xref: /linux/arch/mips/sgi-ip27/ip27-irq.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
3  *
4  * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
5  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
6  * Copyright (C) 1999 - 2001 Kanoj Sarcar
7  */
8 
9 #undef DEBUG
10 
11 #include <linux/config.h>
12 #include <linux/init.h>
13 #include <linux/irq.h>
14 #include <linux/errno.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/types.h>
18 #include <linux/interrupt.h>
19 #include <linux/ioport.h>
20 #include <linux/timex.h>
21 #include <linux/slab.h>
22 #include <linux/random.h>
23 #include <linux/smp_lock.h>
24 #include <linux/kernel.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/delay.h>
27 #include <linux/bitops.h>
28 
29 #include <asm/bootinfo.h>
30 #include <asm/io.h>
31 #include <asm/mipsregs.h>
32 #include <asm/system.h>
33 
34 #include <asm/ptrace.h>
35 #include <asm/processor.h>
36 #include <asm/pci/bridge.h>
37 #include <asm/sn/addrs.h>
38 #include <asm/sn/agent.h>
39 #include <asm/sn/arch.h>
40 #include <asm/sn/hub.h>
41 #include <asm/sn/intr.h>
42 
43 /*
44  * Linux has a controller-independent x86 interrupt architecture.
45  * every controller has a 'controller-template', that is used
46  * by the main code to do the right thing. Each driver-visible
47  * interrupt source is transparently wired to the apropriate
48  * controller. Thus drivers need not be aware of the
49  * interrupt-controller.
50  *
51  * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
52  * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
53  * (IO-APICs assumed to be messaging to Pentium local-APICs)
54  *
55  * the code is designed to be easily extended with new/different
56  * interrupt controllers, without having to do assembly magic.
57  */
58 
59 extern asmlinkage void ip27_irq(void);
60 
61 extern struct bridge_controller *irq_to_bridge[];
62 extern int irq_to_slot[];
63 
64 /*
65  * use these macros to get the encoded nasid and widget id
66  * from the irq value
67  */
68 #define IRQ_TO_BRIDGE(i)		irq_to_bridge[(i)]
69 #define	SLOT_FROM_PCI_IRQ(i)		irq_to_slot[i]
70 
71 static inline int alloc_level(int cpu, int irq)
72 {
73 	struct hub_data *hub = hub_data(cpu_to_node(cpu));
74 	struct slice_data *si = cpu_data[cpu].data;
75 	int level;
76 
77 	level = find_first_zero_bit(hub->irq_alloc_mask, LEVELS_PER_SLICE);
78 	if (level >= LEVELS_PER_SLICE)
79 		panic("Cpu %d flooded with devices\n", cpu);
80 
81 	__set_bit(level, hub->irq_alloc_mask);
82 	si->level_to_irq[level] = irq;
83 
84 	return level;
85 }
86 
87 static inline int find_level(cpuid_t *cpunum, int irq)
88 {
89 	int cpu, i;
90 
91 	for_each_online_cpu(cpu) {
92 		struct slice_data *si = cpu_data[cpu].data;
93 
94 		for (i = BASE_PCI_IRQ; i < LEVELS_PER_SLICE; i++)
95 			if (si->level_to_irq[i] == irq) {
96 				*cpunum = cpu;
97 
98 				return i;
99 			}
100 	}
101 
102 	panic("Could not identify cpu/level for irq %d\n", irq);
103 }
104 
105 /*
106  * Find first bit set
107  */
108 static int ms1bit(unsigned long x)
109 {
110 	int b = 0, s;
111 
112 	s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s;
113 	s =  8; if (x >>  8 == 0) s = 0; b += s; x >>= s;
114 	s =  4; if (x >>  4 == 0) s = 0; b += s; x >>= s;
115 	s =  2; if (x >>  2 == 0) s = 0; b += s; x >>= s;
116 	s =  1; if (x >>  1 == 0) s = 0; b += s;
117 
118 	return b;
119 }
120 
121 /*
122  * This code is unnecessarily complex, because we do SA_INTERRUPT
123  * intr enabling. Basically, once we grab the set of intrs we need
124  * to service, we must mask _all_ these interrupts; firstly, to make
125  * sure the same intr does not intr again, causing recursion that
126  * can lead to stack overflow. Secondly, we can not just mask the
127  * one intr we are do_IRQing, because the non-masked intrs in the
128  * first set might intr again, causing multiple servicings of the
129  * same intr. This effect is mostly seen for intercpu intrs.
130  * Kanoj 05.13.00
131  */
132 
133 void ip27_do_irq_mask0(struct pt_regs *regs)
134 {
135 	int irq, swlevel;
136 	hubreg_t pend0, mask0;
137 	cpuid_t cpu = smp_processor_id();
138 	int pi_int_mask0 =
139 		(cputoslice(cpu) == 0) ?  PI_INT_MASK0_A : PI_INT_MASK0_B;
140 
141 	/* copied from Irix intpend0() */
142 	pend0 = LOCAL_HUB_L(PI_INT_PEND0);
143 	mask0 = LOCAL_HUB_L(pi_int_mask0);
144 
145 	pend0 &= mask0;		/* Pick intrs we should look at */
146 	if (!pend0)
147 		return;
148 
149 	swlevel = ms1bit(pend0);
150 #ifdef CONFIG_SMP
151 	if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) {
152 		LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
153 	} else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) {
154 		LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
155 	} else if (pend0 & (1UL << CPU_CALL_A_IRQ)) {
156 		LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
157 		smp_call_function_interrupt();
158 	} else if (pend0 & (1UL << CPU_CALL_B_IRQ)) {
159 		LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
160 		smp_call_function_interrupt();
161 	} else
162 #endif
163 	{
164 		/* "map" swlevel to irq */
165 		struct slice_data *si = cpu_data[cpu].data;
166 
167 		irq = si->level_to_irq[swlevel];
168 		do_IRQ(irq, regs);
169 	}
170 
171 	LOCAL_HUB_L(PI_INT_PEND0);
172 }
173 
174 void ip27_do_irq_mask1(struct pt_regs *regs)
175 {
176 	int irq, swlevel;
177 	hubreg_t pend1, mask1;
178 	cpuid_t cpu = smp_processor_id();
179 	int pi_int_mask1 = (cputoslice(cpu) == 0) ?  PI_INT_MASK1_A : PI_INT_MASK1_B;
180 	struct slice_data *si = cpu_data[cpu].data;
181 
182 	/* copied from Irix intpend0() */
183 	pend1 = LOCAL_HUB_L(PI_INT_PEND1);
184 	mask1 = LOCAL_HUB_L(pi_int_mask1);
185 
186 	pend1 &= mask1;		/* Pick intrs we should look at */
187 	if (!pend1)
188 		return;
189 
190 	swlevel = ms1bit(pend1);
191 	/* "map" swlevel to irq */
192 	irq = si->level_to_irq[swlevel];
193 	LOCAL_HUB_CLR_INTR(swlevel);
194 	do_IRQ(irq, regs);
195 
196 	LOCAL_HUB_L(PI_INT_PEND1);
197 }
198 
199 void ip27_prof_timer(struct pt_regs *regs)
200 {
201 	panic("CPU %d got a profiling interrupt", smp_processor_id());
202 }
203 
204 void ip27_hub_error(struct pt_regs *regs)
205 {
206 	panic("CPU %d got a hub error interrupt", smp_processor_id());
207 }
208 
209 static int intr_connect_level(int cpu, int bit)
210 {
211 	nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
212 	struct slice_data *si = cpu_data[cpu].data;
213 	unsigned long flags;
214 
215 	set_bit(bit, si->irq_enable_mask);
216 
217 	local_irq_save(flags);
218 	if (!cputoslice(cpu)) {
219 		REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
220 		REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
221 	} else {
222 		REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
223 		REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
224 	}
225 	local_irq_restore(flags);
226 
227 	return 0;
228 }
229 
230 static int intr_disconnect_level(int cpu, int bit)
231 {
232 	nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
233 	struct slice_data *si = cpu_data[cpu].data;
234 
235 	clear_bit(bit, si->irq_enable_mask);
236 
237 	if (!cputoslice(cpu)) {
238 		REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
239 		REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
240 	} else {
241 		REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
242 		REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
243 	}
244 
245 	return 0;
246 }
247 
248 /* Startup one of the (PCI ...) IRQs routes over a bridge.  */
249 static unsigned int startup_bridge_irq(unsigned int irq)
250 {
251 	struct bridge_controller *bc;
252 	bridgereg_t device;
253 	bridge_t *bridge;
254 	int pin, swlevel;
255 	cpuid_t cpu;
256 
257 	pin = SLOT_FROM_PCI_IRQ(irq);
258 	bc = IRQ_TO_BRIDGE(irq);
259 	bridge = bc->base;
260 
261 	pr_debug("bridge_startup(): irq= 0x%x  pin=%d\n", irq, pin);
262 	/*
263 	 * "map" irq to a swlevel greater than 6 since the first 6 bits
264 	 * of INT_PEND0 are taken
265 	 */
266 	swlevel = find_level(&cpu, irq);
267 	bridge->b_int_addr[pin].addr = (0x20000 | swlevel | (bc->nasid << 8));
268 	bridge->b_int_enable |= (1 << pin);
269 	bridge->b_int_enable |= 0x7ffffe00;	/* more stuff in int_enable */
270 
271 	/*
272 	 * Enable sending of an interrupt clear packt to the hub on a high to
273 	 * low transition of the interrupt pin.
274 	 *
275 	 * IRIX sets additional bits in the address which are documented as
276 	 * reserved in the bridge docs.
277 	 */
278 	bridge->b_int_mode |= (1UL << pin);
279 
280 	/*
281 	 * We assume the bridge to have a 1:1 mapping between devices
282 	 * (slots) and intr pins.
283 	 */
284 	device = bridge->b_int_device;
285 	device &= ~(7 << (pin*3));
286 	device |= (pin << (pin*3));
287 	bridge->b_int_device = device;
288 
289         bridge->b_wid_tflush;
290 
291         return 0;       /* Never anything pending.  */
292 }
293 
294 /* Shutdown one of the (PCI ...) IRQs routes over a bridge.  */
295 static void shutdown_bridge_irq(unsigned int irq)
296 {
297 	struct bridge_controller *bc = IRQ_TO_BRIDGE(irq);
298 	struct hub_data *hub = hub_data(cpu_to_node(bc->irq_cpu));
299 	bridge_t *bridge = bc->base;
300 	struct slice_data *si = cpu_data[bc->irq_cpu].data;
301 	int pin, swlevel;
302 	cpuid_t cpu;
303 
304 	pr_debug("bridge_shutdown: irq 0x%x\n", irq);
305 	pin = SLOT_FROM_PCI_IRQ(irq);
306 
307 	/*
308 	 * map irq to a swlevel greater than 6 since the first 6 bits
309 	 * of INT_PEND0 are taken
310 	 */
311 	swlevel = find_level(&cpu, irq);
312 	intr_disconnect_level(cpu, swlevel);
313 
314 	__clear_bit(swlevel, hub->irq_alloc_mask);
315 	si->level_to_irq[swlevel] = -1;
316 
317 	bridge->b_int_enable &= ~(1 << pin);
318 	bridge->b_wid_tflush;
319 }
320 
321 static inline void enable_bridge_irq(unsigned int irq)
322 {
323 	cpuid_t cpu;
324 	int swlevel;
325 
326 	swlevel = find_level(&cpu, irq);	/* Criminal offence */
327 	intr_connect_level(cpu, swlevel);
328 }
329 
330 static inline void disable_bridge_irq(unsigned int irq)
331 {
332 	cpuid_t cpu;
333 	int swlevel;
334 
335 	swlevel = find_level(&cpu, irq);	/* Criminal offence */
336 	intr_disconnect_level(cpu, swlevel);
337 }
338 
339 static void mask_and_ack_bridge_irq(unsigned int irq)
340 {
341 	disable_bridge_irq(irq);
342 }
343 
344 static void end_bridge_irq(unsigned int irq)
345 {
346 	if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)) &&
347 	    irq_desc[irq].action)
348 		enable_bridge_irq(irq);
349 }
350 
351 static struct hw_interrupt_type bridge_irq_type = {
352 	.typename	= "bridge",
353 	.startup	= startup_bridge_irq,
354 	.shutdown	= shutdown_bridge_irq,
355 	.enable		= enable_bridge_irq,
356 	.disable	= disable_bridge_irq,
357 	.ack		= mask_and_ack_bridge_irq,
358 	.end		= end_bridge_irq,
359 };
360 
361 static unsigned long irq_map[NR_IRQS / BITS_PER_LONG];
362 
363 static int allocate_irqno(void)
364 {
365 	int irq;
366 
367 again:
368 	irq = find_first_zero_bit(irq_map, NR_IRQS);
369 
370 	if (irq >= NR_IRQS)
371 		return -ENOSPC;
372 
373 	if (test_and_set_bit(irq, irq_map))
374 		goto again;
375 
376 	return irq;
377 }
378 
379 void free_irqno(unsigned int irq)
380 {
381 	clear_bit(irq, irq_map);
382 }
383 
384 void __devinit register_bridge_irq(unsigned int irq)
385 {
386 	irq_desc[irq].status	= IRQ_DISABLED;
387 	irq_desc[irq].action	= 0;
388 	irq_desc[irq].depth	= 1;
389 	irq_desc[irq].handler	= &bridge_irq_type;
390 }
391 
392 int __devinit request_bridge_irq(struct bridge_controller *bc)
393 {
394 	int irq = allocate_irqno();
395 	int swlevel, cpu;
396 	nasid_t nasid;
397 
398 	if (irq < 0)
399 		return irq;
400 
401 	/*
402 	 * "map" irq to a swlevel greater than 6 since the first 6 bits
403 	 * of INT_PEND0 are taken
404 	 */
405 	cpu = bc->irq_cpu;
406 	swlevel = alloc_level(cpu, irq);
407 	if (unlikely(swlevel < 0)) {
408 		free_irqno(irq);
409 
410 		return -EAGAIN;
411 	}
412 
413 	/* Make sure it's not already pending when we connect it. */
414 	nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
415 	REMOTE_HUB_CLR_INTR(nasid, swlevel);
416 
417 	intr_connect_level(cpu, swlevel);
418 
419 	register_bridge_irq(irq);
420 
421 	return irq;
422 }
423 
424 void __init arch_init_irq(void)
425 {
426 	set_except_vector(0, ip27_irq);
427 }
428 
429 void install_ipi(void)
430 {
431 	int slice = LOCAL_HUB_L(PI_CPU_NUM);
432 	int cpu = smp_processor_id();
433 	struct slice_data *si = cpu_data[cpu].data;
434 	struct hub_data *hub = hub_data(cpu_to_node(cpu));
435 	int resched, call;
436 
437 	resched = CPU_RESCHED_A_IRQ + slice;
438 	__set_bit(resched, hub->irq_alloc_mask);
439 	__set_bit(resched, si->irq_enable_mask);
440 	LOCAL_HUB_CLR_INTR(resched);
441 
442 	call = CPU_CALL_A_IRQ + slice;
443 	__set_bit(call, hub->irq_alloc_mask);
444 	__set_bit(call, si->irq_enable_mask);
445 	LOCAL_HUB_CLR_INTR(call);
446 
447 	if (slice == 0) {
448 		LOCAL_HUB_S(PI_INT_MASK0_A, si->irq_enable_mask[0]);
449 		LOCAL_HUB_S(PI_INT_MASK1_A, si->irq_enable_mask[1]);
450 	} else {
451 		LOCAL_HUB_S(PI_INT_MASK0_B, si->irq_enable_mask[0]);
452 		LOCAL_HUB_S(PI_INT_MASK1_B, si->irq_enable_mask[1]);
453 	}
454 }
455