xref: /linux/arch/openrisc/include/asm/pgtable.h (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * OpenRISC Linux
4  *
5  * Linux architectural port borrowing liberally from similar works of
6  * others.  All original copyrights apply as per the original source
7  * declaration.
8  *
9  * OpenRISC implementation:
10  * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
11  * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
12  * et al.
13  */
14 
15 /* or32 pgtable.h - macros and functions to manipulate page tables
16  *
17  * Based on:
18  * include/asm-cris/pgtable.h
19  */
20 
21 #ifndef __ASM_OPENRISC_PGTABLE_H
22 #define __ASM_OPENRISC_PGTABLE_H
23 
24 #define __ARCH_USE_5LEVEL_HACK
25 #include <asm-generic/pgtable-nopmd.h>
26 
27 #ifndef __ASSEMBLY__
28 #include <asm/mmu.h>
29 #include <asm/fixmap.h>
30 
31 /*
32  * The Linux memory management assumes a three-level page table setup. On
33  * or32, we use that, but "fold" the mid level into the top-level page
34  * table. Since the MMU TLB is software loaded through an interrupt, it
35  * supports any page table structure, so we could have used a three-level
36  * setup, but for the amounts of memory we normally use, a two-level is
37  * probably more efficient.
38  *
39  * This file contains the functions and defines necessary to modify and use
40  * the or32 page table tree.
41  */
42 
43 extern void paging_init(void);
44 
45 /* Certain architectures need to do special things when pte's
46  * within a page table are directly modified.  Thus, the following
47  * hook is made available.
48  */
49 #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
50 #define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
51 /*
52  * (pmds are folded into pgds so this doesn't get actually called,
53  * but the define is needed for a generic inline function.)
54  */
55 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
56 
57 #define PGDIR_SHIFT	(PAGE_SHIFT + (PAGE_SHIFT-2))
58 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
59 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
60 
61 /*
62  * entries per page directory level: we use a two-level, so
63  * we don't really have any PMD directory physically.
64  * pointers are 4 bytes so we can use the page size and
65  * divide it by 4 (shift by 2).
66  */
67 #define PTRS_PER_PTE	(1UL << (PAGE_SHIFT-2))
68 
69 #define PTRS_PER_PGD	(1UL << (32-PGDIR_SHIFT))
70 
71 /* calculate how many PGD entries a user-level program can use
72  * the first mappable virtual address is 0
73  * (TASK_SIZE is the maximum virtual address space)
74  */
75 
76 #define USER_PTRS_PER_PGD       (TASK_SIZE/PGDIR_SIZE)
77 #define FIRST_USER_ADDRESS      0UL
78 
79 /*
80  * Kernels own virtual memory area.
81  */
82 
83 /*
84  * The size and location of the vmalloc area are chosen so that modules
85  * placed in this area aren't more than a 28-bit signed offset from any
86  * kernel functions that they may need.  This greatly simplifies handling
87  * of the relocations for l.j and l.jal instructions as we don't need to
88  * introduce any trampolines for reaching "distant" code.
89  *
90  * 64 MB of vmalloc area is comparable to what's available on other arches.
91  */
92 
93 #define VMALLOC_START	(PAGE_OFFSET-0x04000000UL)
94 #define VMALLOC_END	(PAGE_OFFSET)
95 #define VMALLOC_VMADDR(x) ((unsigned long)(x))
96 
97 /* Define some higher level generic page attributes.
98  *
99  * If you change _PAGE_CI definition be sure to change it in
100  * io.h for ioremap() too.
101  */
102 
103 /*
104  * An OR32 PTE looks like this:
105  *
106  * |  31 ... 10 |  9  |  8 ... 6  |  5  |  4  |  3  |  2  |  1  |  0  |
107  *  Phys pg.num    L     PP Index    D     A    WOM   WBC   CI    CC
108  *
109  *  L  : link
110  *  PPI: Page protection index
111  *  D  : Dirty
112  *  A  : Accessed
113  *  WOM: Weakly ordered memory
114  *  WBC: Write-back cache
115  *  CI : Cache inhibit
116  *  CC : Cache coherent
117  *
118  * The protection bits below should correspond to the layout of the actual
119  * PTE as per above
120  */
121 
122 #define _PAGE_CC       0x001 /* software: pte contains a translation */
123 #define _PAGE_CI       0x002 /* cache inhibit          */
124 #define _PAGE_WBC      0x004 /* write back cache       */
125 #define _PAGE_WOM      0x008 /* weakly ordered memory  */
126 
127 #define _PAGE_A        0x010 /* accessed               */
128 #define _PAGE_D        0x020 /* dirty                  */
129 #define _PAGE_URE      0x040 /* user read enable       */
130 #define _PAGE_UWE      0x080 /* user write enable      */
131 
132 #define _PAGE_SRE      0x100 /* superuser read enable  */
133 #define _PAGE_SWE      0x200 /* superuser write enable */
134 #define _PAGE_EXEC     0x400 /* software: page is executable */
135 #define _PAGE_U_SHARED 0x800 /* software: page is shared in user space */
136 
137 /* 0x001 is cache coherency bit, which should always be set to
138  *       1 - for SMP (when we support it)
139  *       0 - otherwise
140  *
141  * we just reuse this bit in software for _PAGE_PRESENT and
142  * force it to 0 when loading it into TLB.
143  */
144 #define _PAGE_PRESENT  _PAGE_CC
145 #define _PAGE_USER     _PAGE_URE
146 #define _PAGE_WRITE    (_PAGE_UWE | _PAGE_SWE)
147 #define _PAGE_DIRTY    _PAGE_D
148 #define _PAGE_ACCESSED _PAGE_A
149 #define _PAGE_NO_CACHE _PAGE_CI
150 #define _PAGE_SHARED   _PAGE_U_SHARED
151 #define _PAGE_READ     (_PAGE_URE | _PAGE_SRE)
152 
153 #define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
154 #define _PAGE_BASE     (_PAGE_PRESENT | _PAGE_ACCESSED)
155 #define _PAGE_ALL      (_PAGE_PRESENT | _PAGE_ACCESSED)
156 #define _KERNPG_TABLE \
157 	(_PAGE_BASE | _PAGE_SRE | _PAGE_SWE | _PAGE_ACCESSED | _PAGE_DIRTY)
158 
159 #define PAGE_NONE       __pgprot(_PAGE_ALL)
160 #define PAGE_READONLY   __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
161 #define PAGE_READONLY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
162 #define PAGE_SHARED \
163 	__pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
164 		 | _PAGE_SHARED)
165 #define PAGE_SHARED_X \
166 	__pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
167 		 | _PAGE_SHARED | _PAGE_EXEC)
168 #define PAGE_COPY       __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
169 #define PAGE_COPY_X     __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
170 
171 #define PAGE_KERNEL \
172 	__pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
173 		 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
174 #define PAGE_KERNEL_RO \
175 	__pgprot(_PAGE_ALL | _PAGE_SRE \
176 		 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
177 #define PAGE_KERNEL_NOCACHE \
178 	__pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
179 		 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC | _PAGE_CI)
180 
181 #define __P000	PAGE_NONE
182 #define __P001	PAGE_READONLY_X
183 #define __P010	PAGE_COPY
184 #define __P011	PAGE_COPY_X
185 #define __P100	PAGE_READONLY
186 #define __P101	PAGE_READONLY_X
187 #define __P110	PAGE_COPY
188 #define __P111	PAGE_COPY_X
189 
190 #define __S000	PAGE_NONE
191 #define __S001	PAGE_READONLY_X
192 #define __S010	PAGE_SHARED
193 #define __S011	PAGE_SHARED_X
194 #define __S100	PAGE_READONLY
195 #define __S101	PAGE_READONLY_X
196 #define __S110	PAGE_SHARED
197 #define __S111	PAGE_SHARED_X
198 
199 /* zero page used for uninitialized stuff */
200 extern unsigned long empty_zero_page[2048];
201 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
202 
203 /* number of bits that fit into a memory pointer */
204 #define BITS_PER_PTR			(8*sizeof(unsigned long))
205 
206 /* to align the pointer to a pointer address */
207 #define PTR_MASK			(~(sizeof(void *)-1))
208 
209 /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
210 /* 64-bit machines, beware!  SRB. */
211 #define SIZEOF_PTR_LOG2			2
212 
213 /* to find an entry in a page-table */
214 #define PAGE_PTR(address) \
215 ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
216 
217 /* to set the page-dir */
218 #define SET_PAGE_DIR(tsk, pgdir)
219 
220 #define pte_none(x)	(!pte_val(x))
221 #define pte_present(x)	(pte_val(x) & _PAGE_PRESENT)
222 #define pte_clear(mm, addr, xp)	do { pte_val(*(xp)) = 0; } while (0)
223 
224 #define pmd_none(x)	(!pmd_val(x))
225 #define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK)) != _KERNPG_TABLE)
226 #define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
227 #define pmd_clear(xp)	do { pmd_val(*(xp)) = 0; } while (0)
228 
229 /*
230  * The following only work if pte_present() is true.
231  * Undefined behaviour if not..
232  */
233 
234 static inline int pte_read(pte_t pte)  { return pte_val(pte) & _PAGE_READ; }
235 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
236 static inline int pte_exec(pte_t pte)  { return pte_val(pte) & _PAGE_EXEC; }
237 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
238 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
239 static inline int pte_special(pte_t pte) { return 0; }
240 static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
241 
242 static inline pte_t pte_wrprotect(pte_t pte)
243 {
244 	pte_val(pte) &= ~(_PAGE_WRITE);
245 	return pte;
246 }
247 
248 static inline pte_t pte_rdprotect(pte_t pte)
249 {
250 	pte_val(pte) &= ~(_PAGE_READ);
251 	return pte;
252 }
253 
254 static inline pte_t pte_exprotect(pte_t pte)
255 {
256 	pte_val(pte) &= ~(_PAGE_EXEC);
257 	return pte;
258 }
259 
260 static inline pte_t pte_mkclean(pte_t pte)
261 {
262 	pte_val(pte) &= ~(_PAGE_DIRTY);
263 	return pte;
264 }
265 
266 static inline pte_t pte_mkold(pte_t pte)
267 {
268 	pte_val(pte) &= ~(_PAGE_ACCESSED);
269 	return pte;
270 }
271 
272 static inline pte_t pte_mkwrite(pte_t pte)
273 {
274 	pte_val(pte) |= _PAGE_WRITE;
275 	return pte;
276 }
277 
278 static inline pte_t pte_mkread(pte_t pte)
279 {
280 	pte_val(pte) |= _PAGE_READ;
281 	return pte;
282 }
283 
284 static inline pte_t pte_mkexec(pte_t pte)
285 {
286 	pte_val(pte) |= _PAGE_EXEC;
287 	return pte;
288 }
289 
290 static inline pte_t pte_mkdirty(pte_t pte)
291 {
292 	pte_val(pte) |= _PAGE_DIRTY;
293 	return pte;
294 }
295 
296 static inline pte_t pte_mkyoung(pte_t pte)
297 {
298 	pte_val(pte) |= _PAGE_ACCESSED;
299 	return pte;
300 }
301 
302 /*
303  * Conversion functions: convert a page and protection to a page entry,
304  * and a page entry and page directory to the page they refer to.
305  */
306 
307 /* What actually goes as arguments to the various functions is less than
308  * obvious, but a rule of thumb is that struct page's goes as struct page *,
309  * really physical DRAM addresses are unsigned long's, and DRAM "virtual"
310  * addresses (the 0xc0xxxxxx's) goes as void *'s.
311  */
312 
313 static inline pte_t __mk_pte(void *page, pgprot_t pgprot)
314 {
315 	pte_t pte;
316 	/* the PTE needs a physical address */
317 	pte_val(pte) = __pa(page) | pgprot_val(pgprot);
318 	return pte;
319 }
320 
321 #define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot))
322 
323 #define mk_pte_phys(physpage, pgprot) \
324 ({                                                                      \
325 	pte_t __pte;                                                    \
326 									\
327 	pte_val(__pte) = (physpage) + pgprot_val(pgprot);               \
328 	__pte;                                                          \
329 })
330 
331 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
332 {
333 	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
334 	return pte;
335 }
336 
337 
338 /*
339  * pte_val refers to a page in the 0x0xxxxxxx physical DRAM interval
340  * __pte_page(pte_val) refers to the "virtual" DRAM interval
341  * pte_pagenr refers to the page-number counted starting from the virtual
342  * DRAM start
343  */
344 
345 static inline unsigned long __pte_page(pte_t pte)
346 {
347 	/* the PTE contains a physical address */
348 	return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
349 }
350 
351 #define pte_pagenr(pte)         ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)
352 
353 /* permanent address of a page */
354 
355 #define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
356 #define pte_page(pte)		(mem_map+pte_pagenr(pte))
357 
358 /*
359  * only the pte's themselves need to point to physical DRAM (see above)
360  * the pagetable links are purely handled within the kernel SW and thus
361  * don't need the __pa and __va transformations.
362  */
363 static inline void pmd_set(pmd_t *pmdp, pte_t *ptep)
364 {
365 	pmd_val(*pmdp) = _KERNPG_TABLE | (unsigned long) ptep;
366 }
367 
368 #define pmd_page(pmd)		(pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
369 #define pmd_page_kernel(pmd)    ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
370 
371 /* to find an entry in a page-table-directory. */
372 #define pgd_index(address)      ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
373 
374 #define __pgd_offset(address)   pgd_index(address)
375 
376 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
377 
378 /* to find an entry in a kernel page-table-directory */
379 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
380 
381 #define __pmd_offset(address) \
382 	(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
383 
384 /*
385  * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
386  *
387  * this macro returns the index of the entry in the pte page which would
388  * control the given virtual address
389  */
390 #define __pte_offset(address)                   \
391 	(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
392 #define pte_offset_kernel(dir, address)         \
393 	((pte_t *) pmd_page_kernel(*(dir)) +  __pte_offset(address))
394 #define pte_offset_map(dir, address)	        \
395 	((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
396 #define pte_offset_map_nested(dir, address)     \
397 	pte_offset_map(dir, address)
398 
399 #define pte_unmap(pte)          do { } while (0)
400 #define pte_unmap_nested(pte)   do { } while (0)
401 #define pte_pfn(x)		((unsigned long)(((x).pte)) >> PAGE_SHIFT)
402 #define pfn_pte(pfn, prot)  __pte((((pfn) << PAGE_SHIFT)) | pgprot_val(prot))
403 
404 #define pte_ERROR(e) \
405 	printk(KERN_ERR "%s:%d: bad pte %p(%08lx).\n", \
406 	       __FILE__, __LINE__, &(e), pte_val(e))
407 #define pgd_ERROR(e) \
408 	printk(KERN_ERR "%s:%d: bad pgd %p(%08lx).\n", \
409 	       __FILE__, __LINE__, &(e), pgd_val(e))
410 
411 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */
412 
413 struct vm_area_struct;
414 
415 static inline void update_tlb(struct vm_area_struct *vma,
416 	unsigned long address, pte_t *pte)
417 {
418 }
419 
420 extern void update_cache(struct vm_area_struct *vma,
421 	unsigned long address, pte_t *pte);
422 
423 static inline void update_mmu_cache(struct vm_area_struct *vma,
424 	unsigned long address, pte_t *pte)
425 {
426 	update_tlb(vma, address, pte);
427 	update_cache(vma, address, pte);
428 }
429 
430 /* __PHX__ FIXME, SWAP, this probably doesn't work */
431 
432 /* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */
433 /* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */
434 
435 #define __swp_type(x)			(((x).val >> 5) & 0x7f)
436 #define __swp_offset(x)			((x).val >> 12)
437 #define __swp_entry(type, offset) \
438 	((swp_entry_t) { ((type) << 5) | ((offset) << 12) })
439 #define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) })
440 #define __swp_entry_to_pte(x)		((pte_t) { (x).val })
441 
442 #define kern_addr_valid(addr)           (1)
443 
444 #include <asm-generic/pgtable.h>
445 
446 typedef pte_t *pte_addr_t;
447 
448 #endif /* __ASSEMBLY__ */
449 #endif /* __ASM_OPENRISC_PGTABLE_H */
450