xref: /linux/arch/mips/pci/pci-octeon.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2005-2009 Cavium Networks
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/interrupt.h>
12 #include <linux/time.h>
13 #include <linux/delay.h>
14 #include <linux/swiotlb.h>
15 
16 #include <asm/time.h>
17 
18 #include <asm/octeon/octeon.h>
19 #include <asm/octeon/cvmx-npi-defs.h>
20 #include <asm/octeon/cvmx-pci-defs.h>
21 #include <asm/octeon/pci-octeon.h>
22 
23 #include <dma-coherence.h>
24 
25 #define USE_OCTEON_INTERNAL_ARBITER
26 
27 /*
28  * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
29  * addresses. Use PCI endian swapping 1 so no address swapping is
30  * necessary. The Linux io routines will endian swap the data.
31  */
32 #define OCTEON_PCI_IOSPACE_BASE     0x80011a0400000000ull
33 #define OCTEON_PCI_IOSPACE_SIZE     (1ull<<32)
34 
35 /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
36 #define OCTEON_PCI_MEMSPACE_OFFSET  (0x00011b0000000000ull)
37 
38 u64 octeon_bar1_pci_phys;
39 
40 /**
41  * This is the bit decoding used for the Octeon PCI controller addresses
42  */
43 union octeon_pci_address {
44 	uint64_t u64;
45 	struct {
46 		uint64_t upper:2;
47 		uint64_t reserved:13;
48 		uint64_t io:1;
49 		uint64_t did:5;
50 		uint64_t subdid:3;
51 		uint64_t reserved2:4;
52 		uint64_t endian_swap:2;
53 		uint64_t reserved3:10;
54 		uint64_t bus:8;
55 		uint64_t dev:5;
56 		uint64_t func:3;
57 		uint64_t reg:8;
58 	} s;
59 };
60 
61 int __initconst (*octeon_pcibios_map_irq)(const struct pci_dev *dev,
62 					 u8 slot, u8 pin);
63 enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
64 
65 /**
66  * Map a PCI device to the appropriate interrupt line
67  *
68  * @dev:    The Linux PCI device structure for the device to map
69  * @slot:   The slot number for this device on __BUS 0__. Linux
70  *               enumerates through all the bridges and figures out the
71  *               slot on Bus 0 where this device eventually hooks to.
72  * @pin:    The PCI interrupt pin read from the device, then swizzled
73  *               as it goes through each bridge.
74  * Returns Interrupt number for the device
75  */
76 int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
77 {
78 	if (octeon_pcibios_map_irq)
79 		return octeon_pcibios_map_irq(dev, slot, pin);
80 	else
81 		panic("octeon_pcibios_map_irq not set.");
82 }
83 
84 
85 /*
86  * Called to perform platform specific PCI setup
87  */
88 int pcibios_plat_dev_init(struct pci_dev *dev)
89 {
90 	uint16_t config;
91 	uint32_t dconfig;
92 	int pos;
93 	/*
94 	 * Force the Cache line setting to 64 bytes. The standard
95 	 * Linux bus scan doesn't seem to set it. Octeon really has
96 	 * 128 byte lines, but Intel bridges get really upset if you
97 	 * try and set values above 64 bytes. Value is specified in
98 	 * 32bit words.
99 	 */
100 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
101 	/* Set latency timers for all devices */
102 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64);
103 
104 	/* Enable reporting System errors and parity errors on all devices */
105 	/* Enable parity checking and error reporting */
106 	pci_read_config_word(dev, PCI_COMMAND, &config);
107 	config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
108 	pci_write_config_word(dev, PCI_COMMAND, config);
109 
110 	if (dev->subordinate) {
111 		/* Set latency timers on sub bridges */
112 		pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64);
113 		/* More bridge error detection */
114 		pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
115 		config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
116 		pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
117 	}
118 
119 	/* Enable the PCIe normal error reporting */
120 	config = PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */
121 	config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */
122 	config |= PCI_EXP_DEVCTL_FERE;  /* Fatal Error Reporting */
123 	config |= PCI_EXP_DEVCTL_URRE;  /* Unsupported Request */
124 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, config);
125 
126 	/* Find the Advanced Error Reporting capability */
127 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
128 	if (pos) {
129 		/* Clear Uncorrectable Error Status */
130 		pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
131 				      &dconfig);
132 		pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
133 				       dconfig);
134 		/* Enable reporting of all uncorrectable errors */
135 		/* Uncorrectable Error Mask - turned on bits disable errors */
136 		pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
137 		/*
138 		 * Leave severity at HW default. This only controls if
139 		 * errors are reported as uncorrectable or
140 		 * correctable, not if the error is reported.
141 		 */
142 		/* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
143 		/* Clear Correctable Error Status */
144 		pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
145 		pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
146 		/* Enable reporting of all correctable errors */
147 		/* Correctable Error Mask - turned on bits disable errors */
148 		pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
149 		/* Advanced Error Capabilities */
150 		pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
151 		/* ECRC Generation Enable */
152 		if (config & PCI_ERR_CAP_ECRC_GENC)
153 			config |= PCI_ERR_CAP_ECRC_GENE;
154 		/* ECRC Check Enable */
155 		if (config & PCI_ERR_CAP_ECRC_CHKC)
156 			config |= PCI_ERR_CAP_ECRC_CHKE;
157 		pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
158 		/* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
159 		/* Report all errors to the root complex */
160 		pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
161 				       PCI_ERR_ROOT_CMD_COR_EN |
162 				       PCI_ERR_ROOT_CMD_NONFATAL_EN |
163 				       PCI_ERR_ROOT_CMD_FATAL_EN);
164 		/* Clear the Root status register */
165 		pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
166 		pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
167 	}
168 
169 	dev->dev.archdata.dma_ops = octeon_pci_dma_map_ops;
170 
171 	return 0;
172 }
173 
174 /**
175  * Return the mapping of PCI device number to IRQ line. Each
176  * character in the return string represents the interrupt
177  * line for the device at that position. Device 1 maps to the
178  * first character, etc. The characters A-D are used for PCI
179  * interrupts.
180  *
181  * Returns PCI interrupt mapping
182  */
183 const char *octeon_get_pci_interrupts(void)
184 {
185 	/*
186 	 * Returning an empty string causes the interrupts to be
187 	 * routed based on the PCI specification. From the PCI spec:
188 	 *
189 	 * INTA# of Device Number 0 is connected to IRQW on the system
190 	 * board.  (Device Number has no significance regarding being
191 	 * located on the system board or in a connector.) INTA# of
192 	 * Device Number 1 is connected to IRQX on the system
193 	 * board. INTA# of Device Number 2 is connected to IRQY on the
194 	 * system board. INTA# of Device Number 3 is connected to IRQZ
195 	 * on the system board. The table below describes how each
196 	 * agent's INTx# lines are connected to the system board
197 	 * interrupt lines. The following equation can be used to
198 	 * determine to which INTx# signal on the system board a given
199 	 * device's INTx# line(s) is connected.
200 	 *
201 	 * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
202 	 * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
203 	 * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
204 	 * INTD# = 3)
205 	 */
206 	switch (octeon_bootinfo->board_type) {
207 	case CVMX_BOARD_TYPE_NAO38:
208 		/* This is really the NAC38 */
209 		return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
210 	case CVMX_BOARD_TYPE_EBH3100:
211 	case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
212 	case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
213 		return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
214 	case CVMX_BOARD_TYPE_BBGW_REF:
215 		return "AABCD";
216 	case CVMX_BOARD_TYPE_THUNDER:
217 	case CVMX_BOARD_TYPE_EBH3000:
218 	default:
219 		return "";
220 	}
221 }
222 
223 /**
224  * Map a PCI device to the appropriate interrupt line
225  *
226  * @dev:    The Linux PCI device structure for the device to map
227  * @slot:   The slot number for this device on __BUS 0__. Linux
228  *               enumerates through all the bridges and figures out the
229  *               slot on Bus 0 where this device eventually hooks to.
230  * @pin:    The PCI interrupt pin read from the device, then swizzled
231  *               as it goes through each bridge.
232  * Returns Interrupt number for the device
233  */
234 int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
235 				      u8 slot, u8 pin)
236 {
237 	int irq_num;
238 	const char *interrupts;
239 	int dev_num;
240 
241 	/* Get the board specific interrupt mapping */
242 	interrupts = octeon_get_pci_interrupts();
243 
244 	dev_num = dev->devfn >> 3;
245 	if (dev_num < strlen(interrupts))
246 		irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
247 			OCTEON_IRQ_PCI_INT0;
248 	else
249 		irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
250 	return irq_num;
251 }
252 
253 
254 /*
255  * Read a value from configuration space
256  */
257 static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
258 			      int reg, int size, u32 *val)
259 {
260 	union octeon_pci_address pci_addr;
261 
262 	pci_addr.u64 = 0;
263 	pci_addr.s.upper = 2;
264 	pci_addr.s.io = 1;
265 	pci_addr.s.did = 3;
266 	pci_addr.s.subdid = 1;
267 	pci_addr.s.endian_swap = 1;
268 	pci_addr.s.bus = bus->number;
269 	pci_addr.s.dev = devfn >> 3;
270 	pci_addr.s.func = devfn & 0x7;
271 	pci_addr.s.reg = reg;
272 
273 #if PCI_CONFIG_SPACE_DELAY
274 	udelay(PCI_CONFIG_SPACE_DELAY);
275 #endif
276 	switch (size) {
277 	case 4:
278 		*val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
279 		return PCIBIOS_SUCCESSFUL;
280 	case 2:
281 		*val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
282 		return PCIBIOS_SUCCESSFUL;
283 	case 1:
284 		*val = cvmx_read64_uint8(pci_addr.u64);
285 		return PCIBIOS_SUCCESSFUL;
286 	}
287 	return PCIBIOS_FUNC_NOT_SUPPORTED;
288 }
289 
290 
291 /*
292  * Write a value to PCI configuration space
293  */
294 static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
295 			       int reg, int size, u32 val)
296 {
297 	union octeon_pci_address pci_addr;
298 
299 	pci_addr.u64 = 0;
300 	pci_addr.s.upper = 2;
301 	pci_addr.s.io = 1;
302 	pci_addr.s.did = 3;
303 	pci_addr.s.subdid = 1;
304 	pci_addr.s.endian_swap = 1;
305 	pci_addr.s.bus = bus->number;
306 	pci_addr.s.dev = devfn >> 3;
307 	pci_addr.s.func = devfn & 0x7;
308 	pci_addr.s.reg = reg;
309 
310 #if PCI_CONFIG_SPACE_DELAY
311 	udelay(PCI_CONFIG_SPACE_DELAY);
312 #endif
313 	switch (size) {
314 	case 4:
315 		cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
316 		return PCIBIOS_SUCCESSFUL;
317 	case 2:
318 		cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
319 		return PCIBIOS_SUCCESSFUL;
320 	case 1:
321 		cvmx_write64_uint8(pci_addr.u64, val);
322 		return PCIBIOS_SUCCESSFUL;
323 	}
324 	return PCIBIOS_FUNC_NOT_SUPPORTED;
325 }
326 
327 
328 static struct pci_ops octeon_pci_ops = {
329 	octeon_read_config,
330 	octeon_write_config,
331 };
332 
333 static struct resource octeon_pci_mem_resource = {
334 	.start = 0,
335 	.end = 0,
336 	.name = "Octeon PCI MEM",
337 	.flags = IORESOURCE_MEM,
338 };
339 
340 /*
341  * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
342  * bridge
343  */
344 static struct resource octeon_pci_io_resource = {
345 	.start = 0x4000,
346 	.end = OCTEON_PCI_IOSPACE_SIZE - 1,
347 	.name = "Octeon PCI IO",
348 	.flags = IORESOURCE_IO,
349 };
350 
351 static struct pci_controller octeon_pci_controller = {
352 	.pci_ops = &octeon_pci_ops,
353 	.mem_resource = &octeon_pci_mem_resource,
354 	.mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
355 	.io_resource = &octeon_pci_io_resource,
356 	.io_offset = 0,
357 	.io_map_base = OCTEON_PCI_IOSPACE_BASE,
358 };
359 
360 
361 /*
362  * Low level initialize the Octeon PCI controller
363  */
364 static void octeon_pci_initialize(void)
365 {
366 	union cvmx_pci_cfg01 cfg01;
367 	union cvmx_npi_ctl_status ctl_status;
368 	union cvmx_pci_ctl_status_2 ctl_status_2;
369 	union cvmx_pci_cfg19 cfg19;
370 	union cvmx_pci_cfg16 cfg16;
371 	union cvmx_pci_cfg22 cfg22;
372 	union cvmx_pci_cfg56 cfg56;
373 
374 	/* Reset the PCI Bus */
375 	cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
376 	cvmx_read_csr(CVMX_CIU_SOFT_PRST);
377 
378 	udelay(2000);		/* Hold PCI reset for 2 ms */
379 
380 	ctl_status.u64 = 0;	/* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
381 	ctl_status.s.max_word = 1;
382 	ctl_status.s.timer = 1;
383 	cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
384 
385 	/* Deassert PCI reset and advertize PCX Host Mode Device Capability
386 	   (64b) */
387 	cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
388 	cvmx_read_csr(CVMX_CIU_SOFT_PRST);
389 
390 	udelay(2000);		/* Wait 2 ms after deasserting PCI reset */
391 
392 	ctl_status_2.u32 = 0;
393 	ctl_status_2.s.tsr_hwm = 1;	/* Initializes to 0.  Must be set
394 					   before any PCI reads. */
395 	ctl_status_2.s.bar2pres = 1;	/* Enable BAR2 */
396 	ctl_status_2.s.bar2_enb = 1;
397 	ctl_status_2.s.bar2_cax = 1;	/* Don't use L2 */
398 	ctl_status_2.s.bar2_esx = 1;
399 	ctl_status_2.s.pmo_amod = 1;	/* Round robin priority */
400 	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
401 		/* BAR1 hole */
402 		ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
403 		ctl_status_2.s.bb1_siz = 1;  /* BAR1 is 2GB */
404 		ctl_status_2.s.bb_ca = 1;    /* Don't use L2 with big bars */
405 		ctl_status_2.s.bb_es = 1;    /* Big bar in byte swap mode */
406 		ctl_status_2.s.bb1 = 1;      /* BAR1 is big */
407 		ctl_status_2.s.bb0 = 1;      /* BAR0 is big */
408 	}
409 
410 	octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
411 	udelay(2000);		/* Wait 2 ms before doing PCI reads */
412 
413 	ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
414 	pr_notice("PCI Status: %s %s-bit\n",
415 		  ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
416 		  ctl_status_2.s.ap_64ad ? "64" : "32");
417 
418 	if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
419 		union cvmx_pci_cnt_reg cnt_reg_start;
420 		union cvmx_pci_cnt_reg cnt_reg_end;
421 		unsigned long cycles, pci_clock;
422 
423 		cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
424 		cycles = read_c0_cvmcount();
425 		udelay(1000);
426 		cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
427 		cycles = read_c0_cvmcount() - cycles;
428 		pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
429 			    (cycles / (mips_hpt_frequency / 1000000));
430 		pr_notice("PCI Clock: %lu MHz\n", pci_clock);
431 	}
432 
433 	/*
434 	 * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
435 	 * in PCI-X mode to allow four outstanding splits. Otherwise,
436 	 * should not change from its reset value. Don't write PCI_CFG19
437 	 * in PCI mode (0x82000001 reset value), write it to 0x82000004
438 	 * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
439 	 * MRBCM -> must be one.
440 	 */
441 	if (ctl_status_2.s.ap_pcix) {
442 		cfg19.u32 = 0;
443 		/*
444 		 * Target Delayed/Split request outstanding maximum
445 		 * count. [1..31] and 0=32.  NOTE: If the user
446 		 * programs these bits beyond the Designed Maximum
447 		 * outstanding count, then the designed maximum table
448 		 * depth will be used instead.  No additional
449 		 * Deferred/Split transactions will be accepted if
450 		 * this outstanding maximum count is
451 		 * reached. Furthermore, no additional deferred/split
452 		 * transactions will be accepted if the I/O delay/ I/O
453 		 * Split Request outstanding maximum is reached.
454 		 */
455 		cfg19.s.tdomc = 4;
456 		/*
457 		 * Master Deferred Read Request Outstanding Max Count
458 		 * (PCI only).  CR4C[26:24] Max SAC cycles MAX DAC
459 		 * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
460 		 * 5 2 110 6 3 111 7 3 For example, if these bits are
461 		 * programmed to 100, the core can support 2 DAC
462 		 * cycles, 4 SAC cycles or a combination of 1 DAC and
463 		 * 2 SAC cycles. NOTE: For the PCI-X maximum
464 		 * outstanding split transactions, refer to
465 		 * CRE0[22:20].
466 		 */
467 		cfg19.s.mdrrmc = 2;
468 		/*
469 		 * Master Request (Memory Read) Byte Count/Byte Enable
470 		 * select. 0 = Byte Enables valid. In PCI mode, a
471 		 * burst transaction cannot be performed using Memory
472 		 * Read command=4?h6. 1 = DWORD Byte Count valid
473 		 * (default). In PCI Mode, the memory read byte
474 		 * enables are automatically generated by the
475 		 * core. Note: N3 Master Request transaction sizes are
476 		 * always determined through the
477 		 * am_attr[<35:32>|<7:0>] field.
478 		 */
479 		cfg19.s.mrbcm = 1;
480 		octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
481 	}
482 
483 
484 	cfg01.u32 = 0;
485 	cfg01.s.msae = 1;	/* Memory Space Access Enable */
486 	cfg01.s.me = 1;		/* Master Enable */
487 	cfg01.s.pee = 1;	/* PERR# Enable */
488 	cfg01.s.see = 1;	/* System Error Enable */
489 	cfg01.s.fbbe = 1;	/* Fast Back to Back Transaction Enable */
490 
491 	octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
492 
493 #ifdef USE_OCTEON_INTERNAL_ARBITER
494 	/*
495 	 * When OCTEON is a PCI host, most systems will use OCTEON's
496 	 * internal arbiter, so must enable it before any PCI/PCI-X
497 	 * traffic can occur.
498 	 */
499 	{
500 		union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
501 
502 		pci_int_arb_cfg.u64 = 0;
503 		pci_int_arb_cfg.s.en = 1;	/* Internal arbiter enable */
504 		cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
505 	}
506 #endif	/* USE_OCTEON_INTERNAL_ARBITER */
507 
508 	/*
509 	 * Preferably written to 1 to set MLTD. [RDSATI,TRTAE,
510 	 * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
511 	 * 1..7.
512 	 */
513 	cfg16.u32 = 0;
514 	cfg16.s.mltd = 1;	/* Master Latency Timer Disable */
515 	octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
516 
517 	/*
518 	 * Should be written to 0x4ff00. MTTV -> must be zero.
519 	 * FLUSH -> must be 1. MRV -> should be 0xFF.
520 	 */
521 	cfg22.u32 = 0;
522 	/* Master Retry Value [1..255] and 0=infinite */
523 	cfg22.s.mrv = 0xff;
524 	/*
525 	 * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
526 	 * N3K operation.
527 	 */
528 	cfg22.s.flush = 1;
529 	octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
530 
531 	/*
532 	 * MOST Indicates the maximum number of outstanding splits (in -1
533 	 * notation) when OCTEON is in PCI-X mode.  PCI-X performance is
534 	 * affected by the MOST selection.  Should generally be written
535 	 * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
536 	 * depending on the desired MOST of 3, 2, 1, or 0, respectively.
537 	 */
538 	cfg56.u32 = 0;
539 	cfg56.s.pxcid = 7;	/* RO - PCI-X Capability ID */
540 	cfg56.s.ncp = 0xe8;	/* RO - Next Capability Pointer */
541 	cfg56.s.dpere = 1;	/* Data Parity Error Recovery Enable */
542 	cfg56.s.roe = 1;	/* Relaxed Ordering Enable */
543 	cfg56.s.mmbc = 1;	/* Maximum Memory Byte Count
544 				   [0=512B,1=1024B,2=2048B,3=4096B] */
545 	cfg56.s.most = 3;	/* Maximum outstanding Split transactions [0=1
546 				   .. 7=32] */
547 
548 	octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
549 
550 	/*
551 	 * Affects PCI performance when OCTEON services reads to its
552 	 * BAR1/BAR2. Refer to Section 10.6.1.  The recommended values are
553 	 * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
554 	 * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
555 	 * these values need to be changed so they won't possibly prefetch off
556 	 * of the end of memory if PCI is DMAing a buffer at the end of
557 	 * memory. Note that these values differ from their reset values.
558 	 */
559 	octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
560 	octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
561 	octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
562 }
563 
564 
565 /*
566  * Initialize the Octeon PCI controller
567  */
568 static int __init octeon_pci_setup(void)
569 {
570 	union cvmx_npi_mem_access_subidx mem_access;
571 	int index;
572 
573 	/* Only these chips have PCI */
574 	if (octeon_has_feature(OCTEON_FEATURE_PCIE))
575 		return 0;
576 
577 	/* Point pcibios_map_irq() to the PCI version of it */
578 	octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
579 
580 	/* Only use the big bars on chips that support it */
581 	if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
582 	    OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
583 	    OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
584 		octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
585 	else
586 		octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
587 
588 	/* PCI I/O and PCI MEM values */
589 	set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
590 	ioport_resource.start = 0;
591 	ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
592 	if (!octeon_is_pci_host()) {
593 		pr_notice("Not in host mode, PCI Controller not initialized\n");
594 		return 0;
595 	}
596 
597 	pr_notice("%s Octeon big bar support\n",
598 		  (octeon_dma_bar_type ==
599 		  OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
600 
601 	octeon_pci_initialize();
602 
603 	mem_access.u64 = 0;
604 	mem_access.s.esr = 1;	/* Endian-Swap on read. */
605 	mem_access.s.esw = 1;	/* Endian-Swap on write. */
606 	mem_access.s.nsr = 0;	/* No-Snoop on read. */
607 	mem_access.s.nsw = 0;	/* No-Snoop on write. */
608 	mem_access.s.ror = 0;	/* Relax Read on read. */
609 	mem_access.s.row = 0;	/* Relax Order on write. */
610 	mem_access.s.ba = 0;	/* PCI Address bits [63:36]. */
611 	cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
612 
613 	/*
614 	 * Remap the Octeon BAR 2 above all 32 bit devices
615 	 * (0x8000000000ul).  This is done here so it is remapped
616 	 * before the readl()'s below. We don't want BAR2 overlapping
617 	 * with BAR0/BAR1 during these reads.
618 	 */
619 	octeon_npi_write32(CVMX_NPI_PCI_CFG08,
620 			   (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull));
621 	octeon_npi_write32(CVMX_NPI_PCI_CFG09,
622 			   (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32));
623 
624 	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
625 		/* Remap the Octeon BAR 0 to 0-2GB */
626 		octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
627 		octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
628 
629 		/*
630 		 * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
631 		 * BAR 1 hole).
632 		 */
633 		octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
634 		octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
635 
636 		/* BAR1 movable mappings set for identity mapping */
637 		octeon_bar1_pci_phys = 0x80000000ull;
638 		for (index = 0; index < 32; index++) {
639 			union cvmx_pci_bar1_indexx bar1_index;
640 
641 			bar1_index.u32 = 0;
642 			/* Address bits[35:22] sent to L2C */
643 			bar1_index.s.addr_idx =
644 				(octeon_bar1_pci_phys >> 22) + index;
645 			/* Don't put PCI accesses in L2. */
646 			bar1_index.s.ca = 1;
647 			/* Endian Swap Mode */
648 			bar1_index.s.end_swp = 1;
649 			/* Set '1' when the selected address range is valid. */
650 			bar1_index.s.addr_v = 1;
651 			octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
652 					   bar1_index.u32);
653 		}
654 
655 		/* Devices go after BAR1 */
656 		octeon_pci_mem_resource.start =
657 			OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
658 			(OCTEON_PCI_BAR1_HOLE_SIZE << 20);
659 		octeon_pci_mem_resource.end =
660 			octeon_pci_mem_resource.start + (1ul << 30);
661 	} else {
662 		/* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
663 		octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
664 		octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
665 
666 		/* Remap the Octeon BAR 1 to map 0-128MB */
667 		octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
668 		octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
669 
670 		/* BAR1 movable regions contiguous to cover the swiotlb */
671 		octeon_bar1_pci_phys =
672 			virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1);
673 
674 		for (index = 0; index < 32; index++) {
675 			union cvmx_pci_bar1_indexx bar1_index;
676 
677 			bar1_index.u32 = 0;
678 			/* Address bits[35:22] sent to L2C */
679 			bar1_index.s.addr_idx =
680 				(octeon_bar1_pci_phys >> 22) + index;
681 			/* Don't put PCI accesses in L2. */
682 			bar1_index.s.ca = 1;
683 			/* Endian Swap Mode */
684 			bar1_index.s.end_swp = 1;
685 			/* Set '1' when the selected address range is valid. */
686 			bar1_index.s.addr_v = 1;
687 			octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
688 					   bar1_index.u32);
689 		}
690 
691 		/* Devices go after BAR0 */
692 		octeon_pci_mem_resource.start =
693 			OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
694 			(4ul << 10);
695 		octeon_pci_mem_resource.end =
696 			octeon_pci_mem_resource.start + (1ul << 30);
697 	}
698 
699 	register_pci_controller(&octeon_pci_controller);
700 
701 	/*
702 	 * Clear any errors that might be pending from before the bus
703 	 * was setup properly.
704 	 */
705 	cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
706 
707 	octeon_pci_dma_init();
708 
709 	return 0;
710 }
711 
712 arch_initcall(octeon_pci_setup);
713