xref: /linux/arch/mips/sgi-ip27/ip27-irq.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
3  *
4  * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
5  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
6  * Copyright (C) 1999 - 2001 Kanoj Sarcar
7  */
8 
9 #undef DEBUG
10 
11 #include <linux/init.h>
12 #include <linux/irq.h>
13 #include <linux/errno.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/timex.h>
20 #include <linux/smp.h>
21 #include <linux/random.h>
22 #include <linux/kernel.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/delay.h>
25 #include <linux/bitops.h>
26 
27 #include <asm/bootinfo.h>
28 #include <asm/io.h>
29 #include <asm/mipsregs.h>
30 #include <asm/system.h>
31 
32 #include <asm/processor.h>
33 #include <asm/pci/bridge.h>
34 #include <asm/sn/addrs.h>
35 #include <asm/sn/agent.h>
36 #include <asm/sn/arch.h>
37 #include <asm/sn/hub.h>
38 #include <asm/sn/intr.h>
39 
40 /*
41  * Linux has a controller-independent x86 interrupt architecture.
42  * every controller has a 'controller-template', that is used
43  * by the main code to do the right thing. Each driver-visible
44  * interrupt source is transparently wired to the appropriate
45  * controller. Thus drivers need not be aware of the
46  * interrupt-controller.
47  *
48  * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
49  * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
50  * (IO-APICs assumed to be messaging to Pentium local-APICs)
51  *
52  * the code is designed to be easily extended with new/different
53  * interrupt controllers, without having to do assembly magic.
54  */
55 
56 extern asmlinkage void ip27_irq(void);
57 
58 extern struct bridge_controller *irq_to_bridge[];
59 extern int irq_to_slot[];
60 
61 /*
62  * use these macros to get the encoded nasid and widget id
63  * from the irq value
64  */
65 #define IRQ_TO_BRIDGE(i)		irq_to_bridge[(i)]
66 #define	SLOT_FROM_PCI_IRQ(i)		irq_to_slot[i]
67 
68 static inline int alloc_level(int cpu, int irq)
69 {
70 	struct hub_data *hub = hub_data(cpu_to_node(cpu));
71 	struct slice_data *si = cpu_data[cpu].data;
72 	int level;
73 
74 	level = find_first_zero_bit(hub->irq_alloc_mask, LEVELS_PER_SLICE);
75 	if (level >= LEVELS_PER_SLICE)
76 		panic("Cpu %d flooded with devices", cpu);
77 
78 	__set_bit(level, hub->irq_alloc_mask);
79 	si->level_to_irq[level] = irq;
80 
81 	return level;
82 }
83 
84 static inline int find_level(cpuid_t *cpunum, int irq)
85 {
86 	int cpu, i;
87 
88 	for_each_online_cpu(cpu) {
89 		struct slice_data *si = cpu_data[cpu].data;
90 
91 		for (i = BASE_PCI_IRQ; i < LEVELS_PER_SLICE; i++)
92 			if (si->level_to_irq[i] == irq) {
93 				*cpunum = cpu;
94 
95 				return i;
96 			}
97 	}
98 
99 	panic("Could not identify cpu/level for irq %d", irq);
100 }
101 
102 /*
103  * Find first bit set
104  */
105 static int ms1bit(unsigned long x)
106 {
107 	int b = 0, s;
108 
109 	s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s;
110 	s =  8; if (x >>  8 == 0) s = 0; b += s; x >>= s;
111 	s =  4; if (x >>  4 == 0) s = 0; b += s; x >>= s;
112 	s =  2; if (x >>  2 == 0) s = 0; b += s; x >>= s;
113 	s =  1; if (x >>  1 == 0) s = 0; b += s;
114 
115 	return b;
116 }
117 
118 /*
119  * This code is unnecessarily complex, because we do
120  * intr enabling. Basically, once we grab the set of intrs we need
121  * to service, we must mask _all_ these interrupts; firstly, to make
122  * sure the same intr does not intr again, causing recursion that
123  * can lead to stack overflow. Secondly, we can not just mask the
124  * one intr we are do_IRQing, because the non-masked intrs in the
125  * first set might intr again, causing multiple servicings of the
126  * same intr. This effect is mostly seen for intercpu intrs.
127  * Kanoj 05.13.00
128  */
129 
130 static void ip27_do_irq_mask0(void)
131 {
132 	int irq, swlevel;
133 	hubreg_t pend0, mask0;
134 	cpuid_t cpu = smp_processor_id();
135 	int pi_int_mask0 =
136 		(cputoslice(cpu) == 0) ?  PI_INT_MASK0_A : PI_INT_MASK0_B;
137 
138 	/* copied from Irix intpend0() */
139 	pend0 = LOCAL_HUB_L(PI_INT_PEND0);
140 	mask0 = LOCAL_HUB_L(pi_int_mask0);
141 
142 	pend0 &= mask0;		/* Pick intrs we should look at */
143 	if (!pend0)
144 		return;
145 
146 	swlevel = ms1bit(pend0);
147 #ifdef CONFIG_SMP
148 	if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) {
149 		LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
150 		scheduler_ipi();
151 	} else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) {
152 		LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
153 		scheduler_ipi();
154 	} else if (pend0 & (1UL << CPU_CALL_A_IRQ)) {
155 		LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
156 		smp_call_function_interrupt();
157 	} else if (pend0 & (1UL << CPU_CALL_B_IRQ)) {
158 		LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
159 		smp_call_function_interrupt();
160 	} else
161 #endif
162 	{
163 		/* "map" swlevel to irq */
164 		struct slice_data *si = cpu_data[cpu].data;
165 
166 		irq = si->level_to_irq[swlevel];
167 		do_IRQ(irq);
168 	}
169 
170 	LOCAL_HUB_L(PI_INT_PEND0);
171 }
172 
173 static void ip27_do_irq_mask1(void)
174 {
175 	int irq, swlevel;
176 	hubreg_t pend1, mask1;
177 	cpuid_t cpu = smp_processor_id();
178 	int pi_int_mask1 = (cputoslice(cpu) == 0) ?  PI_INT_MASK1_A : PI_INT_MASK1_B;
179 	struct slice_data *si = cpu_data[cpu].data;
180 
181 	/* copied from Irix intpend0() */
182 	pend1 = LOCAL_HUB_L(PI_INT_PEND1);
183 	mask1 = LOCAL_HUB_L(pi_int_mask1);
184 
185 	pend1 &= mask1;		/* Pick intrs we should look at */
186 	if (!pend1)
187 		return;
188 
189 	swlevel = ms1bit(pend1);
190 	/* "map" swlevel to irq */
191 	irq = si->level_to_irq[swlevel];
192 	LOCAL_HUB_CLR_INTR(swlevel);
193 	do_IRQ(irq);
194 
195 	LOCAL_HUB_L(PI_INT_PEND1);
196 }
197 
198 static void ip27_prof_timer(void)
199 {
200 	panic("CPU %d got a profiling interrupt", smp_processor_id());
201 }
202 
203 static void ip27_hub_error(void)
204 {
205 	panic("CPU %d got a hub error interrupt", smp_processor_id());
206 }
207 
208 static int intr_connect_level(int cpu, int bit)
209 {
210 	nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
211 	struct slice_data *si = cpu_data[cpu].data;
212 
213 	set_bit(bit, si->irq_enable_mask);
214 
215 	if (!cputoslice(cpu)) {
216 		REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
217 		REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
218 	} else {
219 		REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
220 		REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
221 	}
222 
223 	return 0;
224 }
225 
226 static int intr_disconnect_level(int cpu, int bit)
227 {
228 	nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
229 	struct slice_data *si = cpu_data[cpu].data;
230 
231 	clear_bit(bit, si->irq_enable_mask);
232 
233 	if (!cputoslice(cpu)) {
234 		REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
235 		REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
236 	} else {
237 		REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
238 		REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
239 	}
240 
241 	return 0;
242 }
243 
244 /* Startup one of the (PCI ...) IRQs routes over a bridge.  */
245 static unsigned int startup_bridge_irq(struct irq_data *d)
246 {
247 	struct bridge_controller *bc;
248 	bridgereg_t device;
249 	bridge_t *bridge;
250 	int pin, swlevel;
251 	cpuid_t cpu;
252 
253 	pin = SLOT_FROM_PCI_IRQ(d->irq);
254 	bc = IRQ_TO_BRIDGE(d->irq);
255 	bridge = bc->base;
256 
257 	pr_debug("bridge_startup(): irq= 0x%x  pin=%d\n", d->irq, pin);
258 	/*
259 	 * "map" irq to a swlevel greater than 6 since the first 6 bits
260 	 * of INT_PEND0 are taken
261 	 */
262 	swlevel = find_level(&cpu, d->irq);
263 	bridge->b_int_addr[pin].addr = (0x20000 | swlevel | (bc->nasid << 8));
264 	bridge->b_int_enable |= (1 << pin);
265 	bridge->b_int_enable |= 0x7ffffe00;	/* more stuff in int_enable */
266 
267 	/*
268 	 * Enable sending of an interrupt clear packt to the hub on a high to
269 	 * low transition of the interrupt pin.
270 	 *
271 	 * IRIX sets additional bits in the address which are documented as
272 	 * reserved in the bridge docs.
273 	 */
274 	bridge->b_int_mode |= (1UL << pin);
275 
276 	/*
277 	 * We assume the bridge to have a 1:1 mapping between devices
278 	 * (slots) and intr pins.
279 	 */
280 	device = bridge->b_int_device;
281 	device &= ~(7 << (pin*3));
282 	device |= (pin << (pin*3));
283 	bridge->b_int_device = device;
284 
285         bridge->b_wid_tflush;
286 
287 	intr_connect_level(cpu, swlevel);
288 
289         return 0;       /* Never anything pending.  */
290 }
291 
292 /* Shutdown one of the (PCI ...) IRQs routes over a bridge.  */
293 static void shutdown_bridge_irq(struct irq_data *d)
294 {
295 	struct bridge_controller *bc = IRQ_TO_BRIDGE(d->irq);
296 	bridge_t *bridge = bc->base;
297 	int pin, swlevel;
298 	cpuid_t cpu;
299 
300 	pr_debug("bridge_shutdown: irq 0x%x\n", d->irq);
301 	pin = SLOT_FROM_PCI_IRQ(d->irq);
302 
303 	/*
304 	 * map irq to a swlevel greater than 6 since the first 6 bits
305 	 * of INT_PEND0 are taken
306 	 */
307 	swlevel = find_level(&cpu, d->irq);
308 	intr_disconnect_level(cpu, swlevel);
309 
310 	bridge->b_int_enable &= ~(1 << pin);
311 	bridge->b_wid_tflush;
312 }
313 
314 static inline void enable_bridge_irq(struct irq_data *d)
315 {
316 	cpuid_t cpu;
317 	int swlevel;
318 
319 	swlevel = find_level(&cpu, d->irq);	/* Criminal offence */
320 	intr_connect_level(cpu, swlevel);
321 }
322 
323 static inline void disable_bridge_irq(struct irq_data *d)
324 {
325 	cpuid_t cpu;
326 	int swlevel;
327 
328 	swlevel = find_level(&cpu, d->irq);	/* Criminal offence */
329 	intr_disconnect_level(cpu, swlevel);
330 }
331 
332 static struct irq_chip bridge_irq_type = {
333 	.name		= "bridge",
334 	.irq_startup	= startup_bridge_irq,
335 	.irq_shutdown	= shutdown_bridge_irq,
336 	.irq_mask	= disable_bridge_irq,
337 	.irq_unmask	= enable_bridge_irq,
338 };
339 
340 void register_bridge_irq(unsigned int irq)
341 {
342 	irq_set_chip_and_handler(irq, &bridge_irq_type, handle_level_irq);
343 }
344 
345 int request_bridge_irq(struct bridge_controller *bc)
346 {
347 	int irq = allocate_irqno();
348 	int swlevel, cpu;
349 	nasid_t nasid;
350 
351 	if (irq < 0)
352 		return irq;
353 
354 	/*
355 	 * "map" irq to a swlevel greater than 6 since the first 6 bits
356 	 * of INT_PEND0 are taken
357 	 */
358 	cpu = bc->irq_cpu;
359 	swlevel = alloc_level(cpu, irq);
360 	if (unlikely(swlevel < 0)) {
361 		free_irqno(irq);
362 
363 		return -EAGAIN;
364 	}
365 
366 	/* Make sure it's not already pending when we connect it. */
367 	nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
368 	REMOTE_HUB_CLR_INTR(nasid, swlevel);
369 
370 	intr_connect_level(cpu, swlevel);
371 
372 	register_bridge_irq(irq);
373 
374 	return irq;
375 }
376 
377 asmlinkage void plat_irq_dispatch(void)
378 {
379 	unsigned long pending = read_c0_cause() & read_c0_status();
380 	extern unsigned int rt_timer_irq;
381 
382 	if (pending & CAUSEF_IP4)
383 		do_IRQ(rt_timer_irq);
384 	else if (pending & CAUSEF_IP2)	/* PI_INT_PEND_0 or CC_PEND_{A|B} */
385 		ip27_do_irq_mask0();
386 	else if (pending & CAUSEF_IP3)	/* PI_INT_PEND_1 */
387 		ip27_do_irq_mask1();
388 	else if (pending & CAUSEF_IP5)
389 		ip27_prof_timer();
390 	else if (pending & CAUSEF_IP6)
391 		ip27_hub_error();
392 }
393 
394 void __init arch_init_irq(void)
395 {
396 }
397 
398 void install_ipi(void)
399 {
400 	int slice = LOCAL_HUB_L(PI_CPU_NUM);
401 	int cpu = smp_processor_id();
402 	struct slice_data *si = cpu_data[cpu].data;
403 	struct hub_data *hub = hub_data(cpu_to_node(cpu));
404 	int resched, call;
405 
406 	resched = CPU_RESCHED_A_IRQ + slice;
407 	__set_bit(resched, hub->irq_alloc_mask);
408 	__set_bit(resched, si->irq_enable_mask);
409 	LOCAL_HUB_CLR_INTR(resched);
410 
411 	call = CPU_CALL_A_IRQ + slice;
412 	__set_bit(call, hub->irq_alloc_mask);
413 	__set_bit(call, si->irq_enable_mask);
414 	LOCAL_HUB_CLR_INTR(call);
415 
416 	if (slice == 0) {
417 		LOCAL_HUB_S(PI_INT_MASK0_A, si->irq_enable_mask[0]);
418 		LOCAL_HUB_S(PI_INT_MASK1_A, si->irq_enable_mask[1]);
419 	} else {
420 		LOCAL_HUB_S(PI_INT_MASK0_B, si->irq_enable_mask[0]);
421 		LOCAL_HUB_S(PI_INT_MASK1_B, si->irq_enable_mask[1]);
422 	}
423 }
424