xref: /linux/arch/openrisc/mm/fault.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * OpenRISC fault.c
4  *
5  * Linux architectural port borrowing liberally from similar works of
6  * others.  All original copyrights apply as per the original source
7  * declaration.
8  *
9  * Modifications for the OpenRISC architecture:
10  * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
11  * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/interrupt.h>
16 #include <linux/extable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/perf_event.h>
19 
20 #include <linux/uaccess.h>
21 #include <asm/bug.h>
22 #include <asm/mmu_context.h>
23 #include <asm/siginfo.h>
24 #include <asm/signal.h>
25 
26 #define NUM_TLB_ENTRIES 64
27 #define TLB_OFFSET(add) (((add) >> PAGE_SHIFT) & (NUM_TLB_ENTRIES-1))
28 
29 /* __PHX__ :: - check the vmalloc_fault in do_page_fault()
30  *            - also look into include/asm/mmu_context.h
31  */
32 volatile pgd_t *current_pgd[NR_CPUS];
33 
34 asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long address,
35 			      unsigned long vector, int write_acc);
36 
37 /*
38  * This routine handles page faults.  It determines the address,
39  * and the problem, and then passes it off to one of the appropriate
40  * routines.
41  *
42  * If this routine detects a bad access, it returns 1, otherwise it
43  * returns 0.
44  */
45 
46 asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long address,
47 			      unsigned long vector, int write_acc)
48 {
49 	struct task_struct *tsk;
50 	struct mm_struct *mm;
51 	struct vm_area_struct *vma;
52 	int si_code;
53 	vm_fault_t fault;
54 	unsigned int flags = FAULT_FLAG_DEFAULT;
55 
56 	tsk = current;
57 
58 	/*
59 	 * We fault-in kernel-space virtual memory on-demand. The
60 	 * 'reference' page table is init_mm.pgd.
61 	 *
62 	 * NOTE! We MUST NOT take any locks for this case. We may
63 	 * be in an interrupt or a critical region, and should
64 	 * only copy the information from the master page table,
65 	 * nothing more.
66 	 *
67 	 * NOTE2: This is done so that, when updating the vmalloc
68 	 * mappings we don't have to walk all processes pgdirs and
69 	 * add the high mappings all at once. Instead we do it as they
70 	 * are used. However vmalloc'ed page entries have the PAGE_GLOBAL
71 	 * bit set so sometimes the TLB can use a lingering entry.
72 	 *
73 	 * This verifies that the fault happens in kernel space
74 	 * and that the fault was not a protection error.
75 	 */
76 
77 	if (address >= VMALLOC_START &&
78 	    (vector != 0x300 && vector != 0x400) &&
79 	    !user_mode(regs))
80 		goto vmalloc_fault;
81 
82 	/* If exceptions were enabled, we can reenable them here */
83 	if (user_mode(regs)) {
84 		/* Exception was in userspace: reenable interrupts */
85 		local_irq_enable();
86 		flags |= FAULT_FLAG_USER;
87 	} else {
88 		/* If exception was in a syscall, then IRQ's may have
89 		 * been enabled or disabled.  If they were enabled,
90 		 * reenable them.
91 		 */
92 		if (regs->sr && (SPR_SR_IEE | SPR_SR_TEE))
93 			local_irq_enable();
94 	}
95 
96 	mm = tsk->mm;
97 	si_code = SEGV_MAPERR;
98 
99 	/*
100 	 * If we're in an interrupt or have no user
101 	 * context, we must not take the fault..
102 	 */
103 
104 	if (in_interrupt() || !mm)
105 		goto no_context;
106 
107 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
108 
109 retry:
110 	mmap_read_lock(mm);
111 	vma = find_vma(mm, address);
112 
113 	if (!vma)
114 		goto bad_area;
115 
116 	if (vma->vm_start <= address)
117 		goto good_area;
118 
119 	if (!(vma->vm_flags & VM_GROWSDOWN))
120 		goto bad_area;
121 
122 	if (user_mode(regs)) {
123 		/*
124 		 * accessing the stack below usp is always a bug.
125 		 * we get page-aligned addresses so we can only check
126 		 * if we're within a page from usp, but that might be
127 		 * enough to catch brutal errors at least.
128 		 */
129 		if (address + PAGE_SIZE < regs->sp)
130 			goto bad_area;
131 	}
132 	vma = expand_stack(mm, address);
133 	if (!vma)
134 		goto bad_area_nosemaphore;
135 
136 	/*
137 	 * Ok, we have a good vm_area for this memory access, so
138 	 * we can handle it..
139 	 */
140 
141 good_area:
142 	si_code = SEGV_ACCERR;
143 
144 	/* first do some preliminary protection checks */
145 
146 	if (write_acc) {
147 		if (!(vma->vm_flags & VM_WRITE))
148 			goto bad_area;
149 		flags |= FAULT_FLAG_WRITE;
150 	} else {
151 		/* not present */
152 		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
153 			goto bad_area;
154 	}
155 
156 	/* are we trying to execute nonexecutable area */
157 	if ((vector == 0x400) && !(vma->vm_page_prot.pgprot & _PAGE_EXEC))
158 		goto bad_area;
159 
160 	/*
161 	 * If for any reason at all we couldn't handle the fault,
162 	 * make sure we exit gracefully rather than endlessly redo
163 	 * the fault.
164 	 */
165 
166 	fault = handle_mm_fault(vma, address, flags, regs);
167 
168 	if (fault_signal_pending(fault, regs)) {
169 		if (!user_mode(regs))
170 			goto no_context;
171 		return;
172 	}
173 
174 	/* The fault is fully completed (including releasing mmap lock) */
175 	if (fault & VM_FAULT_COMPLETED)
176 		return;
177 
178 	if (unlikely(fault & VM_FAULT_ERROR)) {
179 		if (fault & VM_FAULT_OOM)
180 			goto out_of_memory;
181 		else if (fault & VM_FAULT_SIGSEGV)
182 			goto bad_area;
183 		else if (fault & VM_FAULT_SIGBUS)
184 			goto do_sigbus;
185 		BUG();
186 	}
187 
188 	/*RGD modeled on Cris */
189 	if (fault & VM_FAULT_RETRY) {
190 		flags |= FAULT_FLAG_TRIED;
191 
192 		/* No need to mmap_read_unlock(mm) as we would
193 		 * have already released it in __lock_page_or_retry
194 		 * in mm/filemap.c.
195 		 */
196 
197 		goto retry;
198 	}
199 
200 	mmap_read_unlock(mm);
201 	return;
202 
203 	/*
204 	 * Something tried to access memory that isn't in our memory map..
205 	 * Fix it, but check if it's kernel or user first..
206 	 */
207 
208 bad_area:
209 	mmap_read_unlock(mm);
210 
211 bad_area_nosemaphore:
212 
213 	/* User mode accesses just cause a SIGSEGV */
214 
215 	if (user_mode(regs)) {
216 		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
217 		return;
218 	}
219 
220 no_context:
221 
222 	/* Are we prepared to handle this kernel fault?
223 	 *
224 	 * (The kernel has valid exception-points in the source
225 	 *  when it acesses user-memory. When it fails in one
226 	 *  of those points, we find it in a table and do a jump
227 	 *  to some fixup code that loads an appropriate error
228 	 *  code)
229 	 */
230 
231 	{
232 		const struct exception_table_entry *entry;
233 
234 		if ((entry = search_exception_tables(regs->pc)) != NULL) {
235 			/* Adjust the instruction pointer in the stackframe */
236 			regs->pc = entry->fixup;
237 			return;
238 		}
239 	}
240 
241 	/*
242 	 * Oops. The kernel tried to access some bad page. We'll have to
243 	 * terminate things with extreme prejudice.
244 	 */
245 
246 	if ((unsigned long)(address) < PAGE_SIZE)
247 		printk(KERN_ALERT
248 		       "Unable to handle kernel NULL pointer dereference");
249 	else
250 		printk(KERN_ALERT "Unable to handle kernel access");
251 	printk(" at virtual address 0x%08lx\n", address);
252 
253 	die("Oops", regs, write_acc);
254 
255 	/*
256 	 * We ran out of memory, or some other thing happened to us that made
257 	 * us unable to handle the page fault gracefully.
258 	 */
259 
260 out_of_memory:
261 	mmap_read_unlock(mm);
262 	if (!user_mode(regs))
263 		goto no_context;
264 	pagefault_out_of_memory();
265 	return;
266 
267 do_sigbus:
268 	mmap_read_unlock(mm);
269 
270 	/*
271 	 * Send a sigbus, regardless of whether we were in kernel
272 	 * or user mode.
273 	 */
274 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
275 
276 	/* Kernel mode? Handle exceptions or die */
277 	if (!user_mode(regs))
278 		goto no_context;
279 	return;
280 
281 vmalloc_fault:
282 	{
283 		/*
284 		 * Synchronize this task's top level page-table
285 		 * with the 'reference' page table.
286 		 *
287 		 * Use current_pgd instead of tsk->active_mm->pgd
288 		 * since the latter might be unavailable if this
289 		 * code is executed in a misfortunately run irq
290 		 * (like inside schedule() between switch_mm and
291 		 *  switch_to...).
292 		 */
293 
294 		int offset = pgd_index(address);
295 		pgd_t *pgd, *pgd_k;
296 		p4d_t *p4d, *p4d_k;
297 		pud_t *pud, *pud_k;
298 		pmd_t *pmd, *pmd_k;
299 		pte_t *pte_k;
300 
301 /*
302 		phx_warn("do_page_fault(): vmalloc_fault will not work, "
303 			 "since current_pgd assign a proper value somewhere\n"
304 			 "anyhow we don't need this at the moment\n");
305 
306 		phx_mmu("vmalloc_fault");
307 */
308 		pgd = (pgd_t *)current_pgd[smp_processor_id()] + offset;
309 		pgd_k = init_mm.pgd + offset;
310 
311 		/* Since we're two-level, we don't need to do both
312 		 * set_pgd and set_pmd (they do the same thing). If
313 		 * we go three-level at some point, do the right thing
314 		 * with pgd_present and set_pgd here.
315 		 *
316 		 * Also, since the vmalloc area is global, we don't
317 		 * need to copy individual PTE's, it is enough to
318 		 * copy the pgd pointer into the pte page of the
319 		 * root task. If that is there, we'll find our pte if
320 		 * it exists.
321 		 */
322 
323 		p4d = p4d_offset(pgd, address);
324 		p4d_k = p4d_offset(pgd_k, address);
325 		if (!p4d_present(*p4d_k))
326 			goto no_context;
327 
328 		pud = pud_offset(p4d, address);
329 		pud_k = pud_offset(p4d_k, address);
330 		if (!pud_present(*pud_k))
331 			goto no_context;
332 
333 		pmd = pmd_offset(pud, address);
334 		pmd_k = pmd_offset(pud_k, address);
335 
336 		if (!pmd_present(*pmd_k))
337 			goto bad_area_nosemaphore;
338 
339 		set_pmd(pmd, *pmd_k);
340 
341 		/* Make sure the actual PTE exists as well to
342 		 * catch kernel vmalloc-area accesses to non-mapped
343 		 * addresses. If we don't do this, this will just
344 		 * silently loop forever.
345 		 */
346 
347 		pte_k = pte_offset_kernel(pmd_k, address);
348 		if (!pte_present(*pte_k))
349 			goto no_context;
350 
351 		return;
352 	}
353 }
354