xref: /linux/arch/mips/pci/pci-octeon.c (revision c435bce6af9b2a277662698875a689c389358f17)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2005-2009 Cavium Networks
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/interrupt.h>
12 #include <linux/time.h>
13 #include <linux/delay.h>
14 #include <linux/platform_device.h>
15 #include <linux/swiotlb.h>
16 
17 #include <asm/time.h>
18 
19 #include <asm/octeon/octeon.h>
20 #include <asm/octeon/cvmx-npi-defs.h>
21 #include <asm/octeon/cvmx-pci-defs.h>
22 #include <asm/octeon/pci-octeon.h>
23 
24 #define USE_OCTEON_INTERNAL_ARBITER
25 
26 /*
27  * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
28  * addresses. Use PCI endian swapping 1 so no address swapping is
29  * necessary. The Linux io routines will endian swap the data.
30  */
31 #define OCTEON_PCI_IOSPACE_BASE	    0x80011a0400000000ull
32 #define OCTEON_PCI_IOSPACE_SIZE	    (1ull<<32)
33 
34 /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
35 #define OCTEON_PCI_MEMSPACE_OFFSET  (0x00011b0000000000ull)
36 
37 u64 octeon_bar1_pci_phys;
38 
39 /**
40  * This is the bit decoding used for the Octeon PCI controller addresses
41  */
42 union octeon_pci_address {
43 	uint64_t u64;
44 	struct {
45 		uint64_t upper:2;
46 		uint64_t reserved:13;
47 		uint64_t io:1;
48 		uint64_t did:5;
49 		uint64_t subdid:3;
50 		uint64_t reserved2:4;
51 		uint64_t endian_swap:2;
52 		uint64_t reserved3:10;
53 		uint64_t bus:8;
54 		uint64_t dev:5;
55 		uint64_t func:3;
56 		uint64_t reg:8;
57 	} s;
58 };
59 
60 int (*octeon_pcibios_map_irq)(const struct pci_dev *dev, u8 slot, u8 pin);
61 enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
62 
63 /**
64  * Map a PCI device to the appropriate interrupt line
65  *
66  * @dev:    The Linux PCI device structure for the device to map
67  * @slot:   The slot number for this device on __BUS 0__. Linux
68  *		 enumerates through all the bridges and figures out the
69  *		 slot on Bus 0 where this device eventually hooks to.
70  * @pin:    The PCI interrupt pin read from the device, then swizzled
71  *		 as it goes through each bridge.
72  * Returns Interrupt number for the device
73  */
74 int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
75 {
76 	if (octeon_pcibios_map_irq)
77 		return octeon_pcibios_map_irq(dev, slot, pin);
78 	else
79 		panic("octeon_pcibios_map_irq not set.");
80 }
81 
82 
83 /*
84  * Called to perform platform specific PCI setup
85  */
86 int pcibios_plat_dev_init(struct pci_dev *dev)
87 {
88 	uint16_t config;
89 	uint32_t dconfig;
90 	int pos;
91 	/*
92 	 * Force the Cache line setting to 64 bytes. The standard
93 	 * Linux bus scan doesn't seem to set it. Octeon really has
94 	 * 128 byte lines, but Intel bridges get really upset if you
95 	 * try and set values above 64 bytes. Value is specified in
96 	 * 32bit words.
97 	 */
98 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
99 	/* Set latency timers for all devices */
100 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64);
101 
102 	/* Enable reporting System errors and parity errors on all devices */
103 	/* Enable parity checking and error reporting */
104 	pci_read_config_word(dev, PCI_COMMAND, &config);
105 	config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
106 	pci_write_config_word(dev, PCI_COMMAND, config);
107 
108 	if (dev->subordinate) {
109 		/* Set latency timers on sub bridges */
110 		pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64);
111 		/* More bridge error detection */
112 		pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
113 		config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
114 		pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
115 	}
116 
117 	/* Enable the PCIe normal error reporting */
118 	config = PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */
119 	config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */
120 	config |= PCI_EXP_DEVCTL_FERE;	/* Fatal Error Reporting */
121 	config |= PCI_EXP_DEVCTL_URRE;	/* Unsupported Request */
122 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, config);
123 
124 	/* Find the Advanced Error Reporting capability */
125 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
126 	if (pos) {
127 		/* Clear Uncorrectable Error Status */
128 		pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
129 				      &dconfig);
130 		pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
131 				       dconfig);
132 		/* Enable reporting of all uncorrectable errors */
133 		/* Uncorrectable Error Mask - turned on bits disable errors */
134 		pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
135 		/*
136 		 * Leave severity at HW default. This only controls if
137 		 * errors are reported as uncorrectable or
138 		 * correctable, not if the error is reported.
139 		 */
140 		/* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
141 		/* Clear Correctable Error Status */
142 		pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
143 		pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
144 		/* Enable reporting of all correctable errors */
145 		/* Correctable Error Mask - turned on bits disable errors */
146 		pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
147 		/* Advanced Error Capabilities */
148 		pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
149 		/* ECRC Generation Enable */
150 		if (config & PCI_ERR_CAP_ECRC_GENC)
151 			config |= PCI_ERR_CAP_ECRC_GENE;
152 		/* ECRC Check Enable */
153 		if (config & PCI_ERR_CAP_ECRC_CHKC)
154 			config |= PCI_ERR_CAP_ECRC_CHKE;
155 		pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
156 		/* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
157 		/* Report all errors to the root complex */
158 		pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
159 				       PCI_ERR_ROOT_CMD_COR_EN |
160 				       PCI_ERR_ROOT_CMD_NONFATAL_EN |
161 				       PCI_ERR_ROOT_CMD_FATAL_EN);
162 		/* Clear the Root status register */
163 		pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
164 		pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
165 	}
166 
167 	return 0;
168 }
169 
170 /**
171  * Return the mapping of PCI device number to IRQ line. Each
172  * character in the return string represents the interrupt
173  * line for the device at that position. Device 1 maps to the
174  * first character, etc. The characters A-D are used for PCI
175  * interrupts.
176  *
177  * Returns PCI interrupt mapping
178  */
179 const char *octeon_get_pci_interrupts(void)
180 {
181 	/*
182 	 * Returning an empty string causes the interrupts to be
183 	 * routed based on the PCI specification. From the PCI spec:
184 	 *
185 	 * INTA# of Device Number 0 is connected to IRQW on the system
186 	 * board.  (Device Number has no significance regarding being
187 	 * located on the system board or in a connector.) INTA# of
188 	 * Device Number 1 is connected to IRQX on the system
189 	 * board. INTA# of Device Number 2 is connected to IRQY on the
190 	 * system board. INTA# of Device Number 3 is connected to IRQZ
191 	 * on the system board. The table below describes how each
192 	 * agent's INTx# lines are connected to the system board
193 	 * interrupt lines. The following equation can be used to
194 	 * determine to which INTx# signal on the system board a given
195 	 * device's INTx# line(s) is connected.
196 	 *
197 	 * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
198 	 * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
199 	 * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
200 	 * INTD# = 3)
201 	 */
202 	if (of_machine_is_compatible("dlink,dsr-500n"))
203 		return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC";
204 	switch (octeon_bootinfo->board_type) {
205 	case CVMX_BOARD_TYPE_NAO38:
206 		/* This is really the NAC38 */
207 		return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
208 	case CVMX_BOARD_TYPE_EBH3100:
209 	case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
210 	case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
211 		return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
212 	case CVMX_BOARD_TYPE_BBGW_REF:
213 		return "AABCD";
214 	case CVMX_BOARD_TYPE_CUST_DSR1000N:
215 		return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC";
216 	case CVMX_BOARD_TYPE_THUNDER:
217 	case CVMX_BOARD_TYPE_EBH3000:
218 	default:
219 		return "";
220 	}
221 }
222 
223 /**
224  * Map a PCI device to the appropriate interrupt line
225  *
226  * @dev:    The Linux PCI device structure for the device to map
227  * @slot:   The slot number for this device on __BUS 0__. Linux
228  *		 enumerates through all the bridges and figures out the
229  *		 slot on Bus 0 where this device eventually hooks to.
230  * @pin:    The PCI interrupt pin read from the device, then swizzled
231  *		 as it goes through each bridge.
232  * Returns Interrupt number for the device
233  */
234 int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
235 				      u8 slot, u8 pin)
236 {
237 	int irq_num;
238 	const char *interrupts;
239 	int dev_num;
240 
241 	/* Get the board specific interrupt mapping */
242 	interrupts = octeon_get_pci_interrupts();
243 
244 	dev_num = dev->devfn >> 3;
245 	if (dev_num < strlen(interrupts))
246 		irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
247 			OCTEON_IRQ_PCI_INT0;
248 	else
249 		irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
250 	return irq_num;
251 }
252 
253 
254 /*
255  * Read a value from configuration space
256  */
257 static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
258 			      int reg, int size, u32 *val)
259 {
260 	union octeon_pci_address pci_addr;
261 
262 	pci_addr.u64 = 0;
263 	pci_addr.s.upper = 2;
264 	pci_addr.s.io = 1;
265 	pci_addr.s.did = 3;
266 	pci_addr.s.subdid = 1;
267 	pci_addr.s.endian_swap = 1;
268 	pci_addr.s.bus = bus->number;
269 	pci_addr.s.dev = devfn >> 3;
270 	pci_addr.s.func = devfn & 0x7;
271 	pci_addr.s.reg = reg;
272 
273 	switch (size) {
274 	case 4:
275 		*val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
276 		return PCIBIOS_SUCCESSFUL;
277 	case 2:
278 		*val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
279 		return PCIBIOS_SUCCESSFUL;
280 	case 1:
281 		*val = cvmx_read64_uint8(pci_addr.u64);
282 		return PCIBIOS_SUCCESSFUL;
283 	}
284 	return PCIBIOS_FUNC_NOT_SUPPORTED;
285 }
286 
287 
288 /*
289  * Write a value to PCI configuration space
290  */
291 static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
292 			       int reg, int size, u32 val)
293 {
294 	union octeon_pci_address pci_addr;
295 
296 	pci_addr.u64 = 0;
297 	pci_addr.s.upper = 2;
298 	pci_addr.s.io = 1;
299 	pci_addr.s.did = 3;
300 	pci_addr.s.subdid = 1;
301 	pci_addr.s.endian_swap = 1;
302 	pci_addr.s.bus = bus->number;
303 	pci_addr.s.dev = devfn >> 3;
304 	pci_addr.s.func = devfn & 0x7;
305 	pci_addr.s.reg = reg;
306 
307 	switch (size) {
308 	case 4:
309 		cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
310 		return PCIBIOS_SUCCESSFUL;
311 	case 2:
312 		cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
313 		return PCIBIOS_SUCCESSFUL;
314 	case 1:
315 		cvmx_write64_uint8(pci_addr.u64, val);
316 		return PCIBIOS_SUCCESSFUL;
317 	}
318 	return PCIBIOS_FUNC_NOT_SUPPORTED;
319 }
320 
321 
322 static struct pci_ops octeon_pci_ops = {
323 	.read	= octeon_read_config,
324 	.write	= octeon_write_config,
325 };
326 
327 static struct resource octeon_pci_mem_resource = {
328 	.start = 0,
329 	.end = 0,
330 	.name = "Octeon PCI MEM",
331 	.flags = IORESOURCE_MEM,
332 };
333 
334 /*
335  * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
336  * bridge
337  */
338 static struct resource octeon_pci_io_resource = {
339 	.start = 0x4000,
340 	.end = OCTEON_PCI_IOSPACE_SIZE - 1,
341 	.name = "Octeon PCI IO",
342 	.flags = IORESOURCE_IO,
343 };
344 
345 static struct pci_controller octeon_pci_controller = {
346 	.pci_ops = &octeon_pci_ops,
347 	.mem_resource = &octeon_pci_mem_resource,
348 	.mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
349 	.io_resource = &octeon_pci_io_resource,
350 	.io_offset = 0,
351 	.io_map_base = OCTEON_PCI_IOSPACE_BASE,
352 };
353 
354 
355 /*
356  * Low level initialize the Octeon PCI controller
357  */
358 static void octeon_pci_initialize(void)
359 {
360 	union cvmx_pci_cfg01 cfg01;
361 	union cvmx_npi_ctl_status ctl_status;
362 	union cvmx_pci_ctl_status_2 ctl_status_2;
363 	union cvmx_pci_cfg19 cfg19;
364 	union cvmx_pci_cfg16 cfg16;
365 	union cvmx_pci_cfg22 cfg22;
366 	union cvmx_pci_cfg56 cfg56;
367 
368 	/* Reset the PCI Bus */
369 	cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
370 	cvmx_read_csr(CVMX_CIU_SOFT_PRST);
371 
372 	udelay(2000);		/* Hold PCI reset for 2 ms */
373 
374 	ctl_status.u64 = 0;	/* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
375 	ctl_status.s.max_word = 1;
376 	ctl_status.s.timer = 1;
377 	cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
378 
379 	/* Deassert PCI reset and advertise PCX Host Mode Device Capability
380 	   (64b) */
381 	cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
382 	cvmx_read_csr(CVMX_CIU_SOFT_PRST);
383 
384 	udelay(2000);		/* Wait 2 ms after deasserting PCI reset */
385 
386 	ctl_status_2.u32 = 0;
387 	ctl_status_2.s.tsr_hwm = 1;	/* Initializes to 0.  Must be set
388 					   before any PCI reads. */
389 	ctl_status_2.s.bar2pres = 1;	/* Enable BAR2 */
390 	ctl_status_2.s.bar2_enb = 1;
391 	ctl_status_2.s.bar2_cax = 1;	/* Don't use L2 */
392 	ctl_status_2.s.bar2_esx = 1;
393 	ctl_status_2.s.pmo_amod = 1;	/* Round robin priority */
394 	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
395 		/* BAR1 hole */
396 		ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
397 		ctl_status_2.s.bb1_siz = 1;  /* BAR1 is 2GB */
398 		ctl_status_2.s.bb_ca = 1;    /* Don't use L2 with big bars */
399 		ctl_status_2.s.bb_es = 1;    /* Big bar in byte swap mode */
400 		ctl_status_2.s.bb1 = 1;	     /* BAR1 is big */
401 		ctl_status_2.s.bb0 = 1;	     /* BAR0 is big */
402 	}
403 
404 	octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
405 	udelay(2000);		/* Wait 2 ms before doing PCI reads */
406 
407 	ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
408 	pr_notice("PCI Status: %s %s-bit\n",
409 		  ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
410 		  ctl_status_2.s.ap_64ad ? "64" : "32");
411 
412 	if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
413 		union cvmx_pci_cnt_reg cnt_reg_start;
414 		union cvmx_pci_cnt_reg cnt_reg_end;
415 		unsigned long cycles, pci_clock;
416 
417 		cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
418 		cycles = read_c0_cvmcount();
419 		udelay(1000);
420 		cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
421 		cycles = read_c0_cvmcount() - cycles;
422 		pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
423 			    (cycles / (mips_hpt_frequency / 1000000));
424 		pr_notice("PCI Clock: %lu MHz\n", pci_clock);
425 	}
426 
427 	/*
428 	 * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
429 	 * in PCI-X mode to allow four outstanding splits. Otherwise,
430 	 * should not change from its reset value. Don't write PCI_CFG19
431 	 * in PCI mode (0x82000001 reset value), write it to 0x82000004
432 	 * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
433 	 * MRBCM -> must be one.
434 	 */
435 	if (ctl_status_2.s.ap_pcix) {
436 		cfg19.u32 = 0;
437 		/*
438 		 * Target Delayed/Split request outstanding maximum
439 		 * count. [1..31] and 0=32.  NOTE: If the user
440 		 * programs these bits beyond the Designed Maximum
441 		 * outstanding count, then the designed maximum table
442 		 * depth will be used instead.	No additional
443 		 * Deferred/Split transactions will be accepted if
444 		 * this outstanding maximum count is
445 		 * reached. Furthermore, no additional deferred/split
446 		 * transactions will be accepted if the I/O delay/ I/O
447 		 * Split Request outstanding maximum is reached.
448 		 */
449 		cfg19.s.tdomc = 4;
450 		/*
451 		 * Master Deferred Read Request Outstanding Max Count
452 		 * (PCI only).	CR4C[26:24] Max SAC cycles MAX DAC
453 		 * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
454 		 * 5 2 110 6 3 111 7 3 For example, if these bits are
455 		 * programmed to 100, the core can support 2 DAC
456 		 * cycles, 4 SAC cycles or a combination of 1 DAC and
457 		 * 2 SAC cycles. NOTE: For the PCI-X maximum
458 		 * outstanding split transactions, refer to
459 		 * CRE0[22:20].
460 		 */
461 		cfg19.s.mdrrmc = 2;
462 		/*
463 		 * Master Request (Memory Read) Byte Count/Byte Enable
464 		 * select. 0 = Byte Enables valid. In PCI mode, a
465 		 * burst transaction cannot be performed using Memory
466 		 * Read command=4?h6. 1 = DWORD Byte Count valid
467 		 * (default). In PCI Mode, the memory read byte
468 		 * enables are automatically generated by the
469 		 * core. Note: N3 Master Request transaction sizes are
470 		 * always determined through the
471 		 * am_attr[<35:32>|<7:0>] field.
472 		 */
473 		cfg19.s.mrbcm = 1;
474 		octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
475 	}
476 
477 
478 	cfg01.u32 = 0;
479 	cfg01.s.msae = 1;	/* Memory Space Access Enable */
480 	cfg01.s.me = 1;		/* Master Enable */
481 	cfg01.s.pee = 1;	/* PERR# Enable */
482 	cfg01.s.see = 1;	/* System Error Enable */
483 	cfg01.s.fbbe = 1;	/* Fast Back to Back Transaction Enable */
484 
485 	octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
486 
487 #ifdef USE_OCTEON_INTERNAL_ARBITER
488 	/*
489 	 * When OCTEON is a PCI host, most systems will use OCTEON's
490 	 * internal arbiter, so must enable it before any PCI/PCI-X
491 	 * traffic can occur.
492 	 */
493 	{
494 		union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
495 
496 		pci_int_arb_cfg.u64 = 0;
497 		pci_int_arb_cfg.s.en = 1;	/* Internal arbiter enable */
498 		cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
499 	}
500 #endif	/* USE_OCTEON_INTERNAL_ARBITER */
501 
502 	/*
503 	 * Preferably written to 1 to set MLTD. [RDSATI,TRTAE,
504 	 * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
505 	 * 1..7.
506 	 */
507 	cfg16.u32 = 0;
508 	cfg16.s.mltd = 1;	/* Master Latency Timer Disable */
509 	octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
510 
511 	/*
512 	 * Should be written to 0x4ff00. MTTV -> must be zero.
513 	 * FLUSH -> must be 1. MRV -> should be 0xFF.
514 	 */
515 	cfg22.u32 = 0;
516 	/* Master Retry Value [1..255] and 0=infinite */
517 	cfg22.s.mrv = 0xff;
518 	/*
519 	 * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
520 	 * N3K operation.
521 	 */
522 	cfg22.s.flush = 1;
523 	octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
524 
525 	/*
526 	 * MOST Indicates the maximum number of outstanding splits (in -1
527 	 * notation) when OCTEON is in PCI-X mode.  PCI-X performance is
528 	 * affected by the MOST selection.  Should generally be written
529 	 * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
530 	 * depending on the desired MOST of 3, 2, 1, or 0, respectively.
531 	 */
532 	cfg56.u32 = 0;
533 	cfg56.s.pxcid = 7;	/* RO - PCI-X Capability ID */
534 	cfg56.s.ncp = 0xe8;	/* RO - Next Capability Pointer */
535 	cfg56.s.dpere = 1;	/* Data Parity Error Recovery Enable */
536 	cfg56.s.roe = 1;	/* Relaxed Ordering Enable */
537 	cfg56.s.mmbc = 1;	/* Maximum Memory Byte Count
538 				   [0=512B,1=1024B,2=2048B,3=4096B] */
539 	cfg56.s.most = 3;	/* Maximum outstanding Split transactions [0=1
540 				   .. 7=32] */
541 
542 	octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
543 
544 	/*
545 	 * Affects PCI performance when OCTEON services reads to its
546 	 * BAR1/BAR2. Refer to Section 10.6.1.	The recommended values are
547 	 * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
548 	 * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
549 	 * these values need to be changed so they won't possibly prefetch off
550 	 * of the end of memory if PCI is DMAing a buffer at the end of
551 	 * memory. Note that these values differ from their reset values.
552 	 */
553 	octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
554 	octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
555 	octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
556 }
557 
558 
559 /*
560  * Initialize the Octeon PCI controller
561  */
562 static int __init octeon_pci_setup(void)
563 {
564 	union cvmx_npi_mem_access_subidx mem_access;
565 	int index;
566 
567 	/* Only these chips have PCI */
568 	if (octeon_has_feature(OCTEON_FEATURE_PCIE))
569 		return 0;
570 
571 	if (!octeon_is_pci_host()) {
572 		pr_notice("Not in host mode, PCI Controller not initialized\n");
573 		return 0;
574 	}
575 
576 	/* Point pcibios_map_irq() to the PCI version of it */
577 	octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
578 
579 	/* Only use the big bars on chips that support it */
580 	if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
581 	    OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
582 	    OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
583 		octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
584 	else
585 		octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
586 
587 	/* PCI I/O and PCI MEM values */
588 	set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
589 	ioport_resource.start = 0;
590 	ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
591 
592 	pr_notice("%s Octeon big bar support\n",
593 		  (octeon_dma_bar_type ==
594 		  OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
595 
596 	octeon_pci_initialize();
597 
598 	mem_access.u64 = 0;
599 	mem_access.s.esr = 1;	/* Endian-Swap on read. */
600 	mem_access.s.esw = 1;	/* Endian-Swap on write. */
601 	mem_access.s.nsr = 0;	/* No-Snoop on read. */
602 	mem_access.s.nsw = 0;	/* No-Snoop on write. */
603 	mem_access.s.ror = 0;	/* Relax Read on read. */
604 	mem_access.s.row = 0;	/* Relax Order on write. */
605 	mem_access.s.ba = 0;	/* PCI Address bits [63:36]. */
606 	cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
607 
608 	/*
609 	 * Remap the Octeon BAR 2 above all 32 bit devices
610 	 * (0x8000000000ul).  This is done here so it is remapped
611 	 * before the readl()'s below. We don't want BAR2 overlapping
612 	 * with BAR0/BAR1 during these reads.
613 	 */
614 	octeon_npi_write32(CVMX_NPI_PCI_CFG08,
615 			   (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull));
616 	octeon_npi_write32(CVMX_NPI_PCI_CFG09,
617 			   (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32));
618 
619 	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
620 		/* Remap the Octeon BAR 0 to 0-2GB */
621 		octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
622 		octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
623 
624 		/*
625 		 * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
626 		 * BAR 1 hole).
627 		 */
628 		octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
629 		octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
630 
631 		/* BAR1 movable mappings set for identity mapping */
632 		octeon_bar1_pci_phys = 0x80000000ull;
633 		for (index = 0; index < 32; index++) {
634 			union cvmx_pci_bar1_indexx bar1_index;
635 
636 			bar1_index.u32 = 0;
637 			/* Address bits[35:22] sent to L2C */
638 			bar1_index.s.addr_idx =
639 				(octeon_bar1_pci_phys >> 22) + index;
640 			/* Don't put PCI accesses in L2. */
641 			bar1_index.s.ca = 1;
642 			/* Endian Swap Mode */
643 			bar1_index.s.end_swp = 1;
644 			/* Set '1' when the selected address range is valid. */
645 			bar1_index.s.addr_v = 1;
646 			octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
647 					   bar1_index.u32);
648 		}
649 
650 		/* Devices go after BAR1 */
651 		octeon_pci_mem_resource.start =
652 			OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
653 			(OCTEON_PCI_BAR1_HOLE_SIZE << 20);
654 		octeon_pci_mem_resource.end =
655 			octeon_pci_mem_resource.start + (1ul << 30);
656 	} else {
657 		/* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
658 		octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
659 		octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
660 
661 		/* Remap the Octeon BAR 1 to map 0-128MB */
662 		octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
663 		octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
664 
665 		/* BAR1 movable regions contiguous to cover the swiotlb */
666 		octeon_bar1_pci_phys =
667 			default_swiotlb_base() & ~((1ull << 22) - 1);
668 
669 		for (index = 0; index < 32; index++) {
670 			union cvmx_pci_bar1_indexx bar1_index;
671 
672 			bar1_index.u32 = 0;
673 			/* Address bits[35:22] sent to L2C */
674 			bar1_index.s.addr_idx =
675 				(octeon_bar1_pci_phys >> 22) + index;
676 			/* Don't put PCI accesses in L2. */
677 			bar1_index.s.ca = 1;
678 			/* Endian Swap Mode */
679 			bar1_index.s.end_swp = 1;
680 			/* Set '1' when the selected address range is valid. */
681 			bar1_index.s.addr_v = 1;
682 			octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
683 					   bar1_index.u32);
684 		}
685 
686 		/* Devices go after BAR0 */
687 		octeon_pci_mem_resource.start =
688 			OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
689 			(4ul << 10);
690 		octeon_pci_mem_resource.end =
691 			octeon_pci_mem_resource.start + (1ul << 30);
692 	}
693 
694 	register_pci_controller(&octeon_pci_controller);
695 
696 	/*
697 	 * Clear any errors that might be pending from before the bus
698 	 * was setup properly.
699 	 */
700 	cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
701 
702 	if (IS_ERR(platform_device_register_simple("octeon_pci_edac",
703 						   -1, NULL, 0)))
704 		pr_err("Registration of co_pci_edac failed!\n");
705 
706 	octeon_pci_dma_init();
707 
708 	return 0;
709 }
710 
711 arch_initcall(octeon_pci_setup);
712