1 /* 2 * Copyright (C) 2014 Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> 3 * Copyright (C) 2017 Stafford Horne <shorne@gmail.com> 4 * 5 * Based on arm64 and arc implementations 6 * Copyright (C) 2013 ARM Ltd. 7 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) 8 * 9 * This file is licensed under the terms of the GNU General Public License 10 * version 2. This program is licensed "as is" without any warranty of any 11 * kind, whether express or implied. 12 */ 13 14 #include <linux/smp.h> 15 #include <linux/cpu.h> 16 #include <linux/sched.h> 17 #include <linux/sched/mm.h> 18 #include <linux/irq.h> 19 #include <linux/of.h> 20 #include <asm/cpuinfo.h> 21 #include <asm/mmu_context.h> 22 #include <asm/tlbflush.h> 23 #include <asm/cacheflush.h> 24 #include <asm/time.h> 25 26 static void (*smp_cross_call)(const struct cpumask *, unsigned int); 27 28 unsigned long secondary_release = -1; 29 struct thread_info *secondary_thread_info; 30 31 enum ipi_msg_type { 32 IPI_WAKEUP, 33 IPI_RESCHEDULE, 34 IPI_CALL_FUNC, 35 IPI_CALL_FUNC_SINGLE, 36 }; 37 38 static DEFINE_SPINLOCK(boot_lock); 39 40 static void boot_secondary(unsigned int cpu, struct task_struct *idle) 41 { 42 /* 43 * set synchronisation state between this boot processor 44 * and the secondary one 45 */ 46 spin_lock(&boot_lock); 47 48 secondary_release = cpu; 49 smp_cross_call(cpumask_of(cpu), IPI_WAKEUP); 50 51 /* 52 * now the secondary core is starting up let it run its 53 * calibrations, then wait for it to finish 54 */ 55 spin_unlock(&boot_lock); 56 } 57 58 void __init smp_prepare_boot_cpu(void) 59 { 60 } 61 62 void __init smp_init_cpus(void) 63 { 64 struct device_node *cpu; 65 u32 cpu_id; 66 67 for_each_of_cpu_node(cpu) { 68 cpu_id = of_get_cpu_hwid(cpu, 0); 69 if (cpu_id < NR_CPUS) 70 set_cpu_possible(cpu_id, true); 71 } 72 } 73 74 void __init smp_prepare_cpus(unsigned int max_cpus) 75 { 76 unsigned int cpu; 77 78 /* 79 * Initialise the present map, which describes the set of CPUs 80 * actually populated at the present time. 81 */ 82 for_each_possible_cpu(cpu) { 83 if (cpu < max_cpus) 84 set_cpu_present(cpu, true); 85 } 86 } 87 88 void __init smp_cpus_done(unsigned int max_cpus) 89 { 90 } 91 92 static DECLARE_COMPLETION(cpu_running); 93 94 int __cpu_up(unsigned int cpu, struct task_struct *idle) 95 { 96 if (smp_cross_call == NULL) { 97 pr_warn("CPU%u: failed to start, IPI controller missing", 98 cpu); 99 return -EIO; 100 } 101 102 secondary_thread_info = task_thread_info(idle); 103 current_pgd[cpu] = init_mm.pgd; 104 105 boot_secondary(cpu, idle); 106 if (!wait_for_completion_timeout(&cpu_running, 107 msecs_to_jiffies(1000))) { 108 pr_crit("CPU%u: failed to start\n", cpu); 109 return -EIO; 110 } 111 synchronise_count_master(cpu); 112 113 return 0; 114 } 115 116 asmlinkage __init void secondary_start_kernel(void) 117 { 118 struct mm_struct *mm = &init_mm; 119 unsigned int cpu = smp_processor_id(); 120 /* 121 * All kernel threads share the same mm context; grab a 122 * reference and switch to it. 123 */ 124 mmgrab(mm); 125 current->active_mm = mm; 126 cpumask_set_cpu(cpu, mm_cpumask(mm)); 127 128 pr_info("CPU%u: Booted secondary processor\n", cpu); 129 130 setup_cpuinfo(); 131 openrisc_clockevent_init(); 132 133 notify_cpu_starting(cpu); 134 135 /* 136 * OK, now it's safe to let the boot CPU continue 137 */ 138 complete(&cpu_running); 139 140 synchronise_count_slave(cpu); 141 set_cpu_online(cpu, true); 142 143 local_irq_enable(); 144 /* 145 * OK, it's off to the idle thread for us 146 */ 147 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 148 } 149 150 void handle_IPI(unsigned int ipi_msg) 151 { 152 unsigned int cpu = smp_processor_id(); 153 154 switch (ipi_msg) { 155 case IPI_WAKEUP: 156 break; 157 158 case IPI_RESCHEDULE: 159 scheduler_ipi(); 160 break; 161 162 case IPI_CALL_FUNC: 163 generic_smp_call_function_interrupt(); 164 break; 165 166 case IPI_CALL_FUNC_SINGLE: 167 generic_smp_call_function_single_interrupt(); 168 break; 169 170 default: 171 WARN(1, "CPU%u: Unknown IPI message 0x%x\n", cpu, ipi_msg); 172 break; 173 } 174 } 175 176 void smp_send_reschedule(int cpu) 177 { 178 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 179 } 180 181 static void stop_this_cpu(void *dummy) 182 { 183 /* Remove this CPU */ 184 set_cpu_online(smp_processor_id(), false); 185 186 local_irq_disable(); 187 /* CPU Doze */ 188 if (mfspr(SPR_UPR) & SPR_UPR_PMP) 189 mtspr(SPR_PMR, mfspr(SPR_PMR) | SPR_PMR_DME); 190 /* If that didn't work, infinite loop */ 191 while (1) 192 ; 193 } 194 195 void smp_send_stop(void) 196 { 197 smp_call_function(stop_this_cpu, NULL, 0); 198 } 199 200 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 201 { 202 smp_cross_call = fn; 203 } 204 205 void arch_send_call_function_single_ipi(int cpu) 206 { 207 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 208 } 209 210 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 211 { 212 smp_cross_call(mask, IPI_CALL_FUNC); 213 } 214 215 /* TLB flush operations - Performed on each CPU*/ 216 static inline void ipi_flush_tlb_all(void *ignored) 217 { 218 local_flush_tlb_all(); 219 } 220 221 static inline void ipi_flush_tlb_mm(void *info) 222 { 223 struct mm_struct *mm = (struct mm_struct *)info; 224 225 local_flush_tlb_mm(mm); 226 } 227 228 static void smp_flush_tlb_mm(struct cpumask *cmask, struct mm_struct *mm) 229 { 230 unsigned int cpuid; 231 232 if (cpumask_empty(cmask)) 233 return; 234 235 cpuid = get_cpu(); 236 237 if (cpumask_any_but(cmask, cpuid) >= nr_cpu_ids) { 238 /* local cpu is the only cpu present in cpumask */ 239 local_flush_tlb_mm(mm); 240 } else { 241 on_each_cpu_mask(cmask, ipi_flush_tlb_mm, mm, 1); 242 } 243 put_cpu(); 244 } 245 246 struct flush_tlb_data { 247 unsigned long addr1; 248 unsigned long addr2; 249 }; 250 251 static inline void ipi_flush_tlb_page(void *info) 252 { 253 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 254 255 local_flush_tlb_page(NULL, fd->addr1); 256 } 257 258 static inline void ipi_flush_tlb_range(void *info) 259 { 260 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 261 262 local_flush_tlb_range(NULL, fd->addr1, fd->addr2); 263 } 264 265 static void smp_flush_tlb_range(const struct cpumask *cmask, unsigned long start, 266 unsigned long end) 267 { 268 unsigned int cpuid; 269 270 if (cpumask_empty(cmask)) 271 return; 272 273 cpuid = get_cpu(); 274 275 if (cpumask_any_but(cmask, cpuid) >= nr_cpu_ids) { 276 /* local cpu is the only cpu present in cpumask */ 277 if ((end - start) <= PAGE_SIZE) 278 local_flush_tlb_page(NULL, start); 279 else 280 local_flush_tlb_range(NULL, start, end); 281 } else { 282 struct flush_tlb_data fd; 283 284 fd.addr1 = start; 285 fd.addr2 = end; 286 287 if ((end - start) <= PAGE_SIZE) 288 on_each_cpu_mask(cmask, ipi_flush_tlb_page, &fd, 1); 289 else 290 on_each_cpu_mask(cmask, ipi_flush_tlb_range, &fd, 1); 291 } 292 put_cpu(); 293 } 294 295 void flush_tlb_all(void) 296 { 297 on_each_cpu(ipi_flush_tlb_all, NULL, 1); 298 } 299 300 void flush_tlb_mm(struct mm_struct *mm) 301 { 302 smp_flush_tlb_mm(mm_cpumask(mm), mm); 303 } 304 305 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) 306 { 307 smp_flush_tlb_range(mm_cpumask(vma->vm_mm), uaddr, uaddr + PAGE_SIZE); 308 } 309 310 void flush_tlb_range(struct vm_area_struct *vma, 311 unsigned long start, unsigned long end) 312 { 313 const struct cpumask *cmask = vma ? mm_cpumask(vma->vm_mm) 314 : cpu_online_mask; 315 smp_flush_tlb_range(cmask, start, end); 316 } 317 318 /* Instruction cache invalidate - performed on each cpu */ 319 static void ipi_icache_page_inv(void *arg) 320 { 321 struct page *page = arg; 322 323 local_icache_page_inv(page); 324 } 325 326 void smp_icache_page_inv(struct page *page) 327 { 328 on_each_cpu(ipi_icache_page_inv, page, 1); 329 } 330 EXPORT_SYMBOL(smp_icache_page_inv); 331