xref: /linux/arch/mips/sni/time.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 #include <linux/types.h>
2 #include <linux/i8253.h>
3 #include <linux/interrupt.h>
4 #include <linux/irq.h>
5 #include <linux/smp.h>
6 #include <linux/time.h>
7 #include <linux/clockchips.h>
8 
9 #include <asm/sni.h>
10 #include <asm/time.h>
11 #include <asm-generic/rtc.h>
12 
13 #define SNI_CLOCK_TICK_RATE	3686400
14 #define SNI_COUNTER2_DIV	64
15 #define SNI_COUNTER0_DIV	((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
16 
17 static int a20r_set_periodic(struct clock_event_device *evt)
18 {
19 	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
20 	wmb();
21 	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV;
22 	wmb();
23 	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV >> 8;
24 	wmb();
25 
26 	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
27 	wmb();
28 	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV;
29 	wmb();
30 	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV >> 8;
31 	wmb();
32 	return 0;
33 }
34 
35 static struct clock_event_device a20r_clockevent_device = {
36 	.name			= "a20r-timer",
37 	.features		= CLOCK_EVT_FEAT_PERIODIC,
38 
39 	/* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
40 
41 	.rating			= 300,
42 	.irq			= SNI_A20R_IRQ_TIMER,
43 	.set_state_periodic	= a20r_set_periodic,
44 };
45 
46 static irqreturn_t a20r_interrupt(int irq, void *dev_id)
47 {
48 	struct clock_event_device *cd = dev_id;
49 
50 	*(volatile u8 *)A20R_PT_TIM0_ACK = 0;
51 	wmb();
52 
53 	cd->event_handler(cd);
54 
55 	return IRQ_HANDLED;
56 }
57 
58 static struct irqaction a20r_irqaction = {
59 	.handler	= a20r_interrupt,
60 	.flags		= IRQF_PERCPU | IRQF_TIMER,
61 	.name		= "a20r-timer",
62 };
63 
64 /*
65  * a20r platform uses 2 counters to divide the input frequency.
66  * Counter 2 output is connected to Counter 0 & 1 input.
67  */
68 static void __init sni_a20r_timer_setup(void)
69 {
70 	struct clock_event_device *cd = &a20r_clockevent_device;
71 	struct irqaction *action = &a20r_irqaction;
72 	unsigned int cpu = smp_processor_id();
73 
74 	cd->cpumask		= cpumask_of(cpu);
75 	clockevents_register_device(cd);
76 	action->dev_id = cd;
77 	setup_irq(SNI_A20R_IRQ_TIMER, &a20r_irqaction);
78 }
79 
80 #define SNI_8254_TICK_RATE	  1193182UL
81 
82 #define SNI_8254_TCSAMP_COUNTER	  ((SNI_8254_TICK_RATE / HZ) + 255)
83 
84 static __init unsigned long dosample(void)
85 {
86 	u32 ct0, ct1;
87 	volatile u8 msb;
88 
89 	/* Start the counter. */
90 	outb_p(0x34, 0x43);
91 	outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
92 	outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
93 
94 	/* Get initial counter invariant */
95 	ct0 = read_c0_count();
96 
97 	/* Latch and spin until top byte of counter0 is zero */
98 	do {
99 		outb(0x00, 0x43);
100 		(void) inb(0x40);
101 		msb = inb(0x40);
102 		ct1 = read_c0_count();
103 	} while (msb);
104 
105 	/* Stop the counter. */
106 	outb(0x38, 0x43);
107 	/*
108 	 * Return the difference, this is how far the r4k counter increments
109 	 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
110 	 * clock (= 1000000 / HZ / 2).
111 	 */
112 	/*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
113 	return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
114 }
115 
116 /*
117  * Here we need to calibrate the cycle counter to at least be close.
118  */
119 void __init plat_time_init(void)
120 {
121 	unsigned long r4k_ticks[3];
122 	unsigned long r4k_tick;
123 
124 	/*
125 	 * Figure out the r4k offset, the algorithm is very simple and works in
126 	 * _all_ cases as long as the 8254 counter register itself works ok (as
127 	 * an interrupt driving timer it does not because of bug, this is why
128 	 * we are using the onchip r4k counter/compare register to serve this
129 	 * purpose, but for r4k_offset calculation it will work ok for us).
130 	 * There are other very complicated ways of performing this calculation
131 	 * but this one works just fine so I am not going to futz around. ;-)
132 	 */
133 	printk(KERN_INFO "Calibrating system timer... ");
134 	dosample();	/* Prime cache. */
135 	dosample();	/* Prime cache. */
136 	/* Zero is NOT an option. */
137 	do {
138 		r4k_ticks[0] = dosample();
139 	} while (!r4k_ticks[0]);
140 	do {
141 		r4k_ticks[1] = dosample();
142 	} while (!r4k_ticks[1]);
143 
144 	if (r4k_ticks[0] != r4k_ticks[1]) {
145 		printk("warning: timer counts differ, retrying... ");
146 		r4k_ticks[2] = dosample();
147 		if (r4k_ticks[2] == r4k_ticks[0]
148 		    || r4k_ticks[2] == r4k_ticks[1])
149 			r4k_tick = r4k_ticks[2];
150 		else {
151 			printk("disagreement, using average... ");
152 			r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
153 				   + r4k_ticks[2]) / 3;
154 		}
155 	} else
156 		r4k_tick = r4k_ticks[0];
157 
158 	printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
159 		(int) (r4k_tick / (500000 / HZ)),
160 		(int) (r4k_tick % (500000 / HZ)));
161 
162 	mips_hpt_frequency = r4k_tick * HZ;
163 
164 	switch (sni_brd_type) {
165 	case SNI_BRD_10:
166 	case SNI_BRD_10NEW:
167 	case SNI_BRD_TOWER_OASIC:
168 	case SNI_BRD_MINITOWER:
169 		sni_a20r_timer_setup();
170 		break;
171 	}
172 	setup_pit_timer();
173 }
174 
175 void read_persistent_clock(struct timespec *ts)
176 {
177 	ts->tv_sec = -1;
178 	ts->tv_nsec = 0;
179 }
180