cpu(dev, dma_handle, offset, size, direction);
146 }
147 
148 static inline void
149 dma_sync_single_range_for_device(struct device *dev, dma_addr_t dma_handle,
150 		      unsigned long offset, size_t size,
151 		      enum dma_data_direction direction)
152 {
153 	if(hppa_dma_ops->dma_sync_single_for_device)
154 		hppa_dma_ops->dma_sync_single_for_device(dev, dma_handle, offset, size, direction);
155 }
156 
157 static inline void
158 dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
159 		 enum dma_data_direction direction)
160 {
161 	if(hppa_dma_ops->dma_sync_sg_for_cpu)
162 		hppa_dma_ops->dma_sync_sg_for_cpu(dev, sg, nelems, direction);
163 }
164 
165 static inline void
166 dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems,
167 		 enum dma_data_direction direction)
168 {
169 	if(hppa_dma_ops->dma_sync_sg_for_device)
170 		hppa_dma_ops->dma_sync_sg_for_device(dev, sg, nelems, direction);
171 }
172 
173 static inline int
174 dma_supported(struct device *dev, u64 mask)
175 {
176 	return hppa_dma_ops->dma_supported(dev, mask);
177 }
178 
179 static inline int
180 dma_set_mask(struct device *dev, u64 mask)
181 {
182 	if(!dev->dma_mask || !dma_supported(dev, mask))
183 		return -EIO;
184 
185 	*dev->dma_mask = mask;
186 
187 	return 0;
188 }
189 
190 static inline void
191 dma_cache_sync(struct device *dev, void *vaddr, size_t size,
192 	       enum dma_data_direction direction)
193 {
194 	if(hppa_dma_ops->dma_sync_single_for_cpu)
195 		flush_kernel_dcache_range((unsigned long)vaddr, size);
196 }
197 
198 static inline void *
199 parisc_walk_tree(struct device *dev)
200 {
201 	struct device *otherdev;
202 	if(likely(dev->platform_data != NULL))
203 		return dev->platform_data;
204 	/* OK, just traverse the bus to find it */
205 	for(otherdev = dev->parent; otherdev;
206 	    otherdev = otherdev->parent) {
207 		if(otherdev->platform_data) {
208 			dev->platform_data = otherdev->platform_data;
209 			break;
210 		}
211 	}
212 	BUG_ON(!dev->platform_data);
213 	return dev->platform_data;
214 }
215 
216 #define GET_IOC(dev) (HBA_DATA(parisc_walk_tree(dev))->iommu)
217 
218 
219 #ifdef CONFIG_IOMMU_CCIO
220 struct parisc_device;
221 struct ioc;
222 void * ccio_get_iommu(const struct parisc_device *dev);
223 int ccio_request_resource(const struct parisc_device *dev,
224 		struct resource *res);
225 int ccio_allocate_resource(const struct parisc_device *dev,
226 		struct resource *res, unsigned long size,
227 		unsigned long min, unsigned long max, unsigned long align);
228 #else /* !CONFIG_IOMMU_CCIO */
229 #define ccio_get_iommu(dev) NULL
230 #define ccio_request_resource(dev, res) insert_resource(&iomem_resource, res)
231 #define ccio_allocate_resource(dev, res, size, min, max, align) \
232 		allocate_resource(&iomem_resource, res, size, min, max, \
233 				align, NULL, NULL)
234 #endif /* !CONFIG_IOMMU_CCIO */
235 
236 #ifdef CONFIG_IOMMU_SBA
237 struct parisc_device;
238 void * sba_get_iommu(struct parisc_device *dev);
239 #endif
240 
241 /* At the moment, we panic on error for IOMMU resource exaustion */
242 #define dma_mapping_error(dev, x)	0
243 
244 /* This API cannot be supported on PA-RISC */
245 static inline int dma_mmap_coherent(struct device *dev,
246 				    struct vm_area_struct *vma, void *cpu_addr,
247 				    dma_addr_t dma_addr, size_t size)
248 {
249 	return -EINVAL;
250 }
251 
252 static inline int dma_get_sgtable(struct device *dev, struct sg_table *sgt,
253 				  void *cpu_addr, dma_addr_t dma_addr,
254 				  size_t size)
255 {
256 	return -EINVAL;
257 }
258 
259 #endif
260