xref: /linux/arch/mips/sgi-ip27/ip27-irq.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
3  *
4  * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
5  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
6  * Copyright (C) 1999 - 2001 Kanoj Sarcar
7  */
8 
9 #undef DEBUG
10 
11 #include <linux/init.h>
12 #include <linux/irq.h>
13 #include <linux/errno.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/timex.h>
20 #include <linux/smp.h>
21 #include <linux/random.h>
22 #include <linux/kernel.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/delay.h>
25 #include <linux/bitops.h>
26 
27 #include <asm/bootinfo.h>
28 #include <asm/io.h>
29 #include <asm/mipsregs.h>
30 
31 #include <asm/processor.h>
32 #include <asm/pci/bridge.h>
33 #include <asm/sn/addrs.h>
34 #include <asm/sn/agent.h>
35 #include <asm/sn/arch.h>
36 #include <asm/sn/hub.h>
37 #include <asm/sn/intr.h>
38 
39 /*
40  * Linux has a controller-independent x86 interrupt architecture.
41  * every controller has a 'controller-template', that is used
42  * by the main code to do the right thing. Each driver-visible
43  * interrupt source is transparently wired to the appropriate
44  * controller. Thus drivers need not be aware of the
45  * interrupt-controller.
46  *
47  * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
48  * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
49  * (IO-APICs assumed to be messaging to Pentium local-APICs)
50  *
51  * the code is designed to be easily extended with new/different
52  * interrupt controllers, without having to do assembly magic.
53  */
54 
55 extern asmlinkage void ip27_irq(void);
56 
57 extern struct bridge_controller *irq_to_bridge[];
58 extern int irq_to_slot[];
59 
60 /*
61  * use these macros to get the encoded nasid and widget id
62  * from the irq value
63  */
64 #define IRQ_TO_BRIDGE(i)		irq_to_bridge[(i)]
65 #define	SLOT_FROM_PCI_IRQ(i)		irq_to_slot[i]
66 
67 static inline int alloc_level(int cpu, int irq)
68 {
69 	struct hub_data *hub = hub_data(cpu_to_node(cpu));
70 	struct slice_data *si = cpu_data[cpu].data;
71 	int level;
72 
73 	level = find_first_zero_bit(hub->irq_alloc_mask, LEVELS_PER_SLICE);
74 	if (level >= LEVELS_PER_SLICE)
75 		panic("Cpu %d flooded with devices", cpu);
76 
77 	__set_bit(level, hub->irq_alloc_mask);
78 	si->level_to_irq[level] = irq;
79 
80 	return level;
81 }
82 
83 static inline int find_level(cpuid_t *cpunum, int irq)
84 {
85 	int cpu, i;
86 
87 	for_each_online_cpu(cpu) {
88 		struct slice_data *si = cpu_data[cpu].data;
89 
90 		for (i = BASE_PCI_IRQ; i < LEVELS_PER_SLICE; i++)
91 			if (si->level_to_irq[i] == irq) {
92 				*cpunum = cpu;
93 
94 				return i;
95 			}
96 	}
97 
98 	panic("Could not identify cpu/level for irq %d", irq);
99 }
100 
101 /*
102  * Find first bit set
103  */
104 static int ms1bit(unsigned long x)
105 {
106 	int b = 0, s;
107 
108 	s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s;
109 	s =  8; if (x >>  8 == 0) s = 0; b += s; x >>= s;
110 	s =  4; if (x >>  4 == 0) s = 0; b += s; x >>= s;
111 	s =  2; if (x >>  2 == 0) s = 0; b += s; x >>= s;
112 	s =  1; if (x >>  1 == 0) s = 0; b += s;
113 
114 	return b;
115 }
116 
117 /*
118  * This code is unnecessarily complex, because we do
119  * intr enabling. Basically, once we grab the set of intrs we need
120  * to service, we must mask _all_ these interrupts; firstly, to make
121  * sure the same intr does not intr again, causing recursion that
122  * can lead to stack overflow. Secondly, we can not just mask the
123  * one intr we are do_IRQing, because the non-masked intrs in the
124  * first set might intr again, causing multiple servicings of the
125  * same intr. This effect is mostly seen for intercpu intrs.
126  * Kanoj 05.13.00
127  */
128 
129 static void ip27_do_irq_mask0(void)
130 {
131 	int irq, swlevel;
132 	hubreg_t pend0, mask0;
133 	cpuid_t cpu = smp_processor_id();
134 	int pi_int_mask0 =
135 		(cputoslice(cpu) == 0) ?  PI_INT_MASK0_A : PI_INT_MASK0_B;
136 
137 	/* copied from Irix intpend0() */
138 	pend0 = LOCAL_HUB_L(PI_INT_PEND0);
139 	mask0 = LOCAL_HUB_L(pi_int_mask0);
140 
141 	pend0 &= mask0;		/* Pick intrs we should look at */
142 	if (!pend0)
143 		return;
144 
145 	swlevel = ms1bit(pend0);
146 #ifdef CONFIG_SMP
147 	if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) {
148 		LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
149 		scheduler_ipi();
150 	} else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) {
151 		LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
152 		scheduler_ipi();
153 	} else if (pend0 & (1UL << CPU_CALL_A_IRQ)) {
154 		LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
155 		smp_call_function_interrupt();
156 	} else if (pend0 & (1UL << CPU_CALL_B_IRQ)) {
157 		LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
158 		smp_call_function_interrupt();
159 	} else
160 #endif
161 	{
162 		/* "map" swlevel to irq */
163 		struct slice_data *si = cpu_data[cpu].data;
164 
165 		irq = si->level_to_irq[swlevel];
166 		do_IRQ(irq);
167 	}
168 
169 	LOCAL_HUB_L(PI_INT_PEND0);
170 }
171 
172 static void ip27_do_irq_mask1(void)
173 {
174 	int irq, swlevel;
175 	hubreg_t pend1, mask1;
176 	cpuid_t cpu = smp_processor_id();
177 	int pi_int_mask1 = (cputoslice(cpu) == 0) ?  PI_INT_MASK1_A : PI_INT_MASK1_B;
178 	struct slice_data *si = cpu_data[cpu].data;
179 
180 	/* copied from Irix intpend0() */
181 	pend1 = LOCAL_HUB_L(PI_INT_PEND1);
182 	mask1 = LOCAL_HUB_L(pi_int_mask1);
183 
184 	pend1 &= mask1;		/* Pick intrs we should look at */
185 	if (!pend1)
186 		return;
187 
188 	swlevel = ms1bit(pend1);
189 	/* "map" swlevel to irq */
190 	irq = si->level_to_irq[swlevel];
191 	LOCAL_HUB_CLR_INTR(swlevel);
192 	do_IRQ(irq);
193 
194 	LOCAL_HUB_L(PI_INT_PEND1);
195 }
196 
197 static void ip27_prof_timer(void)
198 {
199 	panic("CPU %d got a profiling interrupt", smp_processor_id());
200 }
201 
202 static void ip27_hub_error(void)
203 {
204 	panic("CPU %d got a hub error interrupt", smp_processor_id());
205 }
206 
207 static int intr_connect_level(int cpu, int bit)
208 {
209 	nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
210 	struct slice_data *si = cpu_data[cpu].data;
211 
212 	set_bit(bit, si->irq_enable_mask);
213 
214 	if (!cputoslice(cpu)) {
215 		REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
216 		REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
217 	} else {
218 		REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
219 		REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
220 	}
221 
222 	return 0;
223 }
224 
225 static int intr_disconnect_level(int cpu, int bit)
226 {
227 	nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
228 	struct slice_data *si = cpu_data[cpu].data;
229 
230 	clear_bit(bit, si->irq_enable_mask);
231 
232 	if (!cputoslice(cpu)) {
233 		REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
234 		REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
235 	} else {
236 		REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
237 		REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
238 	}
239 
240 	return 0;
241 }
242 
243 /* Startup one of the (PCI ...) IRQs routes over a bridge.  */
244 static unsigned int startup_bridge_irq(struct irq_data *d)
245 {
246 	struct bridge_controller *bc;
247 	bridgereg_t device;
248 	bridge_t *bridge;
249 	int pin, swlevel;
250 	cpuid_t cpu;
251 
252 	pin = SLOT_FROM_PCI_IRQ(d->irq);
253 	bc = IRQ_TO_BRIDGE(d->irq);
254 	bridge = bc->base;
255 
256 	pr_debug("bridge_startup(): irq= 0x%x  pin=%d\n", d->irq, pin);
257 	/*
258 	 * "map" irq to a swlevel greater than 6 since the first 6 bits
259 	 * of INT_PEND0 are taken
260 	 */
261 	swlevel = find_level(&cpu, d->irq);
262 	bridge->b_int_addr[pin].addr = (0x20000 | swlevel | (bc->nasid << 8));
263 	bridge->b_int_enable |= (1 << pin);
264 	bridge->b_int_enable |= 0x7ffffe00;	/* more stuff in int_enable */
265 
266 	/*
267 	 * Enable sending of an interrupt clear packt to the hub on a high to
268 	 * low transition of the interrupt pin.
269 	 *
270 	 * IRIX sets additional bits in the address which are documented as
271 	 * reserved in the bridge docs.
272 	 */
273 	bridge->b_int_mode |= (1UL << pin);
274 
275 	/*
276 	 * We assume the bridge to have a 1:1 mapping between devices
277 	 * (slots) and intr pins.
278 	 */
279 	device = bridge->b_int_device;
280 	device &= ~(7 << (pin*3));
281 	device |= (pin << (pin*3));
282 	bridge->b_int_device = device;
283 
284         bridge->b_wid_tflush;
285 
286 	intr_connect_level(cpu, swlevel);
287 
288         return 0;       /* Never anything pending.  */
289 }
290 
291 /* Shutdown one of the (PCI ...) IRQs routes over a bridge.  */
292 static void shutdown_bridge_irq(struct irq_data *d)
293 {
294 	struct bridge_controller *bc = IRQ_TO_BRIDGE(d->irq);
295 	bridge_t *bridge = bc->base;
296 	int pin, swlevel;
297 	cpuid_t cpu;
298 
299 	pr_debug("bridge_shutdown: irq 0x%x\n", d->irq);
300 	pin = SLOT_FROM_PCI_IRQ(d->irq);
301 
302 	/*
303 	 * map irq to a swlevel greater than 6 since the first 6 bits
304 	 * of INT_PEND0 are taken
305 	 */
306 	swlevel = find_level(&cpu, d->irq);
307 	intr_disconnect_level(cpu, swlevel);
308 
309 	bridge->b_int_enable &= ~(1 << pin);
310 	bridge->b_wid_tflush;
311 }
312 
313 static inline void enable_bridge_irq(struct irq_data *d)
314 {
315 	cpuid_t cpu;
316 	int swlevel;
317 
318 	swlevel = find_level(&cpu, d->irq);	/* Criminal offence */
319 	intr_connect_level(cpu, swlevel);
320 }
321 
322 static inline void disable_bridge_irq(struct irq_data *d)
323 {
324 	cpuid_t cpu;
325 	int swlevel;
326 
327 	swlevel = find_level(&cpu, d->irq);	/* Criminal offence */
328 	intr_disconnect_level(cpu, swlevel);
329 }
330 
331 static struct irq_chip bridge_irq_type = {
332 	.name		= "bridge",
333 	.irq_startup	= startup_bridge_irq,
334 	.irq_shutdown	= shutdown_bridge_irq,
335 	.irq_mask	= disable_bridge_irq,
336 	.irq_unmask	= enable_bridge_irq,
337 };
338 
339 void register_bridge_irq(unsigned int irq)
340 {
341 	irq_set_chip_and_handler(irq, &bridge_irq_type, handle_level_irq);
342 }
343 
344 int request_bridge_irq(struct bridge_controller *bc)
345 {
346 	int irq = allocate_irqno();
347 	int swlevel, cpu;
348 	nasid_t nasid;
349 
350 	if (irq < 0)
351 		return irq;
352 
353 	/*
354 	 * "map" irq to a swlevel greater than 6 since the first 6 bits
355 	 * of INT_PEND0 are taken
356 	 */
357 	cpu = bc->irq_cpu;
358 	swlevel = alloc_level(cpu, irq);
359 	if (unlikely(swlevel < 0)) {
360 		free_irqno(irq);
361 
362 		return -EAGAIN;
363 	}
364 
365 	/* Make sure it's not already pending when we connect it. */
366 	nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
367 	REMOTE_HUB_CLR_INTR(nasid, swlevel);
368 
369 	intr_connect_level(cpu, swlevel);
370 
371 	register_bridge_irq(irq);
372 
373 	return irq;
374 }
375 
376 asmlinkage void plat_irq_dispatch(void)
377 {
378 	unsigned long pending = read_c0_cause() & read_c0_status();
379 	extern unsigned int rt_timer_irq;
380 
381 	if (pending & CAUSEF_IP4)
382 		do_IRQ(rt_timer_irq);
383 	else if (pending & CAUSEF_IP2)	/* PI_INT_PEND_0 or CC_PEND_{A|B} */
384 		ip27_do_irq_mask0();
385 	else if (pending & CAUSEF_IP3)	/* PI_INT_PEND_1 */
386 		ip27_do_irq_mask1();
387 	else if (pending & CAUSEF_IP5)
388 		ip27_prof_timer();
389 	else if (pending & CAUSEF_IP6)
390 		ip27_hub_error();
391 }
392 
393 void __init arch_init_irq(void)
394 {
395 }
396 
397 void install_ipi(void)
398 {
399 	int slice = LOCAL_HUB_L(PI_CPU_NUM);
400 	int cpu = smp_processor_id();
401 	struct slice_data *si = cpu_data[cpu].data;
402 	struct hub_data *hub = hub_data(cpu_to_node(cpu));
403 	int resched, call;
404 
405 	resched = CPU_RESCHED_A_IRQ + slice;
406 	__set_bit(resched, hub->irq_alloc_mask);
407 	__set_bit(resched, si->irq_enable_mask);
408 	LOCAL_HUB_CLR_INTR(resched);
409 
410 	call = CPU_CALL_A_IRQ + slice;
411 	__set_bit(call, hub->irq_alloc_mask);
412 	__set_bit(call, si->irq_enable_mask);
413 	LOCAL_HUB_CLR_INTR(call);
414 
415 	if (slice == 0) {
416 		LOCAL_HUB_S(PI_INT_MASK0_A, si->irq_enable_mask[0]);
417 		LOCAL_HUB_S(PI_INT_MASK1_A, si->irq_enable_mask[1]);
418 	} else {
419 		LOCAL_HUB_S(PI_INT_MASK0_B, si->irq_enable_mask[0]);
420 		LOCAL_HUB_S(PI_INT_MASK1_B, si->irq_enable_mask[1]);
421 	}
422 }
423