xref: /linux/arch/mips/sni/time.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 #include <linux/types.h>
2 #include <linux/i8253.h>
3 #include <linux/interrupt.h>
4 #include <linux/irq.h>
5 #include <linux/smp.h>
6 #include <linux/time.h>
7 #include <linux/clockchips.h>
8 
9 #include <asm/sni.h>
10 #include <asm/time.h>
11 #include <asm-generic/rtc.h>
12 
13 #define SNI_CLOCK_TICK_RATE	3686400
14 #define SNI_COUNTER2_DIV	64
15 #define SNI_COUNTER0_DIV	((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
16 
17 static void a20r_set_mode(enum clock_event_mode mode,
18 			  struct clock_event_device *evt)
19 {
20 	switch (mode) {
21 	case CLOCK_EVT_MODE_PERIODIC:
22 		*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
23 		wmb();
24 		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  0) = SNI_COUNTER0_DIV;
25 		wmb();
26 		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  0) = SNI_COUNTER0_DIV >> 8;
27 		wmb();
28 
29 		*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
30 		wmb();
31 		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  8) = SNI_COUNTER2_DIV;
32 		wmb();
33 		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  8) = SNI_COUNTER2_DIV >> 8;
34 		wmb();
35 
36 		break;
37 	case CLOCK_EVT_MODE_ONESHOT:
38 	case CLOCK_EVT_MODE_UNUSED:
39 	case CLOCK_EVT_MODE_SHUTDOWN:
40 		break;
41 	case CLOCK_EVT_MODE_RESUME:
42 		break;
43 	}
44 }
45 
46 static struct clock_event_device a20r_clockevent_device = {
47 	.name		= "a20r-timer",
48 	.features	= CLOCK_EVT_FEAT_PERIODIC,
49 
50 	/* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
51 
52 	.rating		= 300,
53 	.irq		= SNI_A20R_IRQ_TIMER,
54 	.set_mode	= a20r_set_mode,
55 };
56 
57 static irqreturn_t a20r_interrupt(int irq, void *dev_id)
58 {
59 	struct clock_event_device *cd = dev_id;
60 
61 	*(volatile u8 *)A20R_PT_TIM0_ACK = 0;
62 	wmb();
63 
64 	cd->event_handler(cd);
65 
66 	return IRQ_HANDLED;
67 }
68 
69 static struct irqaction a20r_irqaction = {
70 	.handler	= a20r_interrupt,
71 	.flags		= IRQF_PERCPU | IRQF_TIMER,
72 	.name		= "a20r-timer",
73 };
74 
75 /*
76  * a20r platform uses 2 counters to divide the input frequency.
77  * Counter 2 output is connected to Counter 0 & 1 input.
78  */
79 static void __init sni_a20r_timer_setup(void)
80 {
81 	struct clock_event_device *cd = &a20r_clockevent_device;
82 	struct irqaction *action = &a20r_irqaction;
83 	unsigned int cpu = smp_processor_id();
84 
85 	cd->cpumask		= cpumask_of(cpu);
86 	clockevents_register_device(cd);
87 	action->dev_id = cd;
88 	setup_irq(SNI_A20R_IRQ_TIMER, &a20r_irqaction);
89 }
90 
91 #define SNI_8254_TICK_RATE	  1193182UL
92 
93 #define SNI_8254_TCSAMP_COUNTER	  ((SNI_8254_TICK_RATE / HZ) + 255)
94 
95 static __init unsigned long dosample(void)
96 {
97 	u32 ct0, ct1;
98 	volatile u8 msb;
99 
100 	/* Start the counter. */
101 	outb_p(0x34, 0x43);
102 	outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
103 	outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
104 
105 	/* Get initial counter invariant */
106 	ct0 = read_c0_count();
107 
108 	/* Latch and spin until top byte of counter0 is zero */
109 	do {
110 		outb(0x00, 0x43);
111 		(void) inb(0x40);
112 		msb = inb(0x40);
113 		ct1 = read_c0_count();
114 	} while (msb);
115 
116 	/* Stop the counter. */
117 	outb(0x38, 0x43);
118 	/*
119 	 * Return the difference, this is how far the r4k counter increments
120 	 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
121 	 * clock (= 1000000 / HZ / 2).
122 	 */
123 	/*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
124 	return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
125 }
126 
127 /*
128  * Here we need to calibrate the cycle counter to at least be close.
129  */
130 void __init plat_time_init(void)
131 {
132 	unsigned long r4k_ticks[3];
133 	unsigned long r4k_tick;
134 
135 	/*
136 	 * Figure out the r4k offset, the algorithm is very simple and works in
137 	 * _all_ cases as long as the 8254 counter register itself works ok (as
138 	 * an interrupt driving timer it does not because of bug, this is why
139 	 * we are using the onchip r4k counter/compare register to serve this
140 	 * purpose, but for r4k_offset calculation it will work ok for us).
141 	 * There are other very complicated ways of performing this calculation
142 	 * but this one works just fine so I am not going to futz around. ;-)
143 	 */
144 	printk(KERN_INFO "Calibrating system timer... ");
145 	dosample();	/* Prime cache. */
146 	dosample();	/* Prime cache. */
147 	/* Zero is NOT an option. */
148 	do {
149 		r4k_ticks[0] = dosample();
150 	} while (!r4k_ticks[0]);
151 	do {
152 		r4k_ticks[1] = dosample();
153 	} while (!r4k_ticks[1]);
154 
155 	if (r4k_ticks[0] != r4k_ticks[1]) {
156 		printk("warning: timer counts differ, retrying... ");
157 		r4k_ticks[2] = dosample();
158 		if (r4k_ticks[2] == r4k_ticks[0]
159 		    || r4k_ticks[2] == r4k_ticks[1])
160 			r4k_tick = r4k_ticks[2];
161 		else {
162 			printk("disagreement, using average... ");
163 			r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
164 				   + r4k_ticks[2]) / 3;
165 		}
166 	} else
167 		r4k_tick = r4k_ticks[0];
168 
169 	printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
170 		(int) (r4k_tick / (500000 / HZ)),
171 		(int) (r4k_tick % (500000 / HZ)));
172 
173 	mips_hpt_frequency = r4k_tick * HZ;
174 
175 	switch (sni_brd_type) {
176 	case SNI_BRD_10:
177 	case SNI_BRD_10NEW:
178 	case SNI_BRD_TOWER_OASIC:
179 	case SNI_BRD_MINITOWER:
180 		sni_a20r_timer_setup();
181 		break;
182 	}
183 	setup_pit_timer();
184 }
185 
186 void read_persistent_clock(struct timespec *ts)
187 {
188 	ts->tv_sec = -1;
189 	ts->tv_nsec = 0;
190 }
191